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Introduction  
             Network = Objects + Relations 

 
Application Objects Relations 



Introduction  

ÁIn this tutorial: 

ĞWho studies networks? 

ĞNetwork patterns & mining them 

ĞLearning in networks 

ÁFocus on 

ĞLocal patterns 

ĞNot so much on large scale properties 

 



Related ECML/PKDD 2013 
tutorials  

Á[Fri-PM] Algorithmic techniques for modeling and 
mining large graphs (Alan Frieze et al.) 

ĞFocus is more on global properties 

Á[Mon-PM] Discovering Roles and Anomalies in 
Graphs: Theory & Applications (T. Eliassi-Rad et al.) 

ĞAnomaly detection is not covered here 

Á[Fri-AM] Statistically sound pattern discovery (G. 
Webb & W. Hamalainen) 

ĞDifferent statistical aspects 

 



Introduction  
Prerequisites  

Supervised learning:  Given i.i.d. training examples, 
learn a function from example to target value. 

ĞYou could use SVM, DT, NB, IBL, GP, ... or any of 
your favorite supervised techniques 
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Basic concepts -  Graphs 

ÁAn undirected (labeled) graph is a tuple 
G=(V,E,l) where 

ĞV is a set of vertices (nodes) [punten (knopen)] 

ĞὉṖ ὺȟύȿὺȟύᶰὠ is a set of edges [takken]  

Ğ‗ȡὠ᷾Ὁᴼɫ is a labeling function 

ÁUnlabeled graph:  

ĞIf l is constant (all vertices/edges have the same 
label), l may be omitted 



Basic concepts -  Graphs 

ÁA directed graph is a tuple G=(V,E,l) where 

ĞV is a set of vertices (nodes) [punten (knopen)] 

ĞὉṖ ὺȟύȿὺȟύᶰὠ is a set of arcs [bogen] 

Ğ‗ȡὠ᷾Ὁᴼɫ is a labeling function  

ÁFurther notations: 

ĞV(G) is the set of vertices of the graph G 

ĞE(G) is the set of edges / arcs of the graph G 

ĞlG is the labeling function of the graph G 

Ğὔ ὺ ύᶰὠὌȿὺȟύ ᶰὉὌ  is the neighborhood of v 

Ğɝὺ ὔ ὺ is the degree of v 



Basic concepts  
adjacency matrix  

ÁAdjacency matrix of graph Ὃ is a square 
matrix ὃ of dimension ὠὋ ὠὋ  such that 

Ğὃȟ π if ό and ὺ are not connected 

Ğὃȟ ρ if there is an edge between  ό and ὺ 

1 

3 2 

4 
  1 2 3 4  
1 0 1 1 1  
2 1 0 0 0  
3 1 0 0 1  
4 1 0 1 0  



Basic concepts Ƶ Walk/Path  

ÁA walk ὖ between vertices  ὺ and ύ in a graph Ὃ 
is a sequence of vertices όȟόȟȣȟό ᶰ
ὠὋ such that 
Ğό ὺȟ  

Ğό ύ and 

Ğ όȟό ᶰὉὋ  for all ρ Ὥ ὲ ρ. 

ÁThe length of such walk ὖ is ὲ ρ . 

ÁA path is a walk where all vertices are distinct 

ÁSlightly abusing terminology, a path ὖ can also 
be seen as a subgraph of Ὃ 



Basic concepts Ƶ Shortest path  

ÁA shortest path is a path of minimal length. 

ÁDistance Ὠόȟὺ between ό ÁÎÄ ὺ is length 
of shortest path between ό ÁÎÄ ὺ 

ÁThe diameter of Ὃ is 
ὨὭὥάὋ άὥὼȟɴ Ὠόȟὺ 

 

 



Basic concepts Ƶ Diameter  

The diameter of Ὃ is 
ὨὭὥάὋ άὥὼȟɴ Ὠόȟὺ 

 

Many real-world graphs have small diameter. 

ÁV : all persons 

ÁE : an edge connects persons who have ever 
met each other 

ÁMany people have met a local politician who 
met the national prime minister  

 

 

 



Basic concepts Ƶ connected, tree  

ÁA graph G is connected  iff there is a path 
between every pair of vertices v, w Í V(G) 

ÁA connected component of a graph G is a 
maximal connected subgraph of G. 

ÁA graph G is a tree iff there is a unique path 
between every pair of vertices v, w Í V(G) 

ĞIntuition: if the path between two vertices is not 
unique, then there is a cycle. 

 



Basic concepts Ƶ morphisms 

ÁA homomorphism from a graph H into a graph G is 
a mapping j:V(H) ­ V(G) such that 

Ğ ὺᶅȟύᶰὠὌȡὺȟύ ᶰὉὌ ᵼ •ὺȟ•ύ ᶰὉὋ  

Ğ ὺᶅᶰὠὌȡ‗ὺ ‗•ὺ  

Ğ ὺᶅȟύᶰὠὌȡ‗ὺȟύ ‗•ὺȟ•ύ  

ÁAn injective homomorphism is a subgraph 
isomorphism. 

 



Basic concepts Ƶ subgraph 
isomorphism vs homomorphism  

ÁIf there is a homomorphism from H to G, then we 
denote this Ὄ Ὃ 

ÁIf there is a subgraph isomorphism from H to G, 
then we denote this Ὄ Ὃ 

ÁὌḳὋ iff Ὄ Ὃ and Ὃ Ὄ 

A homomorphism, not an isomorphism  



Basic concepts Ƶ morphisms 

ÁAn induced homomorphism from a graph H into a 
graph G is a mapping j:V(H) ­ V(G) such that 

Ğ ὺᶅȟύᶰὠὌȡὺȟύ ᶰὉὌ ᵾ •ὺȟ•ύ ᶰὉὋ  

Ğ ὺᶅᶰὠὌȡ‗ὺ ‗•ὺ  

Ğ ὺᶅȟύᶰὠὌȡ‗ὺȟύ ‗•ὺȟ•ύ  

ÁAn injective induced homomorphism is an induced 
subgraph isomorphism. 

 



Basic concepts Ƶ induced vs 
normal subgraph isomorphism  

Subgraph isomorphism  
NOT induced subgraph isomorphism  

Subgraph isomorphism  
Induced subgraph isomorphism  

Subgraph isomorphism  
Induced subgraph isomorphism  



Basic concepts  
Automorphisms  

ÁAutomorphism = isomorphism of a graph on itself.  

Á |aut(H)| is the size of the automorphism group aut(H).   

ÁFor bounded degree H, one can compute |aut(H)| in 
polynomial time. 

¹×ÎÆÓÌÑÊdddddddddddddddddddddddd̆·ÔÙÆÙÎÔÓ̇ddddddddddddddddddddddddd
̆²Î××Ô×̇ 

Aut(triangle)  has size 2*3=6  



Basic concepts -  Networks  

Pattern =  

small graph 

 

Network =  

big database graph 

 

Y science - fiction  

X 

Likes Friend 
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Network data mining tasks  

Global / 
assymptotic 

Local 

Static 1. Clustering & 
community 
detection 

2. Pattern mining 
3. Edge/vertex 

structure/feature 
learning 

Evolution 5. Generative 
models 

4. Temporal 
learning 



Clustering & community 
detection  

ÁGiven:  

Ğnetwork Ὀ 

ÁFind:  

ĞSet of subsets (clusters, communities) ὠȟὠȟȣȟὠ of ὠὋ   

ÀCovering ὠὋ  or not 

ÀDisjoint or overlapping 

Ğsuch that vertices in same cluster are close 

Àsimilar or connected 

Ğand vertices from different clusters are distant 

Àdissimilar / not connected 

 

Global / 
assymptotic 

Local 

Static 

Evolution 



Clusters & communities 
examples 
ÁFind groups of people who are densily 

connected 

ÁFind groups of people who have a similar 
opinion or behavior (and are connected) 

 

ÁPeople in the same country, company, school, 
domain, ... will often cluster together. 



