Jan Ramon
ECML 2013

LEARNING AND MINING WITH NETWORK-STRUCTURED DATA

Contents

- Introduction
- Networks from different points of view
- Patterns \& pattern mining
- Learning

Introduction

Network = Objects + Relations

Application	Objects	Relations
Social network	Person	Friendship, colleague
Traffic network	Crossroad	Road
Chemical interaction net	Chemicals	Interaction
Telecommunication net	Person	Phone call
Citation network	Paper, researcher	Citation, authorship
Shareholder network	Company, Person	Shareholdership
Computer network	Computer, router	Cable, wifi registration

Introduction

- In this tutorial:
- Who studies networks?
- Network patterns \& mining them
- Learning in networks
- Focus on
- Local patterns
- Not so much on large scale properties

Related ECML/PKDD 2013 tutorials

- [Fri-PM] Algorithmic techniques for modeling and mining large graphs (Alan Frieze et al.)
- Focus is more on global properties
- [Mon-PM] Discovering Roles and Anomalies in Graphs: Theory \& Applications (T. Eliassi-Rad et al.)
- Anomaly detection is not covered here
- [Fri-AM] Statistically sound pattern discovery (G. Webb \& W. Hamalainen)
- Different statistical aspects

Introduction
 Prerequisites

Supervised learning: Given i.i.d. training examples, learn a function from example to target value.

- You could use SVM, DT, NB, IBL, GP, ... or any of your favorite supervised techniques

Contents

- Introduction
- Networks from different points of view
- Patterns \& pattern mining
- Learning

Contents

- Introduction
- Networks from different points of view
- Basic concepts
- Data mining tasks
- Relevant fields of research
- Patterns \& pattern mining
- Learning

Basic concepts - Graphs

- An undirected (labeled) graph is a tuple $G=(V, E, \lambda)$ where
- V is a set of vertices (nodes) [punten (knopen)]
- $E \subseteq\{\{v, w\} \mid v, w \in V\}$ is a set of edges [takken]
- $\lambda: V \cup E \rightarrow \Sigma$ is a labeling function
- Unlabeled graph:
- If λ is constant (all vertices/edges have the same label), λ may be omitted

Basic concepts - Graphs

- A directed graph is a tuple $G=(V, E, \lambda)$ where
- V is a set of vertices (nodes) [punten (knopen)]
- $E \subseteq\{(v, w) \mid v, w \in V\}$ is a set of arcs [bogen]
- $\lambda: V \cup E \rightarrow \Sigma$ is a labeling function
- Further notations:
- $V(G)$ is the set of vertices of the graph G
- $E(G)$ is the set of edges / arcs of the graph G
- λ_{G} is the labeling function of the graph G
- $N_{H}(v)=\{w \in V(H) \mid\{v, w\} \in E(H)\}$ is the neighborhood of v
- $\Delta v=N_{H}(v)$ is the degree of v

Basic concepts
 adjacency matrix

- Adjacency matrix of graph G is a square matrix A of dimension $V(G) \times V(G)$ such that
$A_{u, v}=0$ if u and v are not connected
- $A_{u, v}=1$ if there is an edge between u and v

$$
\begin{array}{lllll}
1 & 2 & 3 & 4 \\
1 & 0 & 1 & 1 & 1 \\
2 & 1 & 0 & 0 & 0 \\
3 & 1 & 0 & 0 & 1 \\
4 & 1 & 0 & 1 & 0
\end{array}
$$

Basic concepts - Walk/Path

- A walk P between vertices v and w in a graph G is a sequence of vertices $u_{1}, u_{2}, \ldots, u_{n} \in$ $V(G)$ such that
- $u_{1}=v$,
- $u_{n}=w$ and
- $\left(u_{i}, u_{i+1}\right) \in E(G)$ for all $1 \leq i \leq n-1$.
- The length of such walk P is $n-1$.
- A path is a walk where all vertices are distinct
- Slightly abusing terminology, a path P can also be seen as a subgraph of G

Basic concepts - Shortest path

- A shortest path is a path of minimal length.
- Distance $d(u, v)$ between u and v is length of shortest path between u and v
- The diameter of G is

$$
\operatorname{diam}(G)=\max _{u, v \in V(G)} d(u, v)
$$

Basic concepts - Diameter

The diameter of G is

$$
\operatorname{diam}(G)=\max _{u, v \in V(G)} d(u, v)
$$

Many real-world graphs have small diameter.

- V : all persons
- E : an edge connects persons who have ever met each other
- Many people have met a local politician who met the national prime minister

Basic concepts - connected, tree

- A graph G is connected iff there is a path between every pair of vertices $v, w \in V(G)$
- A connected component of a graph G is a maximal connected subgraph of G.
- A graph G is a tree iff there is a unique path between every pair of vertices $v, w \in V(G)$
- Intuition: if the path between two vertices is not unique, then there is a cycle.

Basic concepts - morphisms

- A homomorphism from a graph H into a graph G is a mapping $\varphi: V(H) \rightarrow V(G)$ such that
- $\forall v, w \in V(H):(v, w) \in E(H) \Rightarrow(\varphi(v), \varphi(w)) \in E(G)$
- $\forall v \in V(H): \lambda(v)=\lambda(\varphi(v))$
- $\forall v, w \in V(H): \lambda(v, w)=\lambda(\varphi(v), \varphi(w))$
- An injective homomorphism is a subgraph isomorphism.

Basic concepts - subgraph isomorphism vs homomorphism

A homomorphism, not an isomorphism

- If there is a homomorphism from H to G, then we denote this $H \leq_{h} G$
- If there is a subgraph isomorphism from H to $G_{\text {, }}$ then we denote this $H \leq_{i} G$
- $H \equiv G$ iff $H \leq G$ and $G \leq H$

Basic concepts - morphisms

- An induced homomorphism from a graph H into a graph G is a mapping $\varphi: V(H) \rightarrow V(G)$ such that $\forall v, w \in V(H):(v, w) \in E(H) \Leftrightarrow(\varphi(v), \varphi(w)) \in E(G)$ - $\forall v \in V(H): \lambda(v)=\lambda(\varphi(v))$ - $\forall v, w \in V(H): \lambda(v, w)=\lambda(\varphi(v), \varphi(w))$
- An injective induced homomorphism is an induced subgraph isomorphism.

Basic concepts - induced vs normal subgraph isomorphism

Subgraph isomorphism
NOT induced subgraph isomorphism

Subgraph isomorphism Induced subgraph isomorphism

Subgraph isomorphism
Induced subgraph isomorphism

Basic concepts
 Automorphisms

- Automorphism = isomorphism of a graph on itself.
- |aut(H)| is the size of the automorphism group aut(H).
- For bounded degree H, one can compute |aut(H)| in polynomial time.

Triangle "Mirror"
"Rotation"
Aut(triangle) has size $2 * 3=6$

Basic concepts - Networks

Network =
big database graph
Pattern = small graph

Contents

- Introduction
- Networks from different points of view
- Basic concepts
- Data mining tasks
- Relevant fields of research
- Patterns \& pattern mining
- Learning

Network data mining tasks

	Global / assymptotic	Local
Static	 community detection	2. Pattern mining 3. Edge/vertex structure/feature learning
Evolution	5. Generative models	4. Temporal learning

Clustering \& community

 detection- Given:
- network D
- Find:

	Global / assymptotic	Local
Static		
Evolution		

- Set of subsets (clusters, communities) $V_{1}, V_{2}, \ldots, V_{n}$ of $V(G)$
- Covering V(G) or not
- Disjoint or overlapping
- such that vertices in same cluster are close
- similar or connected
- and vertices from different clusters are distant
- dissimilar / not connected

Clusters \& communities
examples

- Find groups of people who are densily connected
- Find groups of people who have a similar opinion or behavior (and are connected)
- People in the same country, company, school, domain, ... will often cluster together.

