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Introduction
Network = Objects + Relations

Application Objects Relations

Social network Person Friendship, colleague
Traffic network Crossroad Road

Chemical interaction net | Chemicals Interaction
Telecommunication net | Person Phone call

Citation network Paper, researcher | Citation, authorship
Shareholder network Company, Person | Shareholdership
Computer network Computer, router | Cable, wifi registration




Introduction

A In this tutorial:
Who studies networks?
Network patterns & mining them
Learning in networks

A Focus on

Local patterns
Not so much on large scale properties



Related ECML/PKDD 2013
tutorials

A [Fri-PM] Algorithmictechniques for modeling and
mining largegraphs (Alarfrieze et al.)

Focus is more on global properties

A [Mon-PM] DiscoverindRoles and Anomalies in
Graphs: Theory &pplications T. EliassiRad et al.)
Anomaly detection Is not covered here
A [Fri-AM] Statistically sound pattern discovery (G.
Webb & W. Hamalainen)

Different statistical aspects



Introduction
Prerequisites

Supervised learning: Given 1.1.d. training examples,
learn a function from example to target value.

You could use SVM, DT, NB, IBL, GP, ... or any of
your favorite supervised technigues
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Basic concepts - Graphs

A Anundirected (labeled) graphis a tuple
G=(V,E/) where
Vis a set ofvertices (nodes)punten (knopen)]
OP {{0h) }h) N w}is a set obdges[takken]
_Gw' OO0 +t is alabeling function
A Unlabeled graph:

If | Is constant (all vertices/edges have the same
label),| may be omitted



Basic concepts - Graphs

A Adirected graphis a tupleG=(V,E,) where
Vis a set of vertices (nodes) [punten (knopen)]
OP {(U)H N w}is a set ofrcs[bogen
_tw” 'O0° ¢t is alabeling function

A Further notations:

V(G)is the set of vertices of the grajgh

E(G)s the set of edges / arcs of the gragh

/ 51s the labeling function of the grapB

0 () {ON wOdLh}N O0}is the neighborhood of
30 U (U)isthe degree oV



Basic concepts
adjacency matrix

A Adjacency matrix of graph"Qis a square
matrix 0 of dimensionw 'O  w("Q such that
0  Tif 6 andv are not connected
0  pifthereis an edge between andvu

1234

1 4 10111
21000
31001

2 3 41010



Basic concepts Z Walk/Path

A Awalk 0 between verticesb and0 in a grapiO
is a sequence of verticésho B o N
w "O such that
6 0h
0 L and
(6 )YNOOforallp Q & p.
A Thelength of such wallkh is¢  p.
A Apath is a walk where all vertices are distinct

A Slightly abusing terminology, a path can also
be seen as a subgraph &



Basic concepts Z Shortest path

A A shortest path is a path of minimal length.

A Distance’Q 6h) betweeno A1 Wis length
of shortest path betweem® A T &
A Thediameter of "O's

QQFG & dayw ( yAoh)



Basic concepts Z Diameter

Thediameter of Qs
QQNEY a woyw ( )’Q(éh‘))

Many realworld graphs have small diameter.
AV : all persons

A E : an edge connects persons who have ever
met each other

A Many people have met a local politician who
met the national prime minister



Basic concepts Z connected, tree

A A graphGisconnected iff there is a path
between every pair of verticas w/ V(G)

A A connected componentof a graphGis a
maximal connected subgraph @.

A A graphGis atree iff there is a unique path
between every pair of verticas w/ V(G)

Intuition: if the path between two vertices is not
unique, then there is a cycle.



Basic concepts Z morphisms

A Ahomomorphism from a graphHinto a graphGis
a mapping/ :V(H)- V(G)such that
| O v (OO N OCO + (s« (VP (V)N 0O
boN o(Od () _ < ()
0RO v (Od (b)) _(« (WP (0))
A An injective homomorphism is subgraph
Isomorphism.



Basic concepts  Z subgraph
Isomorphism vs homomorphism

-y,
,,,,,
- ~u
-~ ~

P>
§~ ‘a
-, -
-

A homomorphism, not an isomorphism

A If there is a homomorphisrfrom Hto G, then we
denote thisO O

A If there is a subgraph isomorphism fradto G,
then we denote thisO O

A Ok "Off O "Cand'O O



Basic concepts Z morphisms

A Ariinduced homomorphismfrom a graphHinto a
graphGis a mapping :V(H)- V(G)such that
| O N OGO N OCO & (» ()P ()N OO
boN o(Od(L) _ - (V)
L OR) v ('O (UR)  _(« ()P (0))
A An injective induced homomorphism is amduced
subgraph isomorphism



Basic concepts  Z induced vs
normal subgraph isomorphism

Subgraph isomorphism

Subgraph isomorphism
Induced subgraph isomorphism

Subgraph isomorphism
Induced subgraph isomorphism




Basic concepts
Automorphisms

A Automorphism = isomorphism of a graph on itself.
A |aut(H)lis the size of th@utomorphism group aut(H)
A For bounded degreél, one can comput¢aut(H)|in
polynomial time.

-

NX
—>

oL

Aut(triangle) has size 2*3=6



Basic concepts

Network =
big database graph

Networks

X

Friend Likes

Y science - fiction

Pattern =
small graph
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Network data mining tasks

Global / Local
assymptotic

Static 1. Clustering & |2. Pattern mining
community |3. Edgel/vertex
detection structure/feature

learning

Evolution |5. Generative [4. Temporal
models learning




Clustering & community

d@teCthn Global / Local

A Given: assymptotic
network O Static

A Eind: Evolution

Set of subsets (clusters, communitiedwo B hw of @ O
Coveringo("Q or not
Disjoint or overlapping

such that vertices in same cluster are close
similar or connected

and vertices from different clusters are distant
dissimilar / not connected



Clusters & communities

examples

A Find groups of people who are densily
connected

A Find groups of people who have a similar
opinion or behavior (and are connected)

A People in the same country, company, school,
domain, ... will often cluster together.