Pattern mining  

ÁGiven: 
Á network Ὀ 

Á pattern language ὒ  

Á interestingness criterion Ὅȡὒ Ὀᴼ ὸὶόὩȟὪὥὰίὩ  

Á Find 

Ğall patterns ὖᶰὒ for which ὍὖȟὈ   

Global / 
assymptotic 

Local 

Static 

Evolution 



Pattern mining example  

Why do you (YɊ ×ÁÔÃÈ Ȱ*ÕÒÁÓÓÉÃ ÐÁÒËȱ  ɉJP)? 

Y JP 

X 

Likes Friend 

Y JP 

science - fiction  

about  Likes 

Y JP 

science - fiction  

about  Dislikes 

Friend 

Z X Friend Dislikes 

Likes 

Friend 

Y 

JP 

X 

Friend 

genetics  about  

Researches  

Y 
...  

1 3 2 

4 5 



Vertex/edge structure/ 
feature prediction  

ÁGiven: 

Ğnetwork Ὀ,  

Ğexample set ὢ ὠὈ ᷾ὉὈ , target space ὣ 

ĞUnknown distribution ὖ on ὢ ὣ 

ĞTraining set ὤ Ṗὢ ὣ 

ĞTest set ὢ Ṗὢ 

ĞLoss function ὒȡὣᴼᴙ  

ÁFind 

ĞὪ minimizing  %ВὒὪὼ ȟώ  

Global  Local 

Static 

Evolution 



vertex/edge structure/  
feature prediction example  

ÁPredicting on existing objects: 
ĞSocial network: Given a user, his profile, his 

friendship relations, is this user interested in 
chess? 

ĞGiven a pair of friends (X,Y).  Is X planning to send 
a message to Y today? 

ÁPredicting on hypothetical objects: 
ĞGiven a group of people, do they have a common 

friend (not yet in the network) ? 

ĞGiven two people.  do they know each other (even 
though not yet represented in the network)? 

 



Learning from temporal data  

ÁGiven: 

Ğtime-dependent network Ὀ ,  (possibly 

represented by vertices and edges with time 
stamps etc.) 

Ğa loss function ὒȡ꞉ ꞉ᴼᴙ   

ÁFind: 

ĞPrediction Ὀ  of the network (or parts thereof) 

to minimize %ὒὈ ȟὈ  

Global / 
assymptotic 

Local 

Static 

Evolution 



Learning from temporal data 
example 

ÁSocial network:  

ĞWhen will X update his profile? 

ĞWill X and Y become friends? 

ĞWill a common friend of X and Y join the network? 

 

 



Learning generative models  

ÁGenerative model = probability distribution 
mapping a network on a new network, i.e.  

ÁὬȡ꞉ ꞉ᴼ πȟρ s.t. 
Ὀᶅᶰ ȟ꞉В ὬὈȟὈ ρᶰ꞉  

Global / 
assymptotic 

Local 

Static 

Evolution 



Learning generative models  

ÁὬȡ꞉ ꞉ᴼ πȟρ 

ÁGiven: 
ĞA hypothesis space ꞊  of generative models 

ĞAn unknown Ὤɴ ꞊, we assume there was some 
Ὀ  and for ὸ ρȢȢὝ, Ὀ was drawn from ὬὈ ȟẗ 

Ğtime-dependent network Ὀ  

ÁFind: 
ĞGiven loss function ὒȡ꞊ ꞊ᴼᴙ  , a model 
Ὤɴ ꞊ such that %,ÈȟὬ  is minimal 

ĞModel Ὤɴ ꞊ such that È $  has the same 
asymptotic properties as Ὀ . 



Learning generative models  

Á$ÉÆÆÅÒÅÎÃÅ ×ÉÔÈ ȬÌÅÁÒÎÉÎÇ ÆÒÏÍ ÔÅÍÐÏÒÁÌ ÄÁÔÁȱȡ 

ĞNot just predicting a future event, but also global 
properties should be right 

ĞE.g. errors which propagate quickly should be 
avoided.  (e.g. positive feedback loops) 

 



Wnat data do I need?  

ÁMany datasets are undirected unlabeled 
graphs (interaction = yes/no) 

ĞOk for many models focussing on global & 
assymptotic aspects 

ÁHow about correlations between interests of 
friends? 

Ğ4ÈÅÎ ÙÏÕ ÎÅÅÄ ÔÏ ÒÅÃÏÒÄÓ ÐÅÏÐÌÅȭÓ ÉÎÔÅÒÅÓÔÓ 

Ğ)Î ÇÅÎÅÒÁÌȟ ȰÌÏÃÁÌȱ ÍÏÄÅÌÓ ×ÉÌÌ ÎÅÅÄ ÒÉÃÈÅÒ ÄÁÔÁ 
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Relevant fields of research  

ÁStatistical physics 

ÁComplex systems 

ÁMulti agent systems, ants, other simulation 

ÁGrammar induction 

Á(Algorithmic) graph theory 

ÁSpectral graph theory 

Ápattern mining, data mining, machine 
learning 



Statistical physics  

ÁIf we assume a given set of laws, what will 
happen? 

ÁLaw = graph generation model 

ĞErdos-Reny model: 

ĞBarabasi-Albert model 

ÁResult = 

ĞAssymptotic behavior, what happens if there are 
many particles? 

 



Statistical physics  
The Erdos - Reny model  

ÁA random graph from the Erdos-Reny 
distribution Gp(n,p) is constructed as follows: 
ĞLet G be a graph on n vertices. 

ĞFor every pair of vertices {v,w}, connect v and w with 
an edge with probability p. 

ÁA random graph from the Erdos-Reny 
distribution GM(n,M) is constructed as follows: 
ĞLet G be a graph on n vertices.  

ĞChoose randomly M elements from {{v,w} | v,wÍV(G)} 
and draw an edge between the two elements of these 
pairs. 

 



Statistical physics  
Allmost all graphs  

ÁLet Gn be a random graph drawn from 
G(n,p(n)), i.e. p is a function of n.  A predicate 
q (i.e. a boolean function) holds for 
(asymptotically) allmost surely (a.a.s.) if  

limn­¤P(q(Gn)=true) = 1 

ÁSimilar for G(n,M) 

ÁIf no G(n,p) or G(n,M) specified: G(n, ½) by 
ÄÅÆÁÕÌÔ ɉȰÁÌÌÍÏÓÔ ÅÖÅÒÙ ÇÒÁÐÈȱɊȢ 



Statistical physics  
Assymptotic properties  

Á%ȢÇȢ ÔÈÅ ȰÇÉÁÎÔ ÃÏÍÐÏÎÅÎÔȱ 

ĞIf limn­¤np<1, then the largest component of a G(n,p) 
graph is a.a.s. not larger than 3.log(n)/(1-np)2 

ĞIf limn­¤np=1, then the largest component of a G(n,p) 
graph is a.a.s. n2/3 

ĞIf limn­¤np>1, then the largest component of a G(n,p) 
graph is a.a.s. close to bn with b+e-bpn=1 



Statistical physics  
Assymptotic properties  
ÁE.g. connectedness: 

ĞIf limn­¤np/ln(n)<1 then, G(n,p) is a.a.s. disconnected 

ĞIf limn­¤np/ln(n)>1 then, G(n,p) is a.a.s. connected 



Statistical physics  
0- 1 law  

ÁGiven a first order logic formula F over 
graphs, limn­¤P(F(G(n, ½))=true) is either 
1 or 0. 

Á%ȢÇȢ ȰÃÏÎÔÁÉÎÓ Á ÔÒÉÁÎÇÌÅȱȡ ÁÄÄÉÎÇ ÖÅÒÔÉÃÅÓ 
(and hence edges) only increases the 
probability of a triangle; if many vertices, 
the probability gets close to 1.   



Statistical physics  
What can ML and DM learn?  

Á#ÏÍÐÕÔÅ ÆÒÏÍ ÔÈÅ ÍÏÄÅÌ ÔÈÅ ȰÅØÐÅÃÔÅÄ 
ÖÁÌÕÅȱ ÏÆ Á ÐÁÔÔÅÒÎȢ 

Á!Î ȰÉÎÔÅÒÅÓÔÉÎÇ ÐÁÔÔÅÒÎȱ ÉÓ ÏÎÅ ×ÈÉÃÈ ÄÅÖÉÁÔÅÓ 
from the expected value according to the 
model. 