Pattern mining

- Given:
- network D
- pattern language L

	Global / assymptotic	Local
Static		
Evolution		

- interestingness criterion $I: L \times D \rightarrow\{$ true, false $\}$
- Find
- all patterns $P \in L$ for which $I(P, D)$

Pattern mining example

Why do you (Y) watch "Jurassic park" (JP)?

Vertex/edge structure/
feature prediction

- Given:
- network D,

	Global	Local
Static		
Evolution		

- example set $X=V(D) \cup E(D)$, target space Y
- Unknown distribution P on $X \times Y$
- Training set $Z_{\text {train }} \subseteq X \times Y$
- Test set $X_{\text {test }} \subseteq X$
- Loss function $L: Y \rightarrow \mathbb{R}^{+}$
- Find
- \hat{f} minimizing $\mathrm{E}\left[\sum_{i} L\left(\hat{f}\left(x_{i}^{\text {test }}\right), y_{i}^{\text {test }}\right)\right]$

vertex/edge structure/ feature prediction example

- Predicting on existing objects:
- Social network: Given a user, his profile, his friendship relations, is this user interested in chess?
- Given a pair of friends (X, Y). Is X planning to send a message to Y today?
- Predicting on hypothetical objects:
- Given a group of people, do they have a common friend (not yet in the network)?
- Given two people. do they know each other (even though not yet represented in the network)?

Learning from temporal data

- Given:

	Global / assymptotic	Local
Static		
Evolution		

- time-dependent network $\left.\left\{D_{t}\right\}^{T}{ }^{T}=1\right\}^{\prime}$ (possibly represented by vertices and edges with time stamps etc.)
${ }^{-}$a loss function $L: \mathcal{G} \times \mathcal{G} \rightarrow \mathbb{R}^{+}$
- Find:
- Prediction $\widehat{D}_{T+\Delta t}$ of the network (or parts thereof) to minimize $\mathrm{E}\left[L\left(D_{T+\Delta t}, \widehat{D}_{T+\Delta t}\right)\right]$

Learning from temporal data example

- Social network:
- When will X update his profile?
- Will X and Y become friends?
- Will a common friend of X and Y join the network?

Learning generative models

	Global / assymptotic	Local
Static		
Evolution		

- Generative model = probability distribution mapping a network on a new network, i.e.
- $h: \mathcal{G} \times \mathcal{G} \rightarrow[0,1]$ s.t.
$\forall D \in \mathcal{G}, \sum_{D^{\prime} \in \mathcal{G}} h\left(D, D^{\prime}\right)=1$

Learning generative models

- $h: \mathcal{G} \times \mathcal{G} \rightarrow[0,1]$
- Given:
- A hypothesis space \mathcal{H} of generative models
- An unknown $h \in \mathcal{H}$, we assume there was some D_{0} and for $t=1 . . T$, D_{t} was drawn from $h\left(D_{t-1},\right)$
- time-dependent network $\left\{D_{t}\right\}\{t=1\}$
- Find:
- Given loss function $L: \mathcal{H} \times \mathcal{H} \rightarrow \mathbb{R}^{+}$, a model $\hat{h} \in \mathcal{H}$ such that $\mathrm{E}[\mathrm{L}(\mathrm{h}, \widehat{h})]$ is minimal
- Model $\hat{h} \in \mathcal{H}$ such that $h^{\mathrm{n}}\left(\mathrm{D}_{0}\right)$ has the same asymptotic properties as D_{T}.

Learning generative models

- Difference with learning from temporal data":
- Not just predicting a future event, but also global properties should be right
- E.g. errors which propagate quickly should be avoided. (e.g. positive feedback loops)

Wnat data do I need?

- Many datasets are undirected unlabeled graphs (interaction = yes/no)
- Ok for many models focussing on global \& assymptotic aspects
- How about correlations between interests of friends?
- Then you need to records people's interests
- In general, "local" models will need richer data

Contents

- Introduction
- Networks from different points of view
- Basic concepts
- Data mining tasks
- Relevant fields of research
- Patterns \& pattern mining
- Learning

Relevant fields of research

- Statistical physics
- Complex systems
- Multi agent systems, ants, other simulation
- Grammar induction
- (Algorithmic) graph theory
- Spectral graph theory
- pattern mining, data mining, machine learning

Statistical physics

- If we assume a given set of laws, what will happen?
- Law = graph generation model
- Erdos-Reny model:
- Barabasi-Albert model
- Result =
- Assymptotic behavior, what happens if there are many particles?

Statistical physics The Erdos-Reny model

- A random graph from the Erdos-Reny distribution $G_{p}(n, p)$ is constructed as follows:
- Let G be a graph on n vertices.
- For every pair of vertices $\{v, w\}$, connect v and w with an edge with probability p.
- A random graph from the Erdos-Reny distribution $G_{M}(n, M)$ is constructed as follows:
- Let G be a graph on n vertices.
- Choose randomly M elements from $\{\{v, w\} \mid v, w \in V(G)\}$ and draw an edge between the two elements of these pairs.

Statistical physics
Allmost all graphs

- Let G_{n} be a random graph drawn from $G(n, p(n))$, i.e. p is a function of n. A predicate q (i.e. a boolean function) holds for (asymptotically) allmost surely (a.a.s.) if

$$
\lim _{n \rightarrow \infty} P\left(q\left(G_{n}\right)=\text { true }\right)=1
$$

- Similar for $G(n, M)$
- If no $G(n, p)$ or $G(n, M)$ specified: $G(n, 1 / 2)$ by default ("allmost every graph").

Statistical physics Assymptotic properties

- E.g. the "giant component"
- If $\lim _{n \rightarrow \infty} n p<1$, then the largest component of a $G(n, p)$ graph is a.a.s. not larger than $3 \cdot \log (n) /(1-n p)^{2}$
- If $\lim _{n \rightarrow \infty} n p=1$, then the largest component of a $G(n, p)$ graph is a.a.s. $\mathrm{n}^{2 / 3}$
- If $\lim _{n \rightarrow \infty} n p>1$, then the largest component of a $G(n, p)$ graph is a.a.s. close to $\beta \mathrm{n}$ with $\beta+e^{-\beta p n}=1$

Statistical physics
 Assymptotic properties

- E.g. connectedness:
- If $\lim _{n \rightarrow \infty} n p / \ln (n)<1$ then, $G(n, p)$ is a.a.s. disconnected
- If $\lim _{n \rightarrow \infty} n p / \ln (n)>1$ then, $G(n, p)$ is a.a.s. connected

Statistical physics
 0-1 law

- Given a first order logic formula F over graphs, $\lim _{n \rightarrow \infty} P(F(G(n, 1 / 2))=$ true $)$ is either 1 or 0.
- E.g. "contains a triangle": adding vertices (and hence edges) only increases the probability of a triangle; if many vertices, the probability gets close to 1 .

Statistical physics What can ML and DM learn?

- Compute from the model the "expected value" of a pattern.
- An "interesting pattern" is one which deviates from the expected value according to the model.
- E.g. assume G is the union of a random graph and a clique. Under what conditions can we detect the clique as an abnormally dense spot?1

Complex systems

- Model processes in society
- systems of interacting individuals
- what (often large-scale) properties do we observe?
- Study behavior of systems with such properties
- assymptotics
- simulation of systems
- emerging patterns

Complex systems
 What can ML/DM learn?

- Techniques to model application domains
- Social behavior
- Economics
...

Multi-agent systems, ants, simulation

- How to simulate?
- Do artificial populations offer more value than artificial individuals?

Multi-agent systems What can ML/DM learn?