Pattern mining

Global / Wolor:1
assymptotic

A Given:
A network’O
A pattern languaged
A interestingness criteriofi@dd OO° o0i BAH G i Q
A Find
all patternsd N 0 for which'O0 RO

Static

Evolution




Pattern mining example

WhydoyouYq x AOAE OF
1 X 3

2
Friendees Likes[yaout
JP Y JP

Y

4 x S

Ye—
Friend IResearches %'

JP about Y

~ N 7 7 7




Vertex/edge structure/
feature prediction

Global Local

A Given: Static
network O, Evolution
example setvy  w(O)° O(0), target spacean
Unknown distributiond on® &
Trainingsetdo P ® ®
Testseth P ®
Loss functiorbdo© 5

A Find
‘Qminimizing 4B 0('do o )]




vertex/edge structure/
feature prediction example

A Predicting on existing objects:

Social network: Given a user, his profile, his
friendship relations, is this user interested in
chess?

Given a pair of friends (X,Y). Is X planning to send
a message to Y today?

A Predicting on hypothetical objects:

Given a group of people, do they have a common
friend (not yet in the network) ?

Given two people. do they know each other (even
though not yet represented in the network)?



Learning from temporal data

Global / Local
assymptotic

Static
A Given: Evolution -

time-dependent network © 4, (possibly

represented by vertices and edges with time
stamps etc.)

a loss functiornd, : © s

A Find:
PredictionO of the network (or parts thereof)
to minimize40(0 RO )|




Learning from temporal data
example

A Social network:

When will X update his profile?
Will X and Y become friends?
Will a common friend of X and Y join the network?



Learning generative models

Global / Local
assymptotic

Static

A Generative model = probability distribution
mapping a network on a new network, I.e.

A : O mip st
l'ON B, '@ORO)  p




Learning generative models

AQp : o Tip
A Given:
A hypothesis space of generative models

An unknown'®O' =  we assume there was some
O and foro p&BYO was drawn fromQO

time-dependentnetwork O
A Find:

Given losgunction0gs = © a , a model

‘O = such that%q, (ERQ] is minimal

Model' O = suchthatE $ has the same
asymptotic properties a® .

}



Learning generative models

A$ EALAEAOAT AA xEOE Ol AA
Not just predicting a future event, but also global
properties should be right

E.g. errors which propagate quickly should be
avoided. (e.g. positive feedback loops)



Wnat data do | need?

A Many datasets are undirected unlabeled
graphs (interaction = yes/no)
Ok for many models focussing on global &
assymptotic aspects
A How about correlations between interests of
friends?
AEAT UI O T AAA O OAAIT O/
| |

)T CAT AOAIT h Ol
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Relevant fields of research

A Statistical physics

A Complex systems

A Multi agent systems, ants, other simulation
A Grammarinduction

A (Algorithmic) graph theory

A Spectral graph theory

A pattern mining, data mining, machine
learning



Statistical physics

A If we assume a given set of laws, what will
nappen?
A Law = graph generation model

ErdosReny model:

BarabasiAlbert model

A Result =

Assymptotic behavior, what happens if there are
manyparticles?




Statistical physics
The Erdos - Reny model

A Arandom graphfrom the Erdos-Reny
distribution G,(n,p) Is constructed as follows:

Let Gbe a graph om vertices.
For every pair of verticgs,w}, connectv andw with
an edge with probabilityp.
A A random graph from the ErdeBReny
distribution G,,(n,M) is constructed as follows:

Let Gbe a graph om vertices.

Choose randomlIy elements from{{v,w} | v\ V(G)}
and draw an edge between the two elements of these

pairs.



Statistical physics
Allmost all graphs

A Let G be a random graph drawn from
G(n,p(n))i.e.pis a function ofh. A predicate
g (i.e. a boolean function) holds for
(asymptotically) allmost surely (a.a.s.)if

im . ,P(q(G)=true) =1
A Similar forG(n,M)

A If noG(n,p)or G(n,M specmedG(n 1/z) by
AAEAOCI O j OATTI1 1060 AO:/



Statistical physics

Assymptotic properties
AndCcs8 OEA OCEAT O ATibIlTlT

If lim,,. ,np<1 then the largest component of @(n,p)

graph is a.a.sot larger than3.log(n)/(Anp}

If lim. ,np=1], then the largest component of &(n,p)
graph is a.a.9?3

If lim,,. ,np>1 thenthe largest component of &(n,p)
graph isa.a.s. close tbn with H+e®=1



Statistical physics
Assymptotic properties

A E.g. connectedness:
If im,_ ,np/In(n)<Xhen, G(n,p)is a.a.s. disconnected
If im__ ,np/In(n)>Xhen, G(n,p)is a.a.s. onnected



Statistical physics
0- 1 law

A Given a first order logic formulaover
graphs,lim__ ,P(F(G(n¥2))=true)is either
1or0.

AndC8 OAI T OAET O A OOE/
(and hence edges) only increases the
probabillity of a triangle; if many vertices,
the probabillity gets close to 1.



Statistical physics
What can ML and DM learn?

A#1T I DPOOA AOT 1T OEA 11 A/
OAIl QAo 1T &#2 A PAOOAOT 8
AT OET OAOAOOET C PAOO!

from the expected value according to the
model.

A E.g. assumé&Qis the union of a random graph
and a clique. Under what conditions can we
detect the cligue as an abnormally dense
spot?

larjrd” ©EUEEUT Ol dCT ENT OU



Complex systems

A Model processes in society
systems of interacting individuals

what (often largescale) properties do we
observe?