ÁE.g. assume Ὃ is the union of a random graph 
and a clique.  Under what conditions can we 
detect the clique as an abnormally dense 
spot?1 

1 ªrÌrd̆©ÊÙÊÈÙÎÓÌdÇÎÈÑÎÖÚÊØdÎÓd¬«ÀÖÂrdª¨²±vtuẇ 



Complex systems  

ÁModel processes in society 

Ğsystems of interacting individuals 

Ğwhat (often large-scale) properties do we 
observe? 

ÁStudy behavior of systems with such 
properties 

Ğassymptotics 

Ğsimulation of systems 

Ğemerging patterns 

 

 



Complex systems  
What can ML/DM learn?  

ÁTechniques to model application domains 

ĞSocial behavior 

ĞEconomics 

Ğ... 

 



Multi - agent systems, ants, 
simulation  

ÁHow to simulate? 

ÁDo artificial populations offer more value 
than artificial individuals? 

 



Multi - agent systems  
What can ML/DM learn?  

ÁSimulation (sampling a temporal model 
forward in time) 

ÁMulti-agent learning (and the effects of 
changing behavior due to learning) 

ÁGame theory (~statistical physics: Nash 
equilibria) 



Grammar induction  

ÁGenerative model ~ probabilistic grammar 

ĞInitial state 

Ğ(probabilistic) production rules 

ÁGraph grammars 

ĞHyperedge replacement grammars 

ĞVertex replace grammars 



Grammar induction  
What can DM/ML learn?  

ÁGraph grammars: learning generative models 
producing certain probability distributions 
over graphs 



(Algorithmic) graph theory  

ÁAlgorithms on graphs and their complexity 
are well-studied. 

ĞHow to solve graph problems 

ĞComplexity of solving problems 

 



(Algorithmic) graph theory  
What can ML/DM learn?  

ÁPattern matching  

ĞE.g. see part 2 

ÁSupport measures 

Ğe.g. Maximum independent set, Lovasz theta 
function, ... (part 3) 

ÁShortest path algorithms 

ÁSimilarity, maximum common subgraph, ... 

Á... 

 



Relational databases  

ÁA network is a relational database where the 
ÂÉÎÁÒÙ ȰÅÄÇÅȱ ÒÅÌÁÔÉÏÎ ÈÁÓ ÆÏÒÅÉÇÎ ËÅÙÓ ÔÏ 
itself. 

ÁMatching patterns = evaluating queries 



Relational databases  
What can ML/DM learn?  

ÁDatabase theory sometimes shows how to 
match patterns (=evaluate queries), but is 
ÕÓÕÁÌÌÙ ÎÏÔ ÏÐÔÉÍÉÚÅÄ ÆÏÒ ȰÒÅÃÕÒÓÉÖÅȱ ÆÏÒÅÉÇÎ 
keys. 

ÁMany ideas for data structures (e.g. recently 
growing interest in graph database indexing) 

 



Spectral graph theory 1 

ÁStudy of  

Ğthe adjacency matrix of a graph 

Ğits eigenvalues  

Ğthe Laplacian matrix: ὒ Ὀ ὃ with D degree 
matrix (Ὀ  is degree of ὺ and ὃ adjacency 
matrix. 

Ğ... 

 

1 «ÆÓd¨ÍÚÓÌpd̆¸ÕÊÈÙ×ÆÑdÌ×ÆÕÍdÙÍÊÔ×Þ̇d 



Spectral graph theory  
What can ML/DM learn?  

Á,ÁÐÌÁÃÉÁÎ ÄÅÓÃÒÉÂÅÓ ȰÉÎÆÌÕÅÎÃÅ ÆÌÏ×ȱȟ ÕÓÅÄ ÉÎ 

Ğsemi-supervised learning 

Ğmanifold embedding 

Ğ... 

ÁClustering: 

Ğ# of zero eigenvalues = # of connected 
components 

 



Mining, learning  

ÁRelational learning (e.g. SRL) 

ÁLearning in graphs (e.g. MLG) 

ÁUsing logical representations (e.g. ILP) 

Ğ(but adding logic makes problems often 
undecidable) 



Introduction summary (1/3)  
Basic concepts  

ÁGraphs 

Ğlabels 

Ğadjacency matrix 

ÁPaths 

Ğdistance 

ÁMorphisms (matching operators) 

 



Introduction summary (2/3)  
Network data mining tasks  

Global / 
assymptotic 

Local 

Static 1. Clustering & 
community 
detection 

2. Pattern mining 
3. Edge/vertex 

structure/feature 
learning 

Evolution 5. Generative 
models 

4. Temporal 
learning 



Introduction summary (3/3)  
Domains researching networks  

Spectral  
graph theory  

Algorithmic  
graph theory  

Statistical  
physics  

Multi- agent  
systems  

Game theory  

Databases  Complex systems  

Grammar 
induction  

ML & DM 

Networks  

Underlying process  Analysis Techniques  

...  
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Introduction  
What is a pattern?  

ÁPattern = collection of vertices that should 
satisfy some constraints (connections, labels, 
...) 

 

Y science - fiction  

X 

Likes Friend 



Introduction  
A generic pattern miner  

Assume interesting  is anti-monotonic 
ὯᴺπȠ ὅᴺὓὭὲὭάὥὰὖὥὸὸὩὶὲί 

While ὅ  

 Ὓᴺ ὖᶰὅȿὭὲὸὩὶὩίὸὭὲὫὖ  

 ὅ ᴺẕ ὩὼὸὩὲίὭέὲίὖ 
ᶰ  

 ὯᴺὯ ρ 

EndWhile 

ὛέὰόὸὭέὲίᴺẕ Ὓ   



Introduction  
A generic pattern miner  

ÁȰÁÓÓÕÍÅ interesting is anti-ÍÏÎÏÔÏÎÉÃȱ ÁÌÌÏ×Ó ÆÏÒ 
pruning. 

ὭὲὸὩὶὩίὸὭὲὫὋ Ὃ᷈ Ὄ  
ὭὲὸὩὶὩίὸὭὲὫὌ  

ĞCan also mine using non-anti-monotonic criterion (e.g. 
correlated patterns1) 

ÁBreadth-ÆÉÒÓÔ Ȱ!ÐÒÉÏÒÉ-ÓÔÙÌÅȱ 2  
ĞAlso depth-first possible 3  

ÁTo be instantiated: 
ĞMinimalPatterns & Extensions 
ĞInteresting 

1 Zimmermann & DeRaedt, DS2004  
2 Agrawal & Srikant, VLDB1994  
3 Han, Pei, Yin SIGMOD2000  



Introduction  
Enumeration of patterns  

ÁMany approaches are generate-and-test 

ÁHow to generate all graphs subject to anti-
monotonic constraint? 

ĞPractice: mining graph patterns in databases of 
transactions represented with graphs: AGM, 
gSpan, FSG, Gaston2 

Ąuse canonical form 

ĞTheory: polynomial-delay (+evaluation anti-
monotone criterion) 1 

 

 

 

1 Ramon & Nijssen, JMLR2008  
2 Nijssen & Kok 2004  

To be instantiated: 
ĞMinimalPatterns & Extensions 

Ğ Interesting 



Introduction  
Complexity notions  

ÁEnumeration/listing problems ɉȰÆÉÎÄ ÁÌÌ ȢȢȢȱɊ 
may have output ὕ exponential in input size Ὅ. 

ÁPolynomial delay: between solution Ὦ ρ and 
Ὦ at most ὴέὰώὍ time. 

ÁIncremental polynomial time: between 
solution Ὦ ρ and Ὦ at most ὴέὰώὍȟὮ time. 