- Simulation (sampling a temporal model forward in time)
- Multi-agent learning (and the effects of changing behavior due to learning)
- Game theory (~statistical physics: Nash equilibria)

Grammar induction

- Generative model ~ probabilistic grammar
- Initial state
- (probabilistic) production rules
- Graph grammars
- Hyperedge replacement grammars
- Vertex replace grammars

Grammar induction What can DM/ML learn?

- Graph grammars: learning generative models producing certain probability distributions over graphs

(Algorithmic) graph theory

- Algorithms on graphs and their complexity are well-studied.
- How to solve graph problems
- Complexity of solving problems

(Algorithmic) graph theory What can ML/DM learn?

- Pattern matching
- E.g. see part 2
- Support measures
- e.g. Maximum independent set, Lovasz theta function, ... (part 3)
- Shortest path algorithms
- Similarity, maximum common subgraph, ...

Relational databases

- A network is a relational database where the binary "edge" relation has foreign keys to itself.
- Matching patterns = evaluating queries

Relational databases What can ML/DM learn?

- Database theory sometimes shows how to match patterns (=evaluate queries), but is usually not optimized for "recursive" foreign keys.
- Many ideas for data structures (e.g. recently growing interest in graph database indexing)

Spectral graph theory¹

- Study of
- the adjacency matrix of a graph
- its eigenvalues
- the Laplacian matrix: $L=D-A$ with D degree matrix ($D_{v v}$ is degree of v) and A adjacency matrix.

Spectral graph theory What can ML/DM learn?

- Laplacian describes "influence flow", used in
- semi-supervised learning
- manifold embedding
- Clustering:
- \# of zero eigenvalues = \# of connected components

Mining, learning

- Relational learning (e.g. SRL)
- Learning in graphs (e.g. MLG)
- Using logical representations (e.g. ILP)
- (but adding logic makes problems often undecidable)

Introduction summary (1/3) Basic concepts

- Graphs
- labels
- adjacency matrix
- Paths
- distance
- Morphisms (matching operators)

Introduction summary (2/3) Network data mining tasks

	Global / assymptotic	Local		
Static	 community detection	2. Pattern mining 3.Edge/vertex structure/feature learning Evolution5. Generative models		4.Temporal learning
:---				

Introduction summary (3/3) Domains researching networks

Contents

- Introduction
- Networks from different points of view
- Patterns \& pattern mining
- Introduction
- Pattern matching
- Frequency
- Additional remarks
- Learning

Introduction What is a pattern?

- Pattern = collection of vertices that should satisfy some constraints (connections, labels, ...)

Introduction

A generic pattern miner
Assume interesting is anti-monotonic $k \leftarrow 0$; $C_{0} \leftarrow$ MinimalPatterns
While $C_{k} \neq\{ \}$

$$
\begin{aligned}
& S_{k} \leftarrow\left\{P \in C_{k} \mid \text { interesting }(P)\right\} \\
& C_{k+1} \leftarrow \mathrm{U}_{P \in S_{k}} \text { extensions }(P) \\
& k \leftarrow k+1
\end{aligned}
$$

EndWhile
Solutions $\leftarrow \mathrm{U}_{k} S_{k}$

Introduction

A generic pattern miner

- "assume interesting is anti-monotonic" allows for pruning.

$$
\begin{aligned}
& \text { interesting }(G) \wedge G \leq H \\
& \Rightarrow \operatorname{interesting}(H)
\end{aligned}
$$

- Can also mine using non-anti-monotonic criterion (e.g. correlated patterns ${ }^{1}$)
- Breadth-first "Apriori-style" ${ }^{2}$
- Also depth-first possible ${ }^{3}$
- To be instantiated:
- MinimalPatterns \& Extensions
- Interesting

Introduction

Enumeration of patterns

To be instantiated:

- MinimalPatterns \& Extensions
- Interesting
- Many approaches are generate-and-test
- How to generate all graphs subject to antimonotonic constraint?
- Practice: mining graph patterns in databases of transactions represented with graphs: AGM, gSpan, FSG, Gaston² \rightarrow use canonical form
- Theory: polynomial-delay (+evaluation antimonotone criterion) ${ }^{1}$

[^0]
Introduction
 Complexity notions

- Enumeration/listing problems ("find all ...") may have output O exponential in input size I.
- Polynomial delay: between solution $j-1$ and j at most poly(I) time.
- Incremental polynomial time: between solution $j-1$ and j at most poly (I, j) time.
- Output-polynomial time: total running time at most poly (I, O)

Contents

- Introduction
- Networks from different points of view
- Patterns \& pattern mining
- Introduction
- Pattern matching
- Frequency
To be instantiated:
\quad MinimalPatterns \& Extensions
- Additional remarks
- Learning

Pattern matching Overview

- Problem statement
- Hardness results
- Triangle counting
- Small patterns
- Larger patterns
- Cliques
- Sampling
- Fixed parameter tractability

Pattern matching

The problem

- Given:
- A network D
- A pattern P
- Find listisome/one/...) embeddings of P in D OR
- an aggregate (count, average, ...) computed over these embeddings

Pattern matching Why do we care?

- Basic operation for both learning and mining
- There is a literature on basic pattern matching, but learning \& mining queries have specific characteristics
- Data is rich, satisfies integrity constraints, ...
- Patterns may have wildcards
- DM/ML is aimed at collecting statistics

Pattern matching
 Subgraph isomorphism complexity

- Pattern P, network D
- List embeddings π : $P \rightarrow D$
- \#P-complete
- Classic algorithms (backtracking search):
$O\left(|V(D)|^{|V(P)|}\right)$

[^1]
Pattern matching Heuristic search

Ullmann's algorithm ${ }^{1}$ (pattern P, network D) $\operatorname{Match}(P, D,\{ \})$

Procedure Match (P, D, partial embedding π) If $V(P)=\operatorname{dom}(\pi)$
then ListSolution (π)
else
Select $v \in V(P) \backslash \operatorname{dom}(\pi)$
Let $C=\{w \in V(D) \mid w$ maybe image of $v\}$
For all $w \in C$ do
$\operatorname{Match}(P, D, \pi \cup\{(v, w)\})$

Pattern matching
 Avoiding worst-case complexity

- Database of transactions of graphs
- E.g. many small molecule graphs, RNA
- exploit structure of database graphs, e.g.
- atoms have max degree = 6 ¹
- molecules are often planar (or even outerplanar ${ }^{2}$)
- bounded treewidth ${ }^{3}$

[^2]
Pattern matching
 Avoiding worst-case complexity

- Network
* No definite structure we can rely on
x Approximate matching may help but
- Subgraph isomorphism is hard to approximate
\checkmark Structural properties of patterns
- Triangles and other small patterns
- Trees
\checkmark Statistical properties of network
- Random graphs

Pattern matching Triangle counting

- Simple problem:
- Given: a triangle P and a network D
- List or count: all embeddings of P in D
- but a lot of literature on solving it

Pattern matching Triangle counting

- Idea 1: Brute force
- Check every triple of vertices of G
- Runtime $O\left(|V(G)|^{3}\right)$

Pattern matching Triangle counting

- Idea 2: matrix multiplication ${ }^{1}$
- Let A be the adjacency matrix of G
- $\left(A^{n}\right)_{u, v}=$ \# of walks of length n between u and v
- Matrix multiplication is $O\left(|V(G)|^{2.37}\right)^{2}$
- Hence, compute $\operatorname{tr}\left(A^{3}\right) / 3$!
\int_{2}^{1}
$A=\left(\begin{array}{llll}0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0\end{array}\right)$
$A^{2}=\left(\begin{array}{llll}3 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 2 & 1 \\ 1 & 1 & 1 & 2\end{array}\right) \quad A^{3}=\left(\begin{array}{llll}2 & 3 & 4 & 4 \\ 3 & 0 & 1 & 1 \\ 4 & 1 & 2 & 3 \\ 4 & 1 & 3 & 2\end{array}\right)$
$\operatorname{tr}\left(A^{3}\right) / 3!=(2+2+2) / 6=1$

[^3]${ }^{2}$ For practical problems, the exponent will be higher

Pattern matching Triangle counting

- Idea 3: Sparse graphs
- Iterate over edges ${ }^{1}: O\left(|E(G)|^{\frac{3}{2}}\right)$
- Nodelterator: Iterate over pairs of neighbors of vertices: $O\left(d_{\text {max }}^{2}|E(G)|\right)$ with $d_{\max }$ the maximal degree of G.