A Study behavior of systems with such
properties
assymptotics
simulation of systems
emerging patterns



Complex systems
What can ML/DM learn?

A Techniques to model application domains
Social behavior
Economics



Multi - agent systems, ants,
simulation

A How to simulate?

A Do artificial populations offer more value
than artificial individuals?



Multi - agent systems
What can ML/DM learn?

A Simulation (sampling a temporal model
forward in time)

A Multi-agent learning (and the effects of
changing behavior due to learning)

A Game theory (~statistical physics: Nash
equilibria)



Grammar induction

A Generative model ~ probabilistic grammar
Initial state
(probabilistic) production rules
A Graph grammars
Hyperedge replacement grammars
Vertex replace grammars



Grammar induction
What can DM/ML learn?

A Graph grammars: learning generative models
producing certain probability distributions
over graphs



(Algorithmic) graph theory

A Algorithms on graphs and their complexity
are weltstudied.
How to solve graph problems
Complexity of solving problems



(Algorithmic) graph theory
What can ML/DM learn?

A Pattern matching
E.g. see part 2

A Support measures

e.g. Maximum independent set, Lovasz theta
function, ... (part 3)

A Shortest path algorithms
A Similarity, maximum common subgraph, ...
A ..



Relational databases

A A network is a relational database where the
AET AOU OAACAo6 OAI AOEI
itself.

A Matching patterns = evaluating queries



Relational databases
What can ML/DM learn?

A Database theory sometimes shows how to
match patterns (=evaluate queries), but Is
OOOAIT T U 110 1T DOEI EUA/
keys.

A Many ideas for data structures (e.g. recently

growing interest in graph database indexing)



Spectral graph theory L

A Study of
the adjacency matrix of a graph
Its eigenvalues

the Laplacian matrixo 'O 0 with D degree

matrix (O is degree oD ando adjacency
matrix.

l« £FOd " 1 UOI pd” , OEEUX A



Spectral graph theory
What can ML/DM learn?

A, AbDbI AAEAT AAOAOEAAO ¢
semtsupervised learning
manifold embedding

A Clustering:
# of zero eigenvalues = # of connected
components



Mining, learning

A Relational learning (e.g. SRL)
A Learning in graphs (e.g. MLG)
A Using logical representations (e.g. ILP)

(but adding logic makes problems often
undecidable)



Introduction summary (1/3)
Basic concepts

A Graphs
labels
adjacency matrix

A Paths
distance

A Morphisms (matching operators)



Introduction summary (2/3)
Network data mining tasks

Global / Local
assymptotic

Static 1. Clustering & |2. Pattern mining
community |3. Edgel/vertex
detection structure/feature

learning

Evolution |5. Generative [4. Temporal
models learning




Introduction summary (3/3)
Domains researching networks

Analysis  Underlying process

Techniques

Statistical | | Complex systems

Game theory

phy7CS /

Databases
Algorithmic
graph theory \

_Networks
ML & DM
\ 4
Grammar | | Spectral
Induction graph theory

>

Multi- agent
systems
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Introduction
What Is a pattern?

A Pattern = collection of vertices that should
satisfy some constraints (connections, labels,

)

X

Friendees

Y science - fiction



Introduction
A generic pattern miner

Assume/nz‘eresz‘/ng IS anti-monotonic
N MO N ) QE QA OAL OO O Qi €

While 0
"WN O ON G SQE 0QI Qi 0NEQ
6 Nz, Quo Q& idQE ¢ i
™ Q p

EndWhile

"YE & O ONQE BYi



Introduction
A generic pattern miner

A O A O Oitérektings antil T 1 1T OT T EAG
pruning.
Qe 0 QI QO o Mme ™M
Qe 0 Q1 QO 0 Qe Q
Can also mine using neanti-monotonic criterion (e.g.
correlated patterns)

A Breadth/ZEE OO O -O@ Ub AHl OE
Also depthfirst possible®

A To be instantiated:
MinimalPatterns & Extensions
Interesting

1 Zimmermann & DeRaedt, DS2004
2 Agrawal & Srikant, VLDB1994
3 Han, Pei, Yin SIGMOD2000



Introduction
Enumeration of patterns

To be instantiated:
MinimalPatterns &xtensions
Interesting

A Many approaches are generasnd-test

A How to generate all graphs subject to anti
monotonic constraint?

Practice: mining graph patterns in databases of
transactions represented with graphs: AGM,
gSpan, FSG, GasteA use canonical form

Theory. polynomiatdelay(+evaluation ant
monotone criterion)

1 Ramon & Nijssen, JMLR2008
2 Nijssen & Kok 2004



Introduction
Complexity notions

A Enumerationlisting problemsj O ZET A A
may have output) exponential in input sizé&

A Polynomial delay: between solutionQ p and
‘Gt mostn € GQtime.

A Incremental polynomial time: between
solution’Q pand’Gat mostry ¢ G@time.

A Output -polynomial time: total running time
at mostn € @)



Contents

A Introduction
A Networks from different points of view
A Patterns & pattern mining

Introduction To be instantiated:

Pattern matchinge— MinimalPatterns & Extensions
Interesting

Frequency

Additional remarks
A Learning



Pattern matching
Overview

A Problem statement
A Hardness results
A Triangle counting
A Small patterns

A Larger patterns
Cliques
Sampling
Fixed parameter tractability



Pattern matching

The problem
A Given:
A networkO
A pattern 0
listing problem
A Find decision problem

(all/lsome/one/...) embeddings a¥ in OOR

an aggregate (count, average, ...) computed over
these embeddings



Pattern matching
Why do we care?

A Basic operation for both learning and mining

A There is a literature on basic pattern
matching, but learning & mining queries have
specific characteristics

Data Is rich, satisfies integrity constraints, ...