ÁOutput -polynomial time : total running time 
at most ὴέὰώὍȟὕ  

 



Contents  

ÁIntroduction 

ÁNetworks from different points of view 

ÁPatterns & pattern mining 

ĞIntroduction 

ĞPattern matching 

ĞFrequency 

ĞAdditional remarks 

ÁLearning 

 

To be instantiated: 
ĞMinimalPatterns & Extensions 

Ğ Interesting 



Pattern matching  
Overview  

ÁProblem statement 

ÁHardness results 

ÁTriangle counting 

ÁSmall patterns 

ÁLarger patterns 

ĞCliques 

ĞSampling 

ĞFixed parameter tractability 

 



Pattern matching  
The problem  

ÁGiven: 

ĞA network Ὀ 

ĞA pattern  ὖ 

 

ÁFind 

Ğ(all/some/one/...) embeddings of  ὖ in Ὀ OR 

Ğan aggregate (count, average, ...) computed over 
these embeddings 

 

listing problem  

decision problem  



Pattern matching  
Why do we care?  

ÁBasic operation for both learning and mining 

ÁThere is a literature on basic pattern 
matching, but learning & mining queries have 
specific characteristics 

ĞData is rich, satisfies integrity constraints, ... 

ĞPatterns may have wildcards 

ĞDM/ML is aimed at collecting statistics 



Pattern matching  
Subgraph isomorphism complexity  

ÁPattern ὖ, network Ὀ 

ÁList embeddings ʌȡὖᴼὈ  

ÁΠὖ-complete 

ÁClassic algorithms (backtracking search): 

ὕȿὠὈȿȿ ȿ 

 

 

#P : counting problems f such that there is a polynomial - time non - deterministic Turing  
machine for which upon input x the number of accepting states equalls f(x)  . Πὖṗὔὖ 



Pattern matching  
Heuristic search  

5ÌÌÍÁÎÎȭÓ ÁÌÇÏÒÉÔÈÍ 1  (pattern ὖ, network Ὀ  
 Match(ὖ, Ὀ, ) 
 
Procedure Match (ὖ, Ὀ, partial embedding “) 
    If ὠὖ Ὠέά“  
    then ListSolution(“) 
    else 
 Select ὺɴ ὠὖ Ὠʌέά“  
 Let ὅ ύᶰὠὈȿ ύ άὥώὦὩ ὭάὥὫὩ έὪ ὺ  
 For all  ύᶰὅ do 
  ὓὥὸὧὬὖȟὈȟ“᷾ ὺȟύ   

 
1 Ullmann, JACM 23(1), 1976  



Pattern matching  
Avoiding worst - case complexity  

ÁDatabase of transactions of  graphs 

ĞE.g. many small molecule graphs, RNA 

Ğexploit structure of database graphs, e.g.  

Àatoms have max degree = 6   1  

Àmolecules are often planar (or even outerplanar 2 ) 

Àbounded treewidth 3  

 

 

1 E.M.Luks, J Computer & System Sciences 25(1), 1982  
2 Horvath & Ramon, DMKD 21(3), 2010 
3 Horvath & Ramon, TCS 411, 2010  



Pattern matching  
Avoiding worst - case complexity  

ÁNetwork 

UNo definite structure we can rely on 

UApproximate matching may help but  

ÀSubgraph isomorphism is hard to approximate 

VStructural properties of patterns 

ÀTriangles and other small patterns 

ÀTrees 

VStatistical properties of network 

ÀRandom graphs 

 



Pattern matching  
Triangle counting  

ÁSimple problem: 

ĞGiven: a triangle ὖ and a network Ὀ 

ĞList or count:  all embeddings of ὖ in Ὀ 

Ábut a lot of literature on solving it 



Pattern matching  
Triangle counting  
Á Idea 1: Brute force 

ÁCheck every triple of vertices of Ὃ 

ÁRuntime ὕȿὠὋȿ   



Pattern matching  
Triangle counting  
Á Idea 2: matrix multiplication 1 

ĞLet ὃ be the adjacency matrix of Ὃ 

Ğ ὃ ȟ = # of walks of length ὲ between ό and ὺ 

ĞMatrix multiplication is ὕȿὠὋȿȢ    2 

ĞHence, compute ὸὶὃ ȾσȦ 
1 

3 2 

4 

ὃ

π ρ ρ ρ
ρ π π π
ρ π π ρ
ρ π ρ π

 ὃ

ς σ τ τ
σ π ρ ρ
τ ρ ς σ
τ ρ σ ς

 ὃ

σ π ρ ρ
π ρ ρ ρ
ρ ρ ς ρ
ρ ρ ρ ς

 

ὸὶὃ ȾσȦ = (2+2+2)/6 = 1  

1 Alon et al. 1997  
2 For practical problems, the exponent will be higher  
 



Pattern matching  
Triangle counting  
Á Idea 3: Sparse graphs 

ĞIterate over edges1 : ὕ ȿὉὋȿ  

ĞNodeIterator: Iterate over pairs of neighbors of 
vertices: ὕὨ ȿὉὋȿ with Ὠ  the maximal 
degree of ὋȢ 

 

1 Itai and Rodeh 1978  



Pattern matching  
Triangle counting  
Á Idea 4: Approximation 

ĞSparsification: delete randomly part of the graph, 
count triangles, adjust for sampling 

ĞSampling: perform a number of random attempts, 
adjust for sampling 

ĞPartition graph into parts, solve them, adjust for 
triangles spanning several partitions. 

1 Itai and Rodeh 1978  



Pattern matching  
Triangle counting  

1 Itai and Rodeh 1978  

Alon et al., 1997 Exact ὕȿὠὋȿȢ   

Itai & Radeh, 1978 Exact 
 ὕ ȿὉὋȿ  

Tsourakakis ICDM2008 Exact 

Faloutsos KDD2009 Approx Sparsification 

Avron 2010 Approx Sampling 

Pagh&Tsourakakis, InfProcLet 2012 Approx Partitioning 

Becchetti et al. TKDD 2010 Approx 



Pattern matching  
Counting motifs of size 3 - 5 

ÁMotifs = not necessarily connected induced 
subgraph 

ÁBrute force sometimes still works1 

ÁSampling strategy (e.g. GUISE2): 

ĞConsider an induced graph 

ĞOmit vertex or add neighbor 

ĞMetropolis hastings: adjust for fact that higher-
degree vertices are reached more easily 

1 Shen- Orr et al. Nat. Genet.2002  
2 Bhuiyan et al. ICDM 2012 



Pattern matching  
Sampling motifs with MCMC  

Ὃ 

Motifs  



Pattern matching  
Sampling motifs with MCMC  

Ὃ 

Motifs  

0 

1 

0 

0 

0 

0 

State 



Pattern matching  
Sampling motifs with MCMC  
Ὃ 

Motifs  

0 

1 

0 

0 

0 

0 

State s1  
d(s1)=9  



Pattern matching  
Sampling motifs with MCMC  
Ὃ 

Motifs  

0 

1 

0 

0 

0 

0 

State s1  
d(s1)=9  

Ὕόȟὺ ÍÉÎ
ρ

Ὠό
ȟ
ρ

Ὠὺ
  ÆÏÒ ό ὺ 

Ὕόȟό ρ Ὕόȟὺ 



Pattern matching  
Sampling motifs with MCMC  

Motifs  

1 

1 

0 

1 

1 

0 

ίρ ίς 

ίσ ίτ 



Pattern matching  
Overview  

ÁProblem statement 

ÁHardness results 

ÁTriangle counting 

ÁSmall patterns 

ÁLarger patterns 

ĞCliques 

ĞSampling 

ĞFixed parameter tractability 

 



Pattern matching  
Cliques  

ÁSeveral approaches aim at finding maximal 
cliques 

ÁClique detection for non-directed graphs,  



Clusters & communities  
Bicliques  

ÁBi-partite networks Ὀ ὠ᷾ὠȟὉ with 
ὉṖὠ ὠ. 

ÁBi-clique = ὅ ὅ with ὅṖὠ and ὅṖὠ. 