Pattern matching Triangle counting

- Idea 4: Approximation
- Sparsification: delete randomly part of the graph, count triangles, adjust for sampling
- Sampling: perform a number of random attempts, adjust for sampling
- Partition graph into parts, solve them, adjust for triangles spanning several partitions.

Pattern matching Triangle counting

Alon et al., 1997	Exact	$O\left(\|V(G)\|^{2.37}\right)$
Itai \& Radeh, 1978	Exact	$O\left(\|E(G)\|^{\frac{3}{2}}\right)$
Tsourakakis ICDM2008	Exact	
Faloutsos KDD2009	Approx	Sparsification
Avron 2010	Approx	Sampling
Pagh\&Tsourakakis, InfProcLet 2012	Approx	Partitioning
Becchetti et al. TKDD 2010	Approx	

${ }^{1}$ Itai and Rodeh 1978

Pattern matching
 Counting motifs of size 3-5

- Motifs = not necessarily connected induced subgraph
- Brute force sometimes still works ${ }^{1}$
- Sampling strategy (e.g. GUISE²):
- Consider an induced graph
- Omit vertex or add neighbor
- Metropolis hastings: adjust for fact that higherdegree vertices are reached more easily

[^4]
Pattern matching
 Sampling motifs with MCMC

Motifs

Pattern matching
 Sampling motifs with MCMC

Motifs

Pattern matching
Sampling motifs with MCMC

Motifs
State $s 1$
$d(s 1)=9$

Pattern matching

 Sampling motifs with MCMC
$T(u, v)=\min \left(\frac{1}{d(u)}, \frac{1}{d(v)}\right) \quad($ for $u \neq v)$
$T(u, u)=1-\sum_{v \neq u} T(u, v)$
Motifs
State s1
$d(s 1)=9$
$\underset{\square}{Z}$
$\vec{\nabla}$
∇
0
Z
Z

Pattern matching
Sampling motifs with MCMC

Motifs

Pattern matching Overview

- Problem statement
- Hardness results
- Triangle counting
- Small patterns
- Larger patterns
- Cliques
- Sampling
- Fixed parameter tractability

Pattern matching
 Cliques

- Several approaches aim at finding maximal cliques
- Clique detection for non-directed graphs,

Clusters \& communities Bicliques

- Bi-partite networks $D=\left(V_{1} \cup V_{2}, E\right)$ with $E \subseteq V_{1} \times V_{2}$.
- Bi-clique $=C_{1} \times C_{2}$ with $C_{1} \subseteq V_{1}$ and $C_{2} \subseteq V_{2}$.
- Several variants:
- Tile mining (in boolean matrices, unweighted networks)
- Non-negative matrix factorization (real-valued matrices, weighted networks)
Advertisement:
Join ECML/PKDD2013 Tue1B session on Networks (1)
J.Ramon, P.Miettinen, J.Vreeken, Detecting bicliques in GF[q],

Pattern matching

Larger patterns: Sampling

Pattern matching Avoiding worst-case complexity

- Network
\times No definite structure we can rely on
- Approximate matching may help but
- Subgraph isomorphism is hard to approximate
\checkmark Structural properties of patterns
- Triangles and other small patterns DONE
- Trees
\checkmark Statistical properties of network
Sampling \longrightarrow. Random graphs

Pattern matching
 Sampling - strategies

- Partitioning
- Match pattern in one or all partitions
- Assume that network has rather uniform structure
- Scale result to full network
- Worked for triangle counting, harder for larger patterns.
- Simulation (e.g. Fürer)
- Attempt several times to find single match
- assume network is sufficiently uniform
- average over iterations

Fürer's algorithm ${ }^{1}$ for pattern matching in random graphs

- Input:
- Network G drawn from $G(n, p)$
- Pattern H with a decomposition (see later)
- Output:
- |Emb $(H, G) \mid$, the number of images of H in G.
- Complexity:
- Exact \& worst case: \#P-complete
- Exact for "most graphs": still untractable
- Approximate for most graphs : this algorithm (FPRAS)

Pattern matching Fürer's algorithm - FPRAS

- Fully Polynomial Randomized Approximation Schema:
- Randomized algorithms outputting for almost every graph in polynomial time a solution with relative error of ε.
- A little more formally:
- An FPRAS is a randomized algorithm such that there is a polynomial $p(, \cdot)$ such that for every δ there is an n_{0} such that for all $n>n_{o}$ and ε, and for at least a fraction 1- δ of the graphs of size n, the algorithm outputs in time at most $p(n, 1 / \varepsilon)$ a solution within a factor $1 \pm \varepsilon$ of the correct solution.

Pattern matching Fürer: Basic algorithm

Function unbiased_estimator(H,G) [estimates |Emb $(H, G) \mid]$ $(\varphi, P(\varphi))=$ Try_to_find_embedding(H,G);
IF $\varphi=$ failed
THEN return o;[No embedding found]
ELSE return 1/P (φ); [return inverse
EndFunction
probability of φ]

Function count_embeddings(H,G, ε)
$\mathrm{c}=\mathrm{o} ; \mathrm{s}=\mathrm{C} / \mathrm{\varepsilon}^{2}$;
For i = 1 .. s do c=c+unbiased_estimator(H,G); EndFor
Return c/s;
EndFunction

Pattern matching Fürer: Basic algorithm

- Count_embeddings works correctly:
- Every embedding φ is found with probability $P(\varphi)$ by Try_to_find_embeddings(H,G). With probability $1-\Sigma_{\varphi} P(\varphi)$ Try_to_find_embeddings fails
- Every embedding φ, is found once in $1 / P(\varphi)$ calls, and in that case, unbiased_estimator returns $1 / P(\varphi)$. Hence, φ contributes 1 to each call to unbiased_estimator, on average.
- Hence, on average, unbiased_estimator returns the number of embeddings
- Task left: find a good Try_to_find_embedding

Pattern matching Fürer - strategy

- Decompose vertex set of pattern
- match one partition at a time until complete
- Compute probability of finding this particular solution
- Show the overall algorithm converges sufficiently fast.
- The sum of a (very) large number of identical distributions becomes Gaussian. Standard deviation goes down with square of sample
- Whatever the sample size, we can always (with very small probability) have a large error

Pattern matching

Fürer: finding embeddings
INPUT: G, H, partition $\left\{V_{1}, V_{2}, \ldots, V_{l}\right\}$ of $V(G)$
$X \leftarrow 1 ; \varphi_{0} \leftarrow\{ \}$
For $i=1 . . l$
$E \leftarrow\left\{\varphi \in \operatorname{Emb}\left(\cup_{\{j=1\}}^{i} V_{j}, G\right) \mid \varphi \supset \varphi_{i-1}\right\}$
$X_{i} \leftarrow|E|$
if $X_{i}=0$ then terminate and return (failed, 0)
pick an embedding φ_{i} uniformly at random from E
$\mathrm{X} \leftarrow X . X_{i}$
EndFor
Return $\left(\varphi_{l}, 1 / X\right)$

Fürer - Sample run (step 1.1)

$$
\begin{aligned}
& \text { - } X=1 ; \varphi_{0}=\{ \} \\
& \text { - } i=1
\end{aligned}
$$