Patterns may have wildcards

DM/ML is aimed at collecting statistics




Pattern matching
Subgraph isomorphism complexity

A Pattern0, networkO

A List embeddings\d) © O

A Mb-complete

A Classic algorithms (backtracking search):

0 (3;0(’0)§ ( )s)

#P : counting problems  fsuch that there is a polynomial - time non - deterministic Turing
machine for which upon input  x the number of accepting states equalls fx) .M pPp O L



Pattern matching
Heuristic search

5111 AT T 6 G (patier@d, 0eBVOrkd
Match©®, O, )

Procedure Match0, O, partial embedding )
f(0) Q¢ «
then ListSolution( )
else
SelectO ¥ (V)r Q€ &
Letdé 0 N o(O)sO & O w @A & NW
For all0 ¥ 0 do
0 o @M~ (VD))

1 Ullmann, JACM 23(1), 1976



Pattern matching
Avoiding worst - case complexity

A Database of transactions of graphs
E.g. many small moleculgraphs, RNA
exploit structure of databasgraphs, e.g

atoms have maxiegree =6 1

molecules areften planar (or even outerplandr)
bounded treewidth?

1 E.M.Luks, J Computer & System Sciences 25(1), 1982
2 Horvath & Ramon, DMKD 21(3), 2010
3 Horvath & Ramon, TCS 411, 2010



Pattern matching
Avoiding worst - case complexity

A Network
No definite structure we can relyn
Approximate matching may help but
ASubgraph isomorphism is hard to approximate
V Structuralproperties ofpatterns

ATriangles and other small patterns
ATrees

V Statisticalproperties ofnetwork
ARandom graphs



Pattern matching
Triangle counting

A Simple problem:
Given: a triangle® and a networkO
List or count: all embeddings ofin'O

A but a lot of literature on solving it



Pattern matching
Triangle counting

A ldea 1: Brute force
A Check every triple of vertices @

A Runtime0 (2("Qs )



2

1 4 mpP P P O T
N 5 P T TT 5 m P
Y m p P P
Y P P P

Pattern matching
Triangle counting

A ldea 2:matrix multiplication?
Let 0 be the adjacency matrix 0O
(0 ) p =# of walks of lengtle betweeno andv
Matrix multiplication is) (("Qs 8 ) 2

Hence, compute {0 )7oA
p
p
C

0 {0 )ToA= (2+2+2)/6 = 1

O N VO
- A QN
Qo -

QN o -

o
Tt
P
P

= =

3

N

1 Alon et al. 1997
2 For practical problems, the exponent will be higher



Pattern matching
Triangle counting
A ldea 3: Sparse graphs

lterate over edges U (30 “OS_)

Nodelterator: Iterate over pairs of neighbors of

vertices:0 (Q  0O(Q9 with’Q  the maximal
degree of GB

! Itai and Rodeh 1978



Pattern matching
Triangle counting

A ldea 4: Approximation

Sparsification: delete randomly part of the graph,
count triangles, adjust for sampling

Sampling: perform a number of random attempts,
adjust for sampling

Partition graph into parts, solve them, adjust for
triangles spanning several partitions.

! Itai and Rodeh 1978



Pattern matching
Triangle counting

Alon et al., 1997 Exact 0(x(0Qs 8 )
ltai & Radeh, 1978 Exact 5 ( <O "05_)
TsourakakidCDM2008 Exact

Faloutsos KDD2009 Approx Sparsification
Avron 2010 Approx Sampling
Pagh&Tsourakakis, InfProcLet 20] Approx Partitioning
Becchetti etal. TKDD 2010 Approx

! Itai and Rodeh 1978



Pattern matching
Counting motifs of size 3 -3

A Motifs = not necessarily connected induced
subgraph
A Brute force sometimes still works

A Sampling strategy (e.g. GUISE
Consider an induced graph
Omit vertex or add neighbor

Metropolis hastings: adjust for fact that higher
degree vertices are reached more easily

1 Shen- Orr et al. Nat. Genet.2002
2 Bhuiyan et al. ICDM 2012



Pattern matching
Sampling motifs with MCMC

Motifs

XX XON




Pattern matching
Sampling motifs with MCMC

Motifs

State

XX XON

o O O o +—» O




Pattern matching
Sampllng motifs with MCMC

Motifs
State s1
d(s1)=9 4
|

@ L]
%

X

AAA S
AP B P

o O O o +—» O



Pattern matching

Sampling motifs with MCMC
‘0

Motifs
State s1
d(s1)=9 4
.
Lp . p ]
Yoho) | Eé’Qc’) hQu) AE1060 v z
Yom) p YOh) X
X

o O O o +—» O



Pattern matching
Sampling motifs with MCMC

| p [ ¢

Motifs

.

.

| O [ T L]
X

VST

X

P O kB



Pattern matching
Overview

A Problem statement
A Hardness results
A Triangle counting
A Small patterns

A Larger patterns
Cliques
Sampling
Fixed parameter tractability



Pattern matching
Cligues

A Several approaches aim at finding maximal
cliques

A Clique detection for nostlirected graphs,



Clusters & communities
Bicliques

A Bi-partite networksO @ * @ HO with
OPw w.

ABicligue =6 6 withd P wandd P w.

A Several variants:

Tile mining (in boolean matrices, unweighted
networks)

Non-negative matrix factorization (rearalued
matrices, weighted networks)

Advertisement:

Join ECML/PKDD2013 TuelB session on Networks (1)
J.Ramon, P.Miettinen, J.Vreeken, Detecting bicliques in GF[q],



Pattern matching
Larger patterns: Sampling

Pattern matching
Avoiding worst - case complexity

A Network

No definite structure we can rely on
Approximate matching may help but
Subgraph isomorphism is hard to approximate
V Structural properties of patterns
Triangles and other small patternsong
JGEES
V Statistical properties of network
— A Random graphs

Sampling — |




Pattern matching
Sampling Z strategies

A Partitioning
Match pattern in one or all partitions
Assume that network has rather uniform structure
Scale result to full network

Worked for triangle counting, harder for larger
patterns.