ÁSeveral variants: 

ĞTile mining (in boolean matrices, unweighted 
networks) 

ĞNon-negative matrix factorization (real-valued 
matrices, weighted networks) 

Advertisement:  
Join ECML/PKDD2013 Tue1B session on Networks (1)  
J.Ramon, P.Miettinen, J.Vreeken, Detecting bicliques in GF[q],  



Pattern matching  
Larger patterns: Sampling  

Pattern matching  
Avoiding worst - case complexity  

ÁNetwork 
UNo definite structure we can rely on 

UApproximate matching may help but 
ÀSubgraph isomorphism is hard to approximate 

VStructural properties of patterns 
ÀTriangles and other small patterns 

ÀTrees 

VStatistical properties of network 
ÀRandom graphs 

 

DONE 

Sampling  



Pattern matching  
Sampling Ƶ strategies  

ÁPartitioning 
ĞMatch pattern in one or all partitions 

ĞAssume that network has rather uniform structure 

ĞScale result to full network 

ĞWorked for triangle counting, harder for larger 
patterns. 

ÁSimulation (e.g. Fürer) 
ĞAttempt several times to find single match 

Ğassume network is sufficiently uniform 

Ğaverage over iterations 



&ĶÒÅÒƦÓ ÁÌÇÏÒÉÔÈÍ1 for pattern 
matching in random graphs  

ÁInput: 

ĞNetwork G drawn from G(n,p) 

ĞPattern H with a decomposition (see later) 

ÁOutput: 

ĞȿὉάὦὌȟὋȿ, the number of images of H in G. 

ÁComplexity: 

ĞExact & worst case: #P-complete 

Ğ%ØÁÃÔ ÆÏÒ ȰÍÏÓÔ ÇÒÁÐÈÓȱȡ ÓÔÉÌÌ ÕÎÔÒÁÃÔÁÂÌÅ 

ĞApproximate for most graphs : this algorithm (FPRAS) 

1 Martin Fürer & Shiva Prasad Kasiviswanathan  Approx /Random 2008  



Pattern matching  
&ĶÒÅÒƦÓ ÁÌÇÏÒÉÔÈÍ -  FPRAS 

ÁFully Polynomial Randomized Approximation 
Schema: 
ĞRandomized algorithms outputting for almost every graph 

in polynomial time a solution with relative error of  e. 

ÁA little more formally: 
ĞAn FPRAS is a randomized algorithm such that there is a 

polynomial p(Ö,Ö) such that for every d there is an n0 such 
that for all n>n0 and e, and for at least a fraction 1-d of the 
graphs of size n, the algorithm outputs in time at most 
p(n,1/e) a solution within a factor 1±e of the correct 
solution.  

 

 



Pattern matching  
Fürer: Basic algorithm  

Function unbiased_estimator(H,G)    [estimates ȿὉάὦὌȟὋȿ] 

 (j,P(j))=Try_to_find_embedding(H,G); 

 IF j=failed  

  THEN return 0; [No embedding found] 

  ELSE return 1/P(j) ;   [return inverse 

EndFunction     probability of j] 

 

Function count_embeddings(H,G,e) 

 c = 0;  s = C/e2; 

 For i = 1 .. s do c=c+unbiased_estimator(H,G); EndFor 

 Return c/s; 

EndFunction 



Pattern matching  
Fürer: Basic algorithm  

ÁCount_embeddings works correctly: 
ĞEvery embedding j  is found with probability P(j) 

by Try_to_find_embeddings(H,G).  With 
probability 1-SjP(j) Try_to_find_embeddings fails 

ĞEvery embedding j, is found once in 1/P(j) calls, 
and in that case, unbiased_estimator returns 
1/P(j).  Hence, j contributes 1 to each call to 
unbiased_estimator, on average. 

ĞHence, on average, unbiased_estimator returns 
the number of embeddings 

ÁTask left: find a good Try_to_find_embedding 



Pattern matching  
Fürer -  strategy  

ÁDecompose vertex set of pattern 

Ámatch one partition at a time until complete 

ÁCompute probability of finding this particular 
solution 

ÁShow the overall algorithm converges 
sufficiently fast. 
ĞThe sum of a (very) large number of identical 

distributions becomes Gaussian.  Standard deviation 
goes down with square of sample 

ĞWhatever the sample size, we can always (with very 
small probability) have a large error 



Pattern matching  
Fürer :  finding embeddings  

INPUT: Ὃ, Ὄ, partition ὠȟὠȟȣȟὠ  of  ὠὋ  

ὢᴺρȠ• ᴺ   

For Ὥ ρȢȢὰ 

   Ὁᴺ •ᶰὉάὦ᷾ ὠȟὋȿ•ṓ•   

   ὢᴺȿὉȿ 

   if ὢ π then terminate and return ÆÁÉÌÅÄȟπ 

   pick an embedding • uniformly at  random from Ὁ  

   8ᴺὢȢὢ   

EndFor 

Return •ȟρȾὢ  

 

 



Fürer -  Sample run (step 1.1)  

Áὢ ρȠ•  

ÁὭ ρ 

 

 

  V1      V2        V3       V4 



Fürer -  Sample run (step 1.2)  

Áὢ ρȠ•  

ÁὭ ρ 

Áὢ Ὁ ψ 

 

 

 

  V1      V2        V3       V4 



Fürer -  Sample run (step 1.3)  

ÁὭ ρ 

Áὢ ψ 

Á• ρȟὥ  

Áὢ ψ  

 

 

 

  V1      V2        V3       V4 

1 

a 

3 

5 

4 

2 

f 

e 
d 

c 

b 

h 

g 



Fürer -  Sample run (step 2.1)  

ÁὭ ς 

Áὢ ψ Ƞ• ρȟὥ ;  

 

 

 

  V1      V2        V3      V4 

1 

a 

3 

5 

4 

2 

f 

e 
d 

c 

b 

h 

g 



Fürer -  Sample run (step 2.2)  

ÁὭ ς 

Áὢ ψ Ƞ• ρȟὥ ;  

Áὢ Ὁ  3.2 φ 

ÁὢᴺὢȢὢ ψz φ τψ 

 

 

 

  V1      V2        V3      V4 

1 

a 

3 

5 

4 

2 

f 

e 
d 

c 

b 

h 

g 



Fürer -  Sample run (step 2.3)  

ÁὭ ς 

Á• ρȟὥ ;  

Áὢ Ὁ  3.2 φ 

Áὢ τψ 

Á•
ρȟὥȟςȟὬȟσȟὧ  

 

 

  V1      V2        V3       V4 

1 

a 

3 

5 

4 

2 

f 

e 
d 

c 

b 

h 

g 



Fürer -  Sample run (step 3.1)  

ÁὭ σ 

Á• ρȟὥȠςȟὬȟσȟὧ ;  

Áὢ τψ  

  V1      V2        V3       V4 

1 

a 

3 

5 

4 

2 

f 

e 
d 

c 

b 

h 

g 



Fürer -  Sample run (step 3.2)  

ÁὭ σ 

Á• ρȟὥȠςȟὬȟσȟὧ ;  

Áὢ τψ  

Áὢ Ὁ ς 

ÁX = X . X3 = 48 * 2 = 96 

  V1      V2       V3       V4 

1 

a 

3 

5 

4 

2 

f 

e 
d 

c 

b 

h 

g 



Fürer -  Sample run (step 3.3)  

ÁὭ σ 

Á• ρȟὥȠςȟὬȟσȟὧ ;  

Áὢ τψ  

Á8 ςȠ 8 ωφ 

Á•
ρȟὥȟςȟὬȟσȟὧȟτȟὪ  

  V1      V2       V3       V4 

1 

a 

3 

5 

4 

2 

f 

e 
d 

c 

b 

h 

g 



Fürer -  Sample run (step 4.1)  

ÁὭ τ 

Á•
ρȟὥȠςȟὬȟσȟὧȟτȟὪ ;  

Áὢ ωφ 

  V1      V2        V3      V4 

1 

a 

3 

5 

4 

2 

f 

e 
d 

c 

b 

h 

g 



Fürer -  Sample run (step 4.2)  

ÁὭ τ 

Á•
ρȟὥȠςȟὬȟσȟὧȟτȟὪ ;  