Fürer - Sample run (step 1.2)

$$
\begin{aligned}
& \text { - } X=1 ; \varphi_{0}=\{ \} \\
& \text { - } i=1 \\
& X_{1}=|E|=8
\end{aligned}
$$

Fürer - Sample run (step 1.3)

- $i=1$
- $X_{1}=8$
- $\varphi_{1}=\{(1, a)\}$
- $X=8$

Fürer - Sample run (step 2.1)

Fürer - Sample run (step 2.2)

$$
\begin{aligned}
& \text { - } i=2 \\
& \text { - } X=8 ; \varphi_{1}=\{(1, a)\} i \\
& \text { - } X_{2}=|E|=3 \cdot 2=6 \\
& \text { - } X \leftarrow X \cdot X_{2}=8 * 6=48
\end{aligned}
$$

Fürer - Sample run (step 2.3)

$$
\begin{aligned}
& \text { - } i=2 \\
& \text { - } \varphi_{1}=\{(1, a)\} i \\
& \text { - } X_{2}=|E|=3 \cdot 2=6 \\
& \text { - } X=48 \\
& \text { - } \varphi_{2}= \\
& \{(1, a),(2, h),(3, c)\}
\end{aligned}
$$

Fürer - Sample run (step 3.1)

Fürer - Sample run (step 3.2)

- $i=3$
- $\varphi_{2}=\{(1, a) ;(2, h),(3, c)\} ;$
- $X=48$
- $X_{3}=|E|=2$
- $X=X \cdot X_{3}=48 * 2=96$

Fürer - Sample run (step 3.3)

- $i=3$
- $\varphi_{2}=\{(1, a) ;(2, h),(3, c)\} ;$
- $X=48$
- $\mathrm{X}_{3}=2 ; \mathrm{X}=96$
- $\varphi_{3}=$
$\{(1, a),(2, h),(3, c),(4, f)\}$

Fürer - Sample run (step 4.1)

Fürer - Sample run (step 4.2)

Fürer - Sample run - a solution

Fürer - Sample run bis

- $i=3$
- $\varphi_{2}=\{(1, a) ;(2, h),(3, c)\} ;$
- $X_{3}=|E|=2$
- $X=X \cdot X_{3}=48 * 2=96$

Fürer - Sample run bis

- $i=3$
- $\varphi_{2}=\{(1, a) ;(2, h),(3, c)\} ;$
- $X=96$
- $\varphi_{3}=\{(1, a),(2, h),(3, c)$,
$(4, b)\}$

Fürer - Sample run bis

Pattern matching Fürer's theorem

- Important: When does it work?
- The algorithm is an FPRAS (for allmost all G) if:
- Partitioning of V(H) is a "ordered bipartite decomposition"
- $\mathrm{p}(\mathrm{n}) \mathrm{n}^{2} \rightarrow \infty$
- $\mathrm{np}^{0} / \Delta^{4} \rightarrow \infty$
- $E(H)^{3} n^{-4} p^{-2} \rightarrow 0$

Where

$$
v=\max (2, \gamma), \gamma=\max \{|E(F)| /(|V(F)|-2)|F \leq H,|V(F)| \geq 3\}
$$

Pattern matching
 Fürer: Simplified theorem

- It works if the count is not too small.
- Intuition:
- The frequency of very rare events is hard to measure (the "interesting" part of the sample where we actually observe something, is smaller)
- The worst case is where one doesn't know whether $|\operatorname{Emb}(H, G)|=0$ or $|\operatorname{Emb}(H, G)|=1$
- If we run the algorithm and we find some embeddings, our estimate will be rather accurate.
- If no "ordered bipartite decomposition", then we can still run this algorithm, but no FPRAS guarantee.

Pattern matching; Fürer

Ordered bipartite decomposition

- An ordered bipartite decomposition of H is a partition $\left\{V_{1 \nu} V_{21} \ldots, V_{\beta}\right.$ of $V(H)$ such that
- Each $V_{i}(i=1 . . l)$ is an independent set in H
- $\forall i, v \in V_{i} \exists j$ such that $N_{H}(v) \subseteq U_{k<i} V_{k} \cup V_{j}$
- So if a neighbor of a vertex $v \in V_{i}$ is in V_{j} with $j>i$, then no neighbors of v must be in $V_{j^{\prime}}$ with $j^{\prime}>i$ and $j \neq j^{\prime}$.

Fürer - Graphs with a decomposition

- Cycles longer than 3 (see above running example)
- Bounded degree outerplanar graphs without triangle
- Trees
- Grids
- Not: triangles (but separate proof), ...

Pattern matching

Fixed parameter tractability

Pattern matching

Avoiding worst-case complexity

- Network
x No definite structure we can rely on
- Approximate matching may help but
- Subgraph isomorphism is hard to approximate
\checkmark Structural properties of patterns
- Triangles and other small patterns DONE
" Trees
Fixed parameter tractability
\checkmark Statistical properties of network
- Random graphs DONE

Pattern matching
 Fixed parameter tractability

- Classic complexity classes:
- Input size: n
- P : Polynomial time $O\left(n^{d}\right)$ for some d
- Are all problems not in P are hard: not $O\left(n^{d}\right)$ for some d ? No, some may still be easier than others
- Fixed parameter tractability:
- Input has two parts of sizes: n and k
- For k fixed, the problem is tractable: $O\left(n^{d} f(k)\right)$
- May be acceptable if k is small

Pattern matching
 Fixed parameter tractability

- Fixed parameter tractability:
- Input has two parts of sizes: n and k
- For k fixed, the problem is tractable: $O\left(n^{d} f(k)\right)$
- May be acceptable if k is small
- Pattern matching:
- Network: size n
- Pattern: size k
- k is usually small, n may be large.
- So fixed parameter tractability is suitable for pattern matching!

Pattern matching
 Fixed parameter tractability

- Matching trees in network in

$$
O\left(m k 2^{k}\right)=O^{*}\left(2^{k}\right)
$$

- $k=V(P)$: pattern size
- $m=E(D)$: network size
- Randomized algorithm¹ which works well for practical pattern mining ${ }^{2}$
${ }^{1}$ R. Williams, Inf Proc Lett 2009
${ }^{2}$ A. Kibriya \& J.Ramon, DMKD 2013

Pattern matching summary

- Basic operation for mining and learning
- Networks have no hard structure we can rely on
× Approximate matching may help but
- Subgraph isomorphism is hard to approximate
\checkmark Structural properties of patterns
- Triangles and other small patterns
- Trees
\checkmark Statistical properties of network
- Random graphs

Pattern matching - open problems

- Many matching problems for which fixed parameter approach could help
- More complex queries
- Implicit relations
- Big data (not in RAM)
- combine with indexing
- reduce passes over data (or samples)
- distributed approaches, ...

Contents

- Introduction
- Networks from different points of view
- Patterns \& pattern mining
- Introduction
- Pattern matching
- Frequency
- Additional remarks
- Learning

Frequency / support¹ measures The problem

- How frequent is pattern P in network D ?
- Why assign a "frequency" to a pattern?
- Popular criterion to measure relevance of pattern
" E.g. 40\% of respondents liked both movie m1 and m2.
- Way to represent association rules
" E.g. Of all respondents liking movie $m 1$ and $m 2,50 \%$ also liked $m 3$ (i.e. $40 \% * 50 \%=20 \%$)
- Measure of statistical power
- E.g. We rolled the dice 100 times and observed 40 times a 6. It must be biased.

Support measures
 What do you want?

- Counting objects
- X\% of people own a house in the same region where they work.
- network unimportant, just count people

Support measures
 What do you want?

- Counting objects
- Performing statistics
- We rolled the dice 100 times and observed 40 times a 6. It is biased!
- We rolled the dice. 100 people observed a 6. Would it be biased?