A Simulation (e.g. Furer)
Attempt several times to find single match
assume network is sufficiently uniform
average over iterations



&KOAORO APl ©ipaten®E |
matching in random graphs
A Input:
Network Gdrawn fromG(n,p)
PatternH with a decomposition (see later)
A Output:
0 & WHOs the number of images dflin G.
A Complexity:
Exact & worst case: #eomplete
%BIAAO £ O Oi 1 60 COAPEOGO(
Approximate for most graphs : this algorithm (FPRAS)

1 Martin Firer & Shiva Prasad Kasiviswanathan Approx/Random 2008



Pattern matching

&EKOAORO Al -CHPRASOE |
A Fully Polynomial Randomized Approximation

Schema:

Randomized algorithms outputting for almost every graph
In polynomial time a solution with relative error &

A A little more formally:

An FPRAS is a randomized algorithm such that there is a
polynomialp(Csuch that for everyrthere is an psuch

that for alln>n,and g and for at least a fractiofr dof the
graphs of size, thealgorithm outputs in time at most
p(n,18 asolution within a factod+eof the correct

solution.



Pattern matching

Flrer: Basic algorithm

Function unbiased_estimator(H,G) [estimatessO & ¢XHOg
( ,P( ))=Try _to find _embedding(H,G);
IF) =failed
THEN return JNo embedding found]
ELSE return 1/P( ; [return inverse
EndFunction probabillity ofj ]

Function count_embeddings(H,8,
c=0; s=/€&;
Fori=1..sdoc=c+unbiased_estimator(H,G); EndFor
Return c/s;

EndFunction



Pattern matching
Flrer: Basic algorithm

A Count_embeddings works correctly:

Every embedding Is found with probabilityP(/ )
byTry to find _embeddings(H,G). With
probability 1-S:P(/ ) Try_to_find_embeddings fails
Every embedding , is found once i14/P( ) calls,
and in that case, unbiased_estimator returns

1/P¢ ). Hencey contributeslto each call to
unbiased_estimator, on average.

Hence, on average, unbiased_estimator returns
the number of embeddings

A Task left: find a good Try_to_find_embedding



Pattern matching
Furer - strategy

A Decompose vertex set of pattern
A match one partition at a time until complete

A Compute probability of finding this particular
solution

A Show the overall algorithm converges
sufficiently fast.

Thesum of a (very) large number of identical
distributions become$aussian. Standardeviation
goes down with square ¢lample

Whateverthe sample size, we can always (with very
small probability) have a large error



Pattern matching
Flrer : finding embeddings

INPUT:"Q"Q partition who B ho of w O
W N prf N

For'Q p&x
ON «N0O&®; ,wHO2 &

w N Os

if @ T1rthen terminate and return ZEA Hit A A
pick an embedding uniformly at random fronO
8N &b

EndFor

Return « hpf




Flirer - Sample run (step 1.1)

v1 V, © VoV Ad  phy
: E AQ p




Flirer - Sample run (step 1.2)

gy

<3
'L




Flirer - Sample run (step 1.3)

Vii Vv, VY, AQ p
: — 5 A |

A



Flirer - Sample run (step 2.1)

v1 v, VsV, A O C




FlUrer - Sample run (step 2.2)




Flirer - Sample run (step 2.3)

AQ C

A

A®d |O 32 ¢
A T Y

A o

(PrYR(GRQN ohw




FlUrer - Sample run (step 3.1)




FlUrer - Sample run (step 3.2)

A |9 ¢
A X =X, X,=48% 2= 96




Flirer - Sample run (step 3.3)

N weo

(PREYN(cHQR(ahyh THQ




Flirer - Sample run (step 4.1)




FlUrer - Sample run (step 4.2)

(PRYR(CAQ(OFEHR
(THQh v Q



Flirer - Sample run Z a solution

5 A




Flirer - Sample run bis

i v, v, v, AQ o
. — 4
AX;=E| =2
AX =4, X,=45*% 2= 96




Flirer - Sample run bis

(P N(cHQh(ohyh
(Thw)




Flirer - Sample run bis
' AQ o
5 A

A X=96
A X,=0A no solution!




Pattern matching
&KOAORO OEAI OAI

A Important: When does it work?

A The algorithm is an FPRAS (for allmost all G) if:
OAOOEOQOEITEIC I £ 6}j(QqQ EO A
AAAT | BT OEOEIT T o
p(nre- =
npY/DA- o
E(Hpn“*p=- O

Where
u=max(2g), g=max{|E(F)|/(|V(FH) | BH, |V(FA 3}



Pattern matching
Flrer: Simplified theorem

A It works if the count is not too small.
A Intuition:
The frequency of ve ,X rare events Is hard to measure

i OEA OEI OAOAOOEI Co DPAOO |
actually observe somethlng IS smaller)

4EA x1 OO0 AAOA EO xEAOA 1
|G« @HQ| mor|Oa Q| p
A If we run the algorithm and we find some

embeddings, our estimate will be rather
accurate

Ay £# 11T O OAAOAA AEDPAOOE
can still run this algorithm, but no FPRAS
guarantee.



Pattern matching; Furer
Ordered bipartite decomposition

A Anordered bipartite decomposition of His a
partition {V,, \,, ..., \yof V(H)such that
EachV, (i=1..l)is an independent set in H
“i, v/ V. § such thatN,(v)/ C,.. Vi &V
A So if a neighbor of a vertex V,is inV, with

J>1, then no neighbors of v must be\Ma\énth
Eol EEA8A E



Flrer - Graphs with a
decomposition

A Cycles longer than 3 (see above running example)

A Bounded degree outerplanar graphs without
triangle

A Trees

A Grids

A ..