Áὢ ωφ 

Áὢ ρ 

Á• ρȟὥȟςȟὬȟσȟὧȟ  
τȟὪȟυȟὫ  

 

  V1      V2        V3      V4 

1 

a 

3 

5 

4 

2 

f 

e 
d 

c 

b 

h 

g 



Fürer -  Sample run Ƶ a solution  

ÁX=96;  

Áj={(1,a),(2,h),(3,c),(4,f),(5,g)};  

  V1      V2        V3      V4 

1 

a 

3 

5 

4 

2 

f 

e 
d 

c 

b 

h 

g 



Fürer -  Sample run bis  

ÁὭ σ 

Á• ρȟὥȠςȟὬȟσȟὧ ;  

ÁX3 = |E| = 2 

ÁX = X . X3 = 48 * 2 = 96 

  V1      V2        V3      V4 

1 

a 

3 

5 

4 

2 

f 

e 
d 

c 

b 

h 

g 



Fürer -  Sample run bis  

ÁὭ σ 

Á• ρȟὥȠςȟὬȟσȟὧ ;  

ÁX=96 

Á• ρȟὥȟςȟὬȟσȟὧȟ  
τȟὦ  

 

  V1      V2        V3      V4 

1 

a 

3 

5 

4 

2 

f 

e 
d 

c 

b 

h 

g 



Fürer -  Sample run bis  

ÁὭ σ 

Á•
ρȟὥȠςȟὬȟσȟὧȟτȟὦ ;  

ÁX=96 

ÁX4 = 0 Ą no solution! 

 

 

  V1      V2       V3      V4 

1 

a 

3 

5 

4 

2 

f 

e 
d 

c 

b 

h 

g 



Pattern matching  
&ĶÒÅÒƦÓ ÔÈÅÏÒÅÍ 

ÁImportant: When does it work?   

ÁThe algorithm is an FPRAS (for allmost all G) if: 

Ğ0ÁÒÔÉÔÉÏÎÉÎÇ ÏÆ 6ɉ(Ɋ ÉÓ Á ȰÏÒÄÅÒÅÄ ÂÉÐÁÒÔÉÔÅ 
ÄÅÃÏÍÐÏÓÉÔÉÏÎȱ 

Ğp(n)n2 ­ ¤  

Ğnpu/D4 ­ ¤  

ĞE(H)3n-4p-2 ­ 0 

Where 

    u=max(2,g), g=max{|E(F)|/(|V(F)|-2) | F¢H, |V(F)|²3} 

 

 



Pattern matching  
Fürer: Simplified theorem  

ÁIt works if the count is not too small. 
ÁIntuition: 
ĞThe frequency of very rare events is hard to measure 
ɉÔÈÅ ȰÉÎÔÅÒÅÓÔÉÎÇȱ ÐÁÒÔ ÏÆ ÔÈÅ ÓÁÍÐÌÅ ×ÈÅÒÅ ×Å 
actually observe something, is smaller) 

Ğ4ÈÅ ×ÏÒÓÔ ÃÁÓÅ ÉÓ ×ÈÅÒÅ ÏÎÅ ÄÏÅÓÎȭÔ ËÎÏ× ×ÈÅÔÈÅÒ 
ὉάὦὌȟὋ π or ὉάὦὌȟὋ ρ 

ÁIf we run the algorithm and we find some 
embeddings, our estimate will be rather 
accurate. 

Á)Æ ÎÏ ȰÏÒÄÅÒÅÄ ÂÉÐÁÒÔÉÔÅ ÄÅÃÏÍÐÏÓÉÔÉÏÎȱȟ ÔÈÅÎ ×Å 
can still run this algorithm, but no FPRAS 
guarantee. 



Pattern matching; Fürer  
Ordered bipartite decomposition  

ÁAn ordered bipartite decomposition of H is a 
partition {V1, V2, ... , Vl} of V(H) such that 

ĞEach Vi (i=1..l) is an independent set in H 

Ğ"i, vÍVi $j such that NH(v) Ì Çk<iVkÇ Vj 

ÁSo if a neighbor of a vertex vÍVi is in Vj with 
j>i, then no neighbors of v must be in VÊȭ with 
ÊȭІÉ ÁÎÄ ÊȨ̂ȭȢ 

 



Fürer -  Graphs with a 
decomposition  

ÁCycles longer than 3 (see above running example) 
ÁBounded degree outerplanar graphs without 

triangle 
ÁTrees 
ÁGrids 
Á... 
ÁNot: triangles (but separate proof), ... 



Pattern matching  
Fixed parameter tractability  

Pattern matching  
Avoiding worst - case complexity  

ÁNetwork 
UNo definite structure we can rely on 

UApproximate matching may help but  
ÀSubgraph isomorphism is hard to approximate 

VStructural properties of patterns 
ÀTriangles and other small patterns 

ÀTrees 

VStatistical properties of network 
ÀRandom graphs 

 

DONE 

Fixed  
parameter  
tractability  

DONE 



Pattern matching  
Fixed parameter tractability  

ÁClassic complexity classes: 

ĞInput size: ὲ 

Ğὖ : Polynomial time ὕὲ  for some Ὠ 

ĞAre all problems not in ὖ are hard: not ὕὲ  for 

some Ὠ ?  No, some may still be easier than others 

ÁFixed parameter tractability: 

ĞInput has two parts of sizes: ὲ and Ὧ 

ĞFor Ὧ fixed, the problem is tractable: ὕὲὪὯ   

ĞMay be acceptable if Ὧ is small 

 

 



Pattern matching  
Fixed parameter tractability  

ÁFixed parameter tractability: 
ĞInput has two parts of sizes: ὲ and Ὧ 

ĞFor Ὧ fixed, the problem is tractable: ὕὲὪὯ   

ĞMay be acceptable if Ὧ is small 

ÁPattern matching: 
ĞNetwork: size ὲ 

ĞPattern: size Ὧ 

ĞὯ is usually small, ὲ may be large. 

ÁSo fixed parameter tractability is suitable for 
pattern matching! 



Pattern matching  
Fixed parameter tractability  

ÁMatching trees in network in 

ὕάὯς ὕᶻς  

ĞὯ ὠὖ : pattern size 

Ğά ὉὈ  : network size 

ÁRandomized algorithm1 which works well for 
practical pattern mining2 

 

1 R. Williams, Inf Proc Lett 2009  
2 A. Kibriya & J.Ramon, DMKD 2013  



Pattern matching summary  

ÁBasic operation for mining and learning 

ÁNetworks have no hard structure we can rely on 

UApproximate matching may help but  

ÀSubgraph isomorphism is hard to approximate 

VStructural properties of patterns 

ÀTriangles and other small patterns 

ÀTrees 

VStatistical properties of network 

ÀRandom graphs 

 



Pattern matching Ƶ open 
problems  

ÁMany matching problems for which fixed 
parameter approach could help 

ĞMore complex queries 

ÁImplicit relations 

ÁBig data (not in RAM) 

Ğcombine with indexing 

Ğreduce passes over data (or samples) 

Ğdistributed approaches, ... 



Contents  
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Frequency / support 1 measures 
The problem  

ÁHow frequent is pattern ὖ in network Ὀ? 

Á7ÈÙ ÁÓÓÉÇÎ Á ȰÆÒÅÑÕÅÎÃÙȱ ÔÏ Á ÐÁÔÔÅÒÎȩ 

ĞPopular criterion to measure relevance of pattern 

ÀE.g. 40% of respondents liked both movie m1 and m2.  

ĞWay to represent association rules 

ÀE.g. Of all respondents liking movie m1 and m2, 50% 
also liked m3 (i.e. 40%*50% = 20%) 

ĞMeasure of statistical power 

ÀE.g. We rolled the dice 100 times and observed 40 
times a 6.  It must be biased. 

1 ÇÔÙÍd̆Ë×ÊÖÚÊÓÈÞ̇dÆÓÉd̆ØÚÕÕÔ×Ù̇dÆ×ÊdÚØÊÉpdÔËÙÊÓdÎÓÙÊ×ÈÍÆÓÌÊÇÑÞ 



Support measures  
What do you want?  