Support measures
 What do you want?

- Counting objects
- Performing statistics
- Association rules
- If X has a friend Y such that Y smokes, then with probability a\%, X smokes too
- If X and Y are friends and Y smokes, then with probability b\%, X smokes too
- Different quantor/aggregator placement, probably $a \neq b$

Support measures What do you want?

- What do you want?
- Counting objects
- Performing statistics
- Association rules
- If you know what you want, you're closer to knowing what to do. No measure is good in all cases.

Support measures Overview

- Embedding-based
- Embedding count
- Image count
- Key-based
- Key image count
- Min-image
- Overlap-based
- Maximum independent set
- Minimum clique partition
- Intermediate measures and relaxations

Support measures
 Embedding-based

- Embedding-count: $|\operatorname{Emb}(P, D)|$
- Image-count: |Img $(P, D) \mid$

$$
|\operatorname{Emb}(P, D)|=|\operatorname{Aut}(P)| \cdot|\operatorname{Img}(P, D)|
$$

- E.g.: Among all triples (X, Y, Z) such that X and Y are friends and Z is a family member of X, the fraction of triples where Y knows Z is $a \%$.
- Embeddings may be concentrated in small part of network, e.g. large family where everyone is friend with each other.
- Not anti-monotonic, no pattern-mining pruning

Support measures
 Key-based

- Decide before the start of data mining what is the type of object of interest ("the primary key")
- E.g. We are interested in 'friends' relationships
- a\% of 'friends' relations are between colleagues.
- $b \%$ of friends have the same mother tongue,
- c\% of friend pairs (X, Y) have at least one common friend Z,

Support measures
 Key-based

- Decide before the start on the "key".
- The "key" is a common subpattern of all patterns considered.
- There is a fixed, finite set of objects (all images/embeddings of the "key"), the network relations are not considered.
- Easy to count
- Anti-monotonic (good for pattern mining)
- Not all statistics are valid (e.g. the dice example)

Support measures Key-based: dice example

- Key = dice observation
- Performing statistics:

- We rolled the dice. 100 people observeda6. Would it be biased?

4 images of Key
eqch showing a 6

Support measures Min-image ${ }^{1}$

- minImage $(P, D)=$

$$
\min _{v \in V(P)}|\{\pi(w) \mid \pi \in \operatorname{Emb}(P, D)\}|
$$

- Allows for choosing each vertex as (singleton) key, giving a lower bound for each vertex-key-based frequency
- Anti-monotonic:
$P \leq Q \Rightarrow \operatorname{minImage}(P, D) \geq \operatorname{minImage}(Q, D)$

Support measures
 Overlap-based: model dependence

- The easiest way to perform statistics is to have independent observations.
- How do we get as much independent observations as possible out of a network?
- Model the independences in "overlap graph".
- Caution: selecting independent observations is not necessarily a sample from the original distribution!

Support measures
 Overlap-based: Overlap graph

- Overlap graph G_{P}^{D} :
- $V\left(G_{P}^{D}\right)=\operatorname{Img}(P, D)$
- $\left(g_{1}, g_{2}\right) \in E\left(G_{P}^{D}\right)$ if images g_{1} and g_{2} overlap
- What is overlap?
- Two occurrences of a pattern overlap if we can't consider them independent in the context of the statistics we are doing
- Vertex-overlap: $\left(g_{1}, g_{2}\right) \in E\left(G_{P}^{D}\right) \Leftrightarrow V\left(g_{1}\right) \cap V\left(g_{2}\right) \neq \emptyset$
- Edge-overlap: $\left(g_{1}, g_{2}\right) \in E\left(G_{P}^{D}\right) \Leftrightarrow E\left(g_{1}\right) \cap E\left(g_{2}\right) \neq \varnothing$
- Other options, e.g. Harmful overlap ${ }^{1}$

Support measures
 Overlap-based: What is overlap?

- Dice example:
- Overlap if the Roll is the same.
- We are interested in dice1, so naturally all embeddings will contain dice1.

Support measures
 Overlap-based: Court example

- Vertices: case, judges, (prodeo) lawyers, party
- Edges between case-judge, case-lawyer, case-party

Independent set

- Wis an independent set of H iff
- $W \subseteq V(H)$
- There are no $v, w \in W$ such that $(v, w) \in E(H)$

Independent set of size 2

Independent set of size 1

Support measures Overlap-based: MIS measure

- The size of a Maximum Independent Set (MIS) of the overlap graph G_{P}^{D} of pattern P in network $D: \operatorname{MIS}(P, D)=\operatorname{MIS}\left(G_{P}^{D}\right)$

$$
\operatorname{MIS}\left(G_{P}^{D}\right)=3
$$

- (dice1,obs=6,Person1)
(dice1,obs=6,Person2)
- (dice1,obs=6,Person2)
- (dice1,obs=3,Person2)

Support measures Overlap-based: MIS measure

- The size of a Maximum Independent Set (MIS) of the overlap graph G_{P}^{D} of pattern P in network $D: \operatorname{MIS}(P, D)=\operatorname{MIS}\left(G_{P}^{D}\right)$

Support measures
 Overlap-based: more measures

- Maximum independent set idea:
© allows to measure overlap and extract independent observations
© Anti-monotonic
© NP-hard to compute
© Possibly ignores too much information
- Does the overlap graph allow for other measures?

Support measures
 Overlap-based: more measures

- Requirements for feasible measure:
- Anti-monotonic in pattern:
- $p \leq P \Rightarrow f(p, D) \geq f(P, D)$
- Monotonic in network:
- $D \leq D^{\prime} \Rightarrow f(P, D) \leq f\left(P, D^{\prime}\right)$
- Normalized
- If there are n independent (non-overlapping) observations (overlap graph = n isolated vertices), then support is n.

Support measures

Overlap-based: more measures

- If f is a function on the overlap graph, and f is feasible measure, then:

$$
M I S(P, D) \leq f(P, D) \leq M C P(P, D)
$$

- where $M C P\left(G_{P}^{D}\right)$ is the minimum clique partition number of the overlap graph, another NP-hard to compute number.

Support measures
 Overlap-based: more measures

- Fortunately, several efficiently computable functions are between MIS and MCP.
- Lovasz theta': ϑ
- feasible measure²; computable with semidefinite program (SDP), which is still rather expensive
- MIS-relaxation3: s
- Is a feasible measure3; computable with linear program (LP), hence efficiently.
- We have $M I S \leq \vartheta \leq s \leq M C P$

[^5]
Support measures Summary

Measure	Anti-Monotonic?	Statistics?	Efficient?
Embedding count	x	x	\checkmark
Image count	x	x	\checkmark
key image count	\checkmark	x	\checkmark
min-image	\checkmark	x	\checkmark
Overlap-MIS	\checkmark	\checkmark	x
Overlap-MCP	\checkmark	$?$	\times
Overlap- ϑ	\checkmark	\checkmark	$?$
Overlap-s	\checkmark	\checkmark	\checkmark

Frequency - open problems

- Combine pattern matching and frequency
- Exploit network structure to increase speed (methods up to now don't)

Contents

- Introduction
- Networks from different points of view
- Patterns \& pattern mining
- Introduction
- Pattern matching
- Frequency
- Additional remarks
- Learning

Expected number of embeddings

- Let $D \sim G(n, p)$, then
$|E m b(P, D)|=n^{|V(P)|} p^{|E(P)|}(1-p)^{\frac{n(n-1)}{2}-|E(P)|}$
- For small p :

$$
|E m b(P, D)|=n^{|V(P)|} p^{|E(P)|}
$$

- For trees:

$$
|\operatorname{Emb}(P, D)|=(n p)^{|V(P)|} / p
$$

- Often D is connected and $n p>1$

Expected number of embeddings

- \# of expected embeddings grows with pattern size for sparse patterns
- Denser patterns may be easier to interprete
- Also patterns less frequent than expected may be of interest.
- This also happens with itemsets: items may be correlated, uncorrelate or anti-correlated