A Not: triangles (but separate proof), ...



Pattern matching

Fixed parameter tractability

Pattern matching
Avoiding worst - case complexity

A Network

No definite structure we can rely on
Approximate matching may help but
Subgraph isomorphism is hard to approximate

V Structural properties of patterns
Triangles and other small patternsong

JGEES
Fixed — V Statistical properties of network
parameter Random graphs DONE

tractability




Pattern matching
Fixed parameter tractability

A Classic complexity classes:
Input sizet
0 : Polynomial timel (¢ ) for someQ

Are all problems not i® are hard: not) (¢ ) for
someQ? No, some may still be easier than others

A Fixed parameter tractability:
Input has two parts of sizes and™Q
For'Cixed, the problem is tractablei (¢ "Q°Q)
May be acceptable ifls small



Pattern matching
Fixed parameter tractability

A Fixed parameter tractability:
Input has two parts of sizes andQ
For'Cfixed, the problem is tractablei (¢ "Q'Q)
May be acceptable i€ls small

A Pattern matching:
Network: sizes
Pattern: sizeQ
Qs usually smalk may be large.

A So fixed parameter tractability is suitable for
pattern matching!



Pattern matching
Fixed parameter tractability

A Matching trees in network in
sae) G'(c)
'Q w0 :pattern size
ad OO0 :networksize

A Randomized algorithrhwhich works well for
practical pattern mining

1 R. Williams, Inf Proc Lett 2009
2 A. Kibriya & J.Ramon, DMKD 2013



Pattern matching summary

A Basic operation for mining and learning

A Networks haveno hard structureve can relyon
Approximate matching may help but
ASubgraph isomorphism is hard to approximate
V Structuralproperties ofpatterns

ATriangles and other small patterns
ATrees

V Statisticalproperties ofnetwork
ARandom graphs



Pattern matching  Z open
problems

A Many matching problems for which fixed
parameter approach could help

More complex queries
A Implicit relations

A Big data (not in RAM)
combine with indexing
reduce passes over data (or samples)
distributed approaches, ...



Contents

A Introduction
A Networks from different points of view

A Patterns & pattern mining
Introduction
Pattern matching
Frequency
Additional remarks

A Learning



Frequency / support ' measures
The problem

A How frequent is patternd in network'O?
A7TEU AOOECI A OAOANOAI
Popular criterion to measure relevance of pattern
E.g. 40% of respondents liked both movielandm2.

Way to represent association rules

E.g. Of all respondents liking movwelandm?2, 50%
also likedm3(i.e. 40%*50% = 20%)

Measure of statistical power

E.g. We rolled the dice 100 times and observed 40
times a 6. It must be biased.

I Ve A pd ~



Support measures
What do you want?

A Counting objects

X% of people own a house in the same region where
they work.

network unimportant, just count people

Personl Jobl

@
Person?2 Jo]t7,

Housel Regionl

Person3 Job3 .
° * Housel

Region2




Support measures
What do you want?

A Counting objects
A Performing statistics

We rolled the dice 100 G We rolled the dice. 100

times and observed 40 people observed a 6. Would
times a 6. It is biased! it be biased?

Roll Obs Obs

Obs

. Dice Roll
Dice Ob Person

°  Thrustworthy



Support measures
What do you want?

A Counting objects
A Performing statistics

A Association rules

If X has a friendY such thatY smokes, then with
probability a%, X smokes too

If X and Y are friends and Y smokes, then with
probability b%, X smokes too

Different quantor/aggregator placement, probably



Support measures
What do you want?

A What do you want?
Counting objects
Performing statistics
Association rules

Ay £# UT O ET T x xEAO UI O «x
knowing what to do. No measure Is good in all
cases.



Support measures
Overview

A Embeddingbased
Embedding count
Image count

A Key-based
Key image count
Min-image
A Overlapbased
Maximum independent set
Minimum clique partition
Intermediate measures and relaxations



Support measures
Embedding- based

NI 7

A Embeddingcount: SO & @ hO)s
A Image-count: |06 (1o)]] N
IOd @WHO)| D 6 0 FOa (hO)s
A E.g.:Among all triples (X,Y,Z) such thaand Y

are friends and Z is a family member of X, the
fraction of triples where Y knows Z is a%.

A Embeddings may be concentrated in small part

of network, e.g. large family where everyone is
friend with each other.

A Not anti-monotonic, no patteramining pruning



Support measures
Key- based

A Decide before the start of data mining what is
OEA OUBPA T £ | AEAAO 1 /
EAUOQ

AEg7A AOA EI OAOAOOAA E

AmM T £ OFOEAT AOGd OAI1 AOEI
b% of friends have the same mother tongue,

c% of friend pairs (X,Y) have at least one common
friend Z,



Support measures
Key- based

ASAAEAA AAAlI OA OEA OOAO
AAEA OEAUO6 EO A AT T 1711
considered.

A There is a fixed, finite set of objects (all
Ei ACAOYAI AAAAET CO 1T £ O
relations are not considered.

A Easy to count

A Anti-monotonic (good for pattern mining)
A Not all statistics are valid (e.g. the dice example)



A Key = dice observationdice: Rl

Support measures
Key- based: dice example

A Performing statistics:

dice

We rolled the dice 100
times and observed 40
times a 6. It is biased!

Obs

Roll

Obs

Ob Person

°  Thrustworthy

4 images of Key
eqch showing a 6

Obs
— )
Key

We rolled the dice. 100

Person
-9

people observed a 6. Would

It be blased?