ÁCounting objects 

ĞX% of people own a house in the same region where 
they work. 

Ğnetwork unimportant, just count people 

Person2 

House1  

Job2 

Region1 

Person1 Job1 

Person3 Job3 

Region2 
House1  



Support measures  
What do you want?  

ÁCounting objects 

ÁPerforming statistics 

ĞWe rolled the dice 100 
times and observed 40 
times a 6. It is biased!   

 

 

ĞWe rolled the dice.  100 
people   observed a 6. Would 
it be biased? 

Dice 

Roll 

Roll 

Roll 

Roll 

Obs 

Obs 

Obs 

Obs 

Person 

Thrustworthy  

Dice Roll 

Obs 

Obs 

Obs 

Obs 

Person 

Person 

Person 

Person 



Support measures  
What do you want?  

ÁCounting objects 

ÁPerforming statistics 

ÁAssociation rules 

ĞIf X has a friend Y such that Y smokes, then with 
probability a%, X smokes too 

ĞIf X and Y are friends and Y smokes, then with 
probability b%, X smokes too 

ĞDifferent quantor/aggregator placement, probably 
ὥ ὦ 



Support measures  
What do you want?  

ÁWhat do you want? 

ĞCounting objects 

ĞPerforming statistics 

ĞAssociation rules 

Ğ... 

Á)Æ ÙÏÕ ËÎÏ× ×ÈÁÔ ÙÏÕ ×ÁÎÔȟ ÙÏÕȭÒÅ ÃÌÏÓÅÒ ÔÏ 
knowing what to do.  No measure is good in all 
cases. 

 



Support measures  
Overview  

ÁEmbedding-based 
ĞEmbedding count 

ĞImage count 

ÁKey-based 
ĞKey image count 

ĞMin-image 

ÁOverlap-based 
ĞMaximum independent set 

ĞMinimum clique partition 

ĞIntermediate measures and relaxations 



Support measures  
Embedding- based 

ÁEmbedding-count: ȿὉάὦὖȟὈȿ 

ÁImage-count: ὍάὫὖȟὈ  
ὉάὦὖȟὈ ȿὃόὸὖȿȢȿὍάὫὖȟὈȿ 

ÁE.g.: Among all triples (X,Y,Z) such that X and Y 
are friends and Z is a family member of X, the 
fraction of triples where Y knows Z is a%. 

ÁEmbeddings may be concentrated in small part 
of network, e.g. large family where everyone is 
friend with each other.  

ÁNot anti-monotonic, no pattern-mining pruning 



Support measures  
Key- based 

ÁDecide before the start of data mining what is 
ÔÈÅ ÔÙÐÅ ÏÆ ÏÂÊÅÃÔ ÏÆ ÉÎÔÅÒÅÓÔ ɉȰÔÈÅ ÐÒÉÍÁÒÙ 
ËÅÙȱɊ 

ÁE.g. 7Å ÁÒÅ ÉÎÔÅÒÅÓÔÅÄ ÉÎ ȬÆÒÉÅÎÄÓȭ ÒÅÌÁÔÉÏÎÓÈÉÐÓ  

ĞÁϻ ÏÆ ȬÆÒÉÅÎÄÓȭ ÒÅÌÁÔÉÏÎÓ ÁÒÅ ÂÅÔ×ÅÅÎ ÃÏÌÌÅÁÇÕÅÓȢ  

Ğb% of friends have the same mother tongue,  

Ğc% of friend pairs (X,Y) have at least one common 
friend Z,  

Ğ...  

 

 



Support measures  
Key- based 

Á$ÅÃÉÄÅ ÂÅÆÏÒÅ ÔÈÅ ÓÔÁÒÔ ÏÎ ÔÈÅ ȰËÅÙȱȢ 

Á4ÈÅ ȰËÅÙȱ ÉÓ Á ÃÏÍÍÏÎ ÓÕÂÐÁÔÔÅÒÎ ÏÆ ÁÌÌ ÐÁÔÔÅÒÎÓ 
considered. 

ÁThere is a fixed, finite set of objects (all 
ÉÍÁÇÅÓȾÅÍÂÅÄÄÉÎÇÓ ÏÆ ÔÈÅ ȰËÅÙȱɊȟ ÔÈÅ ÎÅÔ×ÏÒË 
relations are not considered. 

ÁEasy to count 

ÁAnti-monotonic (good for pattern mining) 

ÁNot all statistics are valid (e.g. the dice example) 

 

 



Support measures  
Key- based: dice example  

ÁKey = dice observation 

ÁPerforming statistics: 

ĞWe rolled the dice 100 
times and observed 40 
times a 6. It is biased!   

 

 

 

ĞWe rolled the dice.  100 
people   observed a 6. Would 
it be biased? 

dice1  

Roll 

Roll 

Roll 

Roll 

Obs 

Obs 

Obs 

Obs 

Person 

Thrustworthy  

dice1  Roll 

Obs 

Obs 

Obs 

Obs 

Person 

Person 

Person 

Person 

dice1 Roll Obs Person 

Key 

4 images of Key 
eqch showing a 6  

4 images of Key 
eqch showing a 6  



Support measures  
Min- image1 

ÁάὭὲὍάὥὫὩὖȟὈ  
άὭὲɴ “ύ “ᶰὉάὦὖȟὈ ȿ 

ÁAllows for choosing each vertex as 
(singleton) key, giving a lower bound for 
each vertex-key-based frequency 

ÁAnti-monotonic:  
ὖ ὗᵼάὭὲὍάὥὫὩὖȟὈ άὭὲὍάὥὫὩὗȟὈ  

 

 
1 Bringmann & Nijssen. PAKDD 2008  



Support measures  
Overlap - based: model dependence  

ÁThe easiest way to perform statistics is to 
have independent observations. 

ÁHow do we get as much independent 
observations as possible out of a network? 

Á-ÏÄÅÌ ÔÈÅ ÉÎÄÅÐÅÎÄÅÎÃÅÓ ÉÎ ȰÏÖÅÒÌÁÐ ÇÒÁÐÈȱȢ 

 

ÁCaution: selecting independent observations 
is not necessarily a sample from the original 
distribution! 



Support measures  
Overlap - based: Overlap  graph  

ÁOverlap graph Ὃȡ 

ĞὠὋ ὍάὫὖȟὈ  

Ğ ὫȟὫ ᶰὉὋ  if images Ὣ and Ὣ overlap 

ÁWhat is overlap? 
Ğ4×Ï ÏÃÃÕÒÒÅÎÃÅÓ ÏÆ Á ÐÁÔÔÅÒÎ ÏÖÅÒÌÁÐ ÉÆ ×Å ÃÁÎȭÔ ÃÏÎÓÉÄÅÒ 

them independent in the context of the statistics we are 
doing 

ĞVertex-overlap: ὫȟὫ ᶰὉὋ ᵾ ὠὫ ᷊ὠὫ  ɲ

ĞEdge-overlap: ὫȟὫ ᶰὉὋ ᵾ ὉὫ ᷊ὉὫ  ɲ

ĞOther options, e.g. Harmful overlap1 

1 Fiedler & Borgelt MLG 2007  



Support measures  
Overlap - based: What is overlap?  

ÁDice example:  

ĞOverlap if the Roll is the same. 