Contents

- Introduction
- Networks from different points of view
- Patterns \& pattern mining
- Learning
- Introduction
- Learning from non-independent examples
- Temporal models

Learning - introduction

- Popular learning ideas:
- connected vertices have similar target value
- correlation between features and target value
" more classic feature-to-target supervised learning
- "Dual space" idea: one feature per vertex u, is 1 for vertices connected to that vertex u (else o).
- If individuals are important (but not many features are known)

Learning - introduction Similar to your neighbor

- Semi-supervised learning
- E.g.: try to minimize the number of edges with on both sides different labels
- E.g. target values tend to average of neighbors.
- Manifold embedding:
- Assign all vertices a coordinate such that connected vertices are close together (and notconnected vertices are far apart)

Learning - Introduction
 From feature to target value

- Learning tasks¹:
- Vertices / edges / ...
- (existence)prediction / labeling / weighting /feature construction / ...
vertex/edge structure/ feature prediction example
- Supervised learning
- Input:
" vertex/edge to predict
- Neighborhood
- Output:
- Label or existence
- But how about the classic i.i.d. assumptions?

Learning - Prediction in a fixed network

- Most common setting:
- Fixed network D
- training and test vertices (edges) in D
- But what if the network changes (e.g. an influential node is added/deleted)?
- Causal patterns remain the same
- Correlation patterns may change significantly

Learning - Can’t distinguish individual and its features

What is the rule?
Does everyone follow the class of its neighbors? Is v1 very influential?
Is class + if there are green neighbors?

Learning - network-specific challenges

- Suppose the same rules stay true, but new nodes/edge (same distribution). Distinction viral/features may matter
- Movie database:
- Persons from a fixed distribution
- Movies from a fixed distribution
- Persons watch movies
- A few new persons and movies are added

Contents

- Introduction
- Networks from different points of view
- Patterns \& pattern mining
- Learning
- Introduction
- Learning from non-independent examples
- Temporal models

Learning from dependent examples

- Members of a network are dependent
- Typical assumptions of learning algorithms don't hold, in particular that
- Examples are independently and identically drawn (i.i.d.)

Movie rating example

- Movie rating
- Obj: Movie (genre, duration, actor popularity)
- Obj: Person (age, gender, ...)
- Obj: Screening (location, time, ...)
- Target: Rating
- Several ratings per person / movie / cinema

Lawsuit example

- Lawsuits:
- Obj: Person
- Obj: Lawyer
- Obj: Judge
- Example: case
- Target: outcome
- Judges handle several cases, persons may be involved in several cases

Learning from pattern

 features- Each example is an embedding of a pattern
- MovieRating: (Movie, Person, Cinema, Rating)
- Lawsuit: (Case, Person, Judge, Outcome)
- Examples overlap:
- See also "support measures"
- We call them networked examples

Representing networked examples

- Several alternative equivalent representations:
- Every example is represented with a vertex connected to the participating objects
- Every example is represented with a hyperedge, containing all participating + all relevant objects.

Learning from networked / dependent examples

- Tasks:

1. Elementary statistics, confidence intervals, hypothesis testing, ...
2. Learning, generalization guarantees

- Models:
a. bounding covariance between dependent examples
b. modeling how examples are dependent
- Combinations: 1a and 2b

Bounding covariance of examples and hypothesis testing

- (Wang, Neville, Gallagher, Eliassi-Rad, ECML/PKDD-2011):
- vertices are examples
- edges indicate a bounded covariance
- safe correction for statistical significance tests
- safe upper bound for variance on sums etc.
- Upper bound for variance can be an important tool in proving generalization guarantees.

Bounding covariance of examples

- n independent random variables $\left\{X_{i}\right\}_{i=1}^{n}$ with variance σ^{2} : Variance on $\sum_{i=1}^{n} X_{i}$ is $n \sigma^{2}$
- n identical random variables $\left\{X_{i}\right\}_{i=1}^{n}$ with variance σ^{2} : Variance on $\sum_{i=1}^{n} X_{i}$ is $n^{2} \sigma^{2}$

Bounding covariance of examples

- n networked examples
- No edge between X_{i} and $X_{j}=$ independent:

$$
E\left[\left(X_{i}-E\left[X_{i}\right]\right)\left(X_{j}-E\left[X_{j}\right]\right]=0\right.
$$

- Edge $\left(X_{i}, X_{j}\right) \in E(D)$ between X_{i} and $X_{j}=$ bounded covariance $E\left[\left(X_{i}-E\left[X_{i}\right]\right)\left(X_{j}-E\left[X_{j}\right]\right] \leq \gamma\right.$
- Variance on $\sum_{i=1}^{n} X_{i}$ is
$\sum_{i, j} E\left[\left(X_{i}-E\left[X_{i}\right]\right)\left(X_{j}-E\left[X_{j}\right]\right] \leq|E(D)| \gamma+n \sigma^{2}\right.$

Learning from networked / dependent examples

- Tasks:

1. Elementary statistics, confidence intervals, hypothesis testing, ...
2. Learning, generalization guarantees

- Models:
a. bounding covariance between dependent examples
b. modeling how examples are dependent
- Combinations: 1a and 2b

Variance, significance, effective sample size

- Effective sample size of a given set of networked examples is n iff it contains as much information (for the task at hand, e.g. learning or hypothesis testing) as a set of n i.i.d. examples ${ }^{1}$.

Probably approximately
 correct (PAC) structure

- PAC: with probability $1-\delta$ the loss is bounded by ε where

$$
\delta=\exp \left(\frac{-m(S) \epsilon^{2}}{C_{1}+C_{2} \epsilon}\right)
$$

- with $m(S)$ the effective sample size of training set S. Higher $m(S)=$ better
- i.i.d. sample $S, m(S)=|S|=$ best possible

Independence assumptions

- Weaker form of i.i.d
- But not arbitrary
- arbitrary \Rightarrow no bound possible

Independence assumptions: i.i.d. vertex features

- Edges are fixed.
- The features of every vertex are drawn i.i.d. (not even depending on the edges).

1. Choose edges (possibly very dependently)

2. Draw vertex
features (don't
look at edges)

Independence

assumptions applied

YES

- Sneak preview
- Randomized trial: patients are assigned randomly to set of treatment params
- Cases are assigned randomly to judges

NO

- Select movie based on genre, or with friends
- Patients go to closeby hospital or to hospital recommended by their friends
- Judges handle cases connected to their existing cases

Training set measures

- Overlap (hyper)graph G
- vertices are objects
- (hyper)edges are examples
- Training set $S \subseteq E(G)$
- Measures $m(S)$ of training set $m(S)$:

$$
\max \left(n_{E Q W}, n_{I N D}\right) \leq n_{M I S} \leq \vartheta \leq s \leq n_{M S C}
$$

Approach 1:

Equal-weight (EQW)

$\max \left(\boldsymbol{n}_{E Q W}, \boldsymbol{n}_{I N D}\right) \leq n_{M I S} \leq \vartheta \leq \boldsymbol{s} \leq n_{M S C}$

 \uparrowall examples get same weight
(Janson 2004) \& (Usunier 2005)

$$
\delta \propto \exp \left(\frac{-n_{E Q W} \epsilon^{2}}{C_{1}+C_{2} \epsilon}\right)
$$

With $n_{E Q W}=\frac{|S|}{\chi^{*}(G)}$
and $\chi^{*}(G)$ fractional edge chromatic

$$
\chi^{*}(G)=3 ; n_{\text {EQW }}=\frac{6}{3}=2
$$

Approach 2:

Independent set (IND)

$$
\max \left(n_{E Q W}, n_{I N D}\right) \leq n_{M I S} \leq \vartheta \leq s \leq n_{M S C}
$$ 1

We find $n_{I N D}$ independent examples

$$
\delta \propto \exp \left(\frac{-n_{I N D} \epsilon^{2}}{C_{1}+C_{2} \epsilon}\right)
$$

With $n_{I N D}=|S|$ (examples in S independent!)