Obs

Person

dicel Roll Person

Obs

e————o Person

bs
Person

4 images of Key
eqch showing a 6



Support measures
Min- image‘

A a Q¢ "Oa(@ROQ e
aQs | “@)]“NOda whO s
A Allows for choosing each vertex as

(singleton) key, giving a lower bound for
each vertexkey-based frequency

AAntl monotonic:
0 0+ G Q¢ OGN & Q& 0a GBRQQ

1 Bringmann & Nijssen. PAKDD 2008



Support measures
Overlap - based: model dependence

A The easiest way to perform statistics is to
haveindependent observations.

A How do we get as much independent
observations as possible out of a network?

A-TAAl OEA EIT AADAT AAT /

A Caution: selecting independent observations
IS not necessarily a sample from the original
distribution!



Support measures
Overlap - based: Overlap  graph

A Overlap graphO d,
o('0) 0Oa B
("QRQ) ¥ 'OC"0) if images'Q and"Q overlap

A What is overlap?
4x] 1T AAOOOAT AAO 1T #/ A PAOOD
them independent in the context of the statistics we are
doing
Vertex-overlap:('QAQ) N OO0 )8 o('Q) w('Q) 7
Edgeoverlag ("(QRQ) N 'O(0 )y O(Q) OCQ) n
Other options, e.g. Harmful overlap

! Fiedler & Borgelt MLG 2007



Support measures
Overlap - based: What is overlap?

A Dice example:
Overlap if theRollis the same.

We are interested idicel, so naturally all
embeddings will contain dicel.

dicel Roll Q.bs _Person

Roll Obs
———— Personl

dice Person2



Support measures
Overlap - based: Court example

A Vertices: case, judges, (prodeo) lawyers, party

A Edges between casjpidge, casdawyer,
caseparty

Casel

Partyl Lawyerl

Judgel

Party2 Lawyerl Judge 2

Party3 Judge3

Case4



Independent set

A Wis anindependent set ofH iff
W/ V(H
There are nov,w/ W such that(v,w)/ E(H)

O 8

Independent set of size 2 Independent set of size 1



Support measures
Overlap - based: MIS measure

A The size of a Maximum Independent Set
(MIS) of the overlap grapl® of patterno in
network’O: 0 'OYhO) 0 OO

dicel Roll P obs person L0 o
—_
N I (dicel,obs=6,Personl)

Roll Obs1
————o Personl

Obs2

(dicel,obs=6,Person2)

e (dicel,obs=6,Person2)

dicek Person?2

e (dicel,obs=3,Person2)

1 Vanetik et al. DMKD 2006



Support measures
Overlap - based: MIS measure

A The size of a Maximum Independent Set

(MIS) of the overlap grapl® of patterno in
network’O: 0 'OYhO) 0 OO

Casel Casel P
Partye- T —e Judge
Lawyer

Partyl Lawyerl Judgel

Judge 2 Casel Case3
Judge3 Case? | i Cased

L 00 G

Party2

Party3

Case4



Support measures
Overlap - based: more measures

A Maximum independent set idea:

J allows to measure overlap and extract
Independent observations

J Anti-monotonic
NP-hard to compute
Possibly ignores too much information

A Does the overlap graph allow for other
measures?



Support measures
Overlap - based: more measures

A Requirements for feasible measure:

Anti-monotonic in pattern:

n 0+ "GRRO) "QUKRO
Monotonic in network:

O O+ "@0R0) "QOHO=e
Normalized

If there aree independent (noroverlapping)
observations (overlap graph&isolated vertices),
then support is.



Support measures
Overlap - based: more measures

A If Qs a function on the overlap graph, and
"Qs feasible measure, then:
0 ‘OYHO) "@OHO) © 6 LOKRO
A whered 6 0O is the minimum clique
partition number of the overlap graph,
another NRhard to compute number.



Support measures
Overlap - based: more measures

A Fortunately, several efficiently computable
functions are betweein "Oandov o0 v

A Lovasz theta:7

feasible measurgé computable with semidefinite
orogram (SDP), which is still rather expensive

A MIS-relaxatior?s: s

s a feasible measufecomputable with linear
orogram (LP), hence efficiently.

~

A We haved ‘O"Y7 [ 0OV

1 D. Knuth, Electr. J. Combin 1994
2 Calders et al. DMKD 2011
3 Wang & Ramon DMKD 2013



Support measures
Summary

Measure Anti-Monotonic? Statistics? Efficient?
Embedding count V
Image count \
key image count V
min-image V
OverlapMIS
OverlapMCP

Overlapy

< < K< K< < <

< < o0 <

Overlaps



Frequency Z open problems

A Combine pattern matching and frequency

A Exploit network structure to increase speed
i 1T AOET AO OBb OI1 11 x Al
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A Networks from different points of view
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A Learning



Expected number of
embeddings

A Let’™x "O¢h , then

04 @HO)| €% M 1
A For smalhy:

0 d Q"'B’jFiO)l es ( )shs ()s
A For trees:

04 @hO)|  &n ¢ C)em

OftenOis connected and 1 p

s ()s



Expected number of
embeddings

A # of expected embeddings grows with
pattern size for sparse patterns

A Denser patterns may be easier to interprete

A Also patterns less frequent than expected
may be of interest.

This also happens with itemsets: items may be
correlated, uncorrelate or anttorrelated



Contents

A Introduction
A Networks from different points of view
A Patterns & pattern mining

A Learning
Introduction
Learning from noAndependent examples
Temporal models



Learning - introduction

A Popular learning ideas:
connected vertices have similar target value
correlation between features and target value
more classic featurd¢o-target supervised learning
O$0A1 OPAAAOG EAAAq TT1TA
vertices connected to that vertex u (else 0).

If individuals are important (but not many features
are known)



Learning Z Introduction
Similar to your neighbor

A Semisupervised learning

E.g.: try to minimize the number of edges with on
both sides different labels

E.g. target values tend to average of neighbors.

A Manifold embedding:

Assign all vertices a coordinate such that
connected vertices are close together (and nhot
connected vertices are far apart)



Learning Z Introduction
From feature to target value

A Learning tasky
Vertices / edges / ...

(existence)prediction / labeling / weighting
[feature construction / ...

1. 031 dEUd ANr d” t x £AFODE (
gUAUT gUT EEANdxENAUT OO0 &



vertex/edge structure/
feature prediction example

A Supervised learning

Input:
vertex/edge to predict
Neighborhood

Output:
Label or existence

A But how about the classic i.i.d. assumptions?



Learning Z Prediction in a
fixed network

A Most common setting:
Fixed networkO
training and test vertices (edges)
A But what ifthe network changes (e.g. an
Influential node Is added/deleted)?
Causal patterns remain the same
Correlation patterns may change significantly

1. 031 dEUd ANr d” t x £AFODE (
gUAUT gUT EEANdxENAUT OO0 &



Learning Z# Al RO AEOOE
Individual and Its features

What is the rule?

Does everyone follow the class of its neighbors?
Is v1 very influential?

Is class + if there are green neighbors?



Learning Z network - specific
challenges

A Suppose the same rules stay true, but new
nodes/edge (same distribution). Distinction
viral/features may matter

A Movie database:
Persons from a fixed distribution
Movies from a fixed distribution
Persons watch movies
A few new persons and movies are added



Contents

A Introduction
A Networks from different points of view
A Patterns & pattern mining
A Learning
Introduction

Learning from nonindependent examples
Temporal models



Learning from dependent
examples

A Members of a network are dependent
A Typical assumptlons of Iearnlng algorithms

Ve N Pal L4 ’

ATT1T60 EIil Ah EI BDAOOE!/
Examples are independently and identically drawn

(i.i.d.)



Movie rating example

A Movie rating

Obj: Movie (genre, duration, actor popularity)
Obj: Person (age, gender, ...)

Obj: Screening (location, time, ...)

Target: Rating

A Several ratings per person / movie / cinema




Lawsuit example

A Lawsuits:
ODbj: Person
Obj: Lawyer
Obj: Judge
Example: case
Target: outcome

A Judges handle several cases, persons may be
Involved In several cases




Learning from pattern
features

A Each example is an embedding of a pattern
MovieRating: (Movie, Person, Cinema, Rating)
Lawsuit: (Case, Person, Judge, Outcome)

A Examples overlap:
3AA Al O 000BDPI OO0 1T AAOC
We call thermetworked examples



Representing networked
examples

A Several alternative equivalent representations

Every example is represented with a vertex
connected to the participating objects

Every example is represented with a hyperedge,

containing all participating + all relevant objects.
@ . >
<2(g\%o S\ & \(\QﬁQ\@\@@ QQ)\% N

. QD




Learning from networked /
dependent examples

A Tasks:

Elementary statistics, confidence intervals,
hypothesis testing, ...

Learning, generalization guarantees

A Models:

bounding covariance between dependent
examples

modeling how examples are dependent
A Combinations: 1a and 2b



Bounding covariance of examples
and hypothesis testing

A (Wang, Neville, Gallagher, EliadRad,
ECML/PKDERO11) :

vertices are examples
edges indicate a bounded covariance

A safe correction for statistical significance tests
A safe upper bound for variance on sums etc.

A Upper bound for variance can be an importan
tool in proving generalization guarantees.



Bounding covariance of
examples

A € independent random variables® with
variance, :Variance orB ® IS§,

A ¢ identical random variables® with
variance, : VariancenB @ is¢ |,



Bounding covariance of
examples
AeTAOxT AEMA Dl AO
No edge betweeny andw = independent :
o Od] & Od | m

Edge dhd N OO between® andd® = bounded
covarianceQl & Od] & Od | 7

A VarianceonB @ is

oo dol @ 0] (O &,
h



Learning from networked /
dependent examples

A Tasks:

Elementary statistics, confidence intervals,
hypothesis testing, ...

Learning, generalization guarantees

A Models:

bounding covariance between dependent
examples

modeling how examples are dependent
A Combinations: 1a anéb



Variance, significance,
effective sample size

A Effective sample size of a given set of
networked examples is iff it contains as
much information (for the task at hand, e.q.
learning or hypothesis testing) asset ofe
.i.d. example&

1 Slightly different conventions/definitions exist



Probably approximately
correct (PAC) structure

A PAC:with probabilityp ¢ the loss is
bounded byewhere

4 "
ot )
O O]
A with & Y the effective sample size of
training set'YHighera °Y = better

Aii.d. sampleYd (Y s“¢=best possible




Independence assumptions

A Weakerform ofi.i.d

A But not arbitrary
arbitraryY no bound possible



Independence assumptions:
.I.d. vertex features

A Edges are fixed.

A The features of every vertex are drawn i.i.d. (not
even depending on the edges).

1. Choose edges 2. Draw vertex
(possibly very EEAZUUxE@dI EOO™ U
dependently) look at edges)



Independence
assumptions applied

A Sneak preview A Select movie based on
genre, or with friends

A Patients go to closeby
hospital or to hospital
recommended by their
friends

A Randomized trial: patients
are assigned randomly to
set of treatment params

A Cases are assigned A Judges handle cases
randomly to judges connected to their existing

cases



Training set measures

A Overlap (hyper)grapfO
vertices are objects
(hyper)edges are examples

A Training sef'YP ‘O "O
A Measured Y of training setl ("Yd,
A e e 3 T vV ¢



Approach 1:
Equal - weight (EQW)

| A@ by & A A
all examples get same weight
(Janson 2004) & (Usunier 2005) QN0
(ot SN
10Q ooQﬂ,., . )
O Of o o

With & 22 °
and...("Q fractional edge chromatic
number --(Q on

Qs