Approach 3:

Maximum independent set

$$
\max \left(n_{E Q W}, n_{I N D}\right) \leq n_{M I S} \leq \vartheta \leq s \leq n_{M S C}
$$

$$
\uparrow
$$

Maximum independent set of examples

$$
n_{M I S}=|M I S(G)|
$$

|MIS (G)|hard to approximate!
\Rightarrow no const lower bound for $\frac{n_{I N D}}{n_{M I S}}$
For some $G, \frac{n_{E Q W}}{n_{M I S}}=2 /|S|$

Minimum clique partition number

$$
\max \left(n_{E Q W}, n_{I N D}\right) \leq n_{M I S} \leq \vartheta \leq s \leq n_{M S C}
$$

Minimum set cover

$$
\begin{gathered}
n_{M S C}=|M S C(G)| \\
n_{M S C} \leq\left(k-1+\frac{1}{k}\right) n_{M I S}
\end{gathered}
$$

$|M S C(G)|$ too is hard to compute

$$
k-1+\frac{1}{k}=2.5
$$

Approach 4: MIS-relaxation

$$
\max \left(n_{E Q W}, n_{I N D}\right) \leq n_{M I S} \leq \vartheta \leq s \leq n_{M S C}
$$

LP relaxation of MIS
(Wang \& Ramon, DMKD 2013)
Graph pattern support measure

- Anti-monotonic, Normalized
- Linear program \rightarrow efficient

networked PAC

- PAC: $\mathrm{P}($ Loss $\leq \epsilon) \geq 1-\delta$ where

$$
\delta=\exp \left(\frac{-\boldsymbol{s} \epsilon^{2}}{C_{1}+C_{2} \epsilon}\right)
$$

- with \boldsymbol{s}

$$
S=\max \left(\sum_{i=1}^{|S|} w_{i}\right)
$$

subject to

$$
\forall v \in V(G): \sum_{e_{i}: v \in e_{i}} w_{i} \leq 1
$$

Networked PAC

- Influence of each factor is at most 1:
max S

$$
s=w_{1}+w_{2}+w_{3}+w_{4}+w_{5}+w_{6}
$$

s.t.

$$
\begin{array}{lr}
v_{1}: & w_{1}+w_{2} \leq 1 \\
v_{3}: & w_{1}+w_{3} \leq 1 \\
v_{2}: & w_{2}+w_{3} \leq 1 \\
v_{4}: & w_{4}+w_{5}+w_{6} \leq 1
\end{array}
$$

Technical elaboration

- Chernoff bound for weighted sums:

For $\boldsymbol{X}_{\boldsymbol{i}}(\boldsymbol{i}=1 . . \boldsymbol{n})$ independent random variables,
$E\left[X_{i}\right]=0 ;\left|X_{i}\right| \leq a_{i}+M ; X=\sum_{i} X_{i}:$
$P\left(\sum_{i=1}^{n} X_{i} \geq n \epsilon\right) \leq \exp \left(\frac{-n \epsilon^{2}}{\operatorname{Var}(X)+\sum_{i} a_{i}+M \epsilon / 3}\right)$

- Let $X_{i}=\xi\left(\{\boldsymbol{\phi}(v)\}_{v \in e_{i}}\right)$ and $\forall v: \sum_{e_{i}: v \in e_{i}} w_{i} \leq 1$, then the above Chernoff inequality still holds

Learning from non-independent examples: Summary

- Networks modeling relations induce dependencies between objects and examples
- Modeling such dependencies is useful to
- better understand the learning setting
- get more statistical power from the data
- Upper bound correlation between examples
- Model common factors of examples

Learning from non-independent data: Open problems

- Can we formalize \& structure models for learning?
- How to extract most statistical value from data?
- How to take intervention into account (very important for applications)?

Contents

- Introduction
- Networks from different points of view
- Patterns \& pattern mining
- Learning
- Introduction
- Learning from non-independent exammples
- Temporal models

Temporal models

- Temporal model = probability distribution mapping a network on a new network, i.e. $h: \mathcal{G} \times \mathcal{G} \rightarrow[0,1]$ s.t. $\forall D \in \mathcal{G}, \sum_{D^{\prime} \in \mathcal{G}} h\left(D, D^{\prime}\right)=1$
- Results in Markov chain
- When starting from empty network: generative model
- Often one attempts to find a simple rule, when provided to all individuals of a group producing an interesting/real-life pattern
- Communities, powerlaws, emerging structures, ...

Temporal models

- Global temporal models
- How will communities evolve?
- How will global network properties evolve?
- Models aiming at emerging behavior
- Local temporal models
- How will individual nodes/edge/local neighborhoods evolve?

Global temporal models Examples

- How will communities evolve?
- Research topics emerging and disappearing ${ }^{1}$
- Online groups emerging and disappearing ${ }^{2}$

1 Ferlez et al. ICDE 2008
2 Kairam, Wang \& Leskovec WSDM 2012

Models for emerging or assymptotic patterns - Examples

- Theory: Barabasi-Albert: Preferential attachment
- Complex systems:
- Economics (e.g. company fusions¹)
- Between networks and physics: Groups of animals (formations of flying birds²)
- No systematic integration with DM/ML

[^6]
Local temporal models

- Local models:
- Link prediction: what could exist may get known as existing soon.
- Learn from temporal data
- Few combined local/global approaches
- Emerging behavior shown by simulation (Complex systems)
- Model microscopic social network evolution, show that it has powerlaw assymptotics ${ }^{1}$

Evolving large networks:
 Types of data

Snapshot

- At one point in time

Temporal data

- A log of the evolution
- hard: nobody logged all events in the creation of the internet up to now

Temporal models:

Types of data

- Snapshot:
- Historical information may be missing
- Can we still detect traces of evolution in the network?
- Sometimes yes, e.g. phylogenetic trees

Temporal models: Summary

- Scale of evolution:
- local
- global
- assymptotical
- Types of data:
- Snapshot
- Temporal

Temporal data:

Open problems

- Integration of local and global/assymptotic levels?
- Can we learn dynamics from snapshots?

Conclusions

- Several domains study networks from different points of view (and can learn from each other)
- This tutorial: local level
- Others: global level
- Progress towards integration

Questions?

[^0]: ${ }^{1}$ Ramon \& Nijssen, JMLR2008
 ${ }^{2}$ Nijssen \& Kok 2004

[^1]: \#P : counting problems f such that there is a polynomial-time non-deterministic Turing machine for which upon input x the number of accepting states equalls $f(x) . \# P \supseteq N P$

[^2]: ${ }^{1}$ E.M.Luks, J Computer \& System Sciences 25(1), 1982
 ${ }^{2}$ Horvath \& Ramon, DMKD 21 (3), 2010
 ${ }^{3}$ Horvath \& Ramon, TCS 411, 2010

[^3]: ${ }^{1}$ Alon et al. 1997

[^4]: 1 Shen-Orr et al. Nat. Genet. 2002
 ${ }^{2}$ Bhuiyan et al. ICDM 2012

[^5]: ${ }^{1}$ D. Knuth, Electr. J. Combin 1994
 ${ }^{2}$ Calders et al. DMKD 2011
 ${ }^{3}$ Wang \& Ramon DMKD 2013

[^6]: ${ }^{1}$ Garnett \& Mollan, ECCS 2012
 ${ }^{2}$ Hemelrijk \& Hildenbrandt, ECCS 2012