ĞWe are interested in dice1, so naturally all 
embeddings will contain dice1. 

dice1 

Roll 

Roll 

Roll 

Obs 

Obs 

Obs 

Obs 

Person2 

dice1  Roll Obs Person 

Person1 



Support measures  
Overlap - based: Court example  

ÁVertices: case, judges, (prodeo) lawyers, party 

ÁEdges between case-judge, case-lawyer, 
case-party 

Party1 

Case1 

Lawyer1 

Judge3  

Judge1  

Party3 

Party2 Judge2 Lawyer1 

Lawyer1 

Case2 

Case3 

Case4 



Independent set  

ÁW is an independent set of H iff  

ĞW Ì V(H) 

ĞThere are no v,wÍW such that (v,w)ÍE(H) 

Independent set of size 2                          Independent set of size 1  



Support measures  
Overlap - based: MIS measure  

ÁThe size of a Maximum Independent Set 
(MIS) of the overlap graph Ὃ  of pattern ὖ in 
network Ὀ: ὓὍὛὖȟὈ ὓὍὛὋ  

 

1 Vanetik et al. DMKD 2006  

dice1 

Roll 

Roll 

Roll 

Obs1 

Obs2 

Obs3 

Obs4 

Person2 

dice1 Roll Obs Person 

Person1 

(dice1,obs=6,Person1)  

(dice1,obs=6,Person2)  

(dice1,obs=6,Person2)  

(dice1,obs=3,Person2)  

ὓὍὛὋ σ  P 

D 



Support measures  
Overlap - based: MIS measure  

ÁThe size of a Maximum Independent Set 
(MIS) of the overlap graph Ὃ  of pattern ὖ in 
network Ὀ: ὓὍὛὖȟὈ ὓὍὛὋ  

 

Party1 

Case1 

Lawyer1 

Judge3  

Judge1  

Party3 

Party2 Judge2 Lawyer1 

Lawyer1 

Case2 

Case3 

Case4 

Case1 

Case2 

Case3 

Case4 

Party 
Case1 

Lawyer 

Judge  
P 

D 

ὓὍὛὋ ς  



Support measures  
Overlap - based: more measures  

ÁMaximum independent set idea: 

Jallows to measure overlap and extract 
independent observations 

JAnti-monotonic 

LNP-hard to compute 

LPossibly ignores too much information 

ÁDoes the overlap graph allow for other 
measures? 



Support measures  
Overlap - based: more measures  

ÁRequirements for feasible measure: 

ĞAnti-monotonic in pattern: 

Àὴ ὖᵼὪὴȟὈ ὪὖȟὈ  

ĞMonotonic in network: 

ÀὈ ὈᵼὪὖȟὈ ὪὖȟὈᴂ 

ĞNormalized 

ÀIf there are ὲ independent (non-overlapping) 
observations (overlap graph = ὲ isolated vertices), 
then support is ὲ. 

 



Support measures  
Overlap - based: more measures  

ÁIf Ὢ is a function on the overlap graph, and 
Ὢ is feasible measure, then: 
ὓὍὛὖȟὈ ὪὖȟὈ ὓὅὖὖȟὈ  

Áwhere ὓὅὖὋ  is the minimum clique 
partition number of the overlap graph, 
another NP-hard to compute number. 

 



Support measures  
Overlap - based: more measures  
ÁFortunately, several efficiently computable 

functions are between ὓὍὛ and ὓὅὖ. 

ÁLovasz theta1: ‮ 
Ğfeasible measure2; computable with semidefinite 

program (SDP), which is still rather expensive 

ÁMIS-relaxation3: s 
ĞIs a feasible measure3; computable with linear 

program (LP), hence efficiently. 

ÁWe have ὓὍὛ‮ ί ὓὅὖ 

1 D. Knuth, Electr. J. Combin 1994  
2 Calders et al. DMKD 2011  
3 Wang & Ramon DMKD 2013  



Support measures  
Summary 

Measure Anti-Monotonic? Statistics? Efficient? 

Embedding count U U V 

Image count U U V 

key image count V U V 

min-image V U V 

Overlap-MIS V V U 

Overlap-MCP V ? U 

Overlap-? V V ‮ 

Overlap-s V V V 



Frequency Ƶ open problems  

ÁCombine pattern matching and frequency 

ÁExploit network structure to increase speed 
ɉÍÅÔÈÏÄÓ ÕÐ ÔÏ ÎÏ× ÄÏÎȭÔɊ 



Contents  

ÁIntroduction 

ÁNetworks from different points of view 

ÁPatterns & pattern mining 

ĞIntroduction 

ĞPattern matching 

ĞFrequency 

ĞAdditional remarks 

ÁLearning 

 



Expected number of 
embeddings 

ÁLet Ὀͯ Ὃὲȟὴ, then  

ὉάὦὖȟὈ ὲȿ ȿὴȿ ȿρ ὴ ȿ ȿ 

ÁFor small ὴ: 

ὉάὦὖȟὈ ὲȿ ȿὴȿ ȿ 

ÁFor trees: 

ὉάὦὖȟὈ ὲὴȿ ȿȾὴ 

ĞOften Ὀ is connected and ὲὴ ρ  

 

 



Expected number of 
embeddings 

Á# of expected embeddings grows with 
pattern size for sparse patterns 

ÁDenser patterns may be easier to interprete 

ÁAlso patterns less frequent than expected 
may be of interest. 

ĞThis also happens with itemsets: items may be 
correlated, uncorrelate or anti-correlated 



Contents  

ÁIntroduction 

ÁNetworks from different points of view 

ÁPatterns & pattern mining 

ÁLearning 

ĞIntroduction 

ĞLearning from non-independent examples 

ĞTemporal models 



Learning -  introduction  

ÁPopular learning ideas: 

Ğconnected vertices have similar target value 

Ğcorrelation between features and target value 

Àmore classic feature-to-target supervised learning 

ĞȰ$ÕÁÌ ÓÐÁÃÅȱ ÉÄÅÁȡ ÏÎÅ ÆÅÁÔÕÒÅ ÐÅÒ ÖÅÒÔÅØ Õȟ ÉÓ Χ ÆÏÒ 
vertices connected to that vertex u (else 0).  

ÀIf individuals are important (but not many features 
are known) 



Learning Ƶ introduction  
Similar to your neighbor  

ÁSemi-supervised learning 

ĞE.g.: try to minimize the number of edges with on 
both sides different labels 

ĞE.g. target values tend to average of neighbors. 

Ğ... 

ÁManifold embedding: 

ĞAssign all vertices a coordinate such that 
connected vertices are close together (and not-
connected vertices are far apart) 



Learning Ƶ Introduction  
From feature to target value  

ÁLearning tasks1: 

ĞVertices / edges / ... 

Ğ(existence)prediction / labeling / weighting 
/feature construction / ... 

 

1 ·ÔØØÎdÊÙdÆÑrd̆¹×ÆÓØËÔ×ÒÎÓÌdÌ×ÆÕÍdÉÆÙÆdËÔ×d 
ØÙÆÙÎØÙÎÈÆÑd×ÊÑÆÙÎÔÓÆÑdÑÊÆ×ÓÎÓÌ̇pd¯¦®·dvtuv 



vertex/edge structure/  
feature prediction example  

ÁSupervised learning 

ĞInput:  

Àvertex/edge to predict 

ÀNeighborhood 

ĞOutput: 

ÀLabel or existence 

ÁBut how about the classic i.i.d. assumptions? 



Learning Ƶ Prediction in a 
fixed network  

ÁMost common setting: 

ĞFixed network Ὀ 

Ğtraining and test vertices (edges) in Ὀ 

ÁBut what if the network changes (e.g. an 
influential node is added/deleted)? 

ĞCausal patterns remain the same 

ĞCorrelation patterns may change significantly 

 

1 ·ÔØØÎdÊÙdÆÑrd̆¹×ÆÓØËÔ×ÒÎÓÌdÌ×ÆÕÍdÉÆÙÆdËÔ×d 
ØÙÆÙÎØÙÎÈÆÑd×ÊÑÆÙÎÔÓÆÑdÑÊÆ×ÓÎÓÌ̇pd¯¦®·dvtuv 



Learning Ƶ #ÁÎƦÔ ÄÉÓÔÉÎÇÕÉÓÈ 
individual and its features  

 

 

ὺȡ  

ὺȡ  ὺȡ  

ὺȡ  

ὺȡ  

ὺȡ  

ὺȡ  ὺȡ  ὺȡ  ὺ ȡ  

ὺ ȡ  
ὺ ȡ  ὺ ȡ  

ὺȡȩ ὺȡȩ 

ὺȡȩ 

ὺȡȩ 

ὺȡȩ 

ὺȡȩ ὺȡȩ ὺȡȩ ὺ ȡ  

ὺ ȡ  
ὺ ȡ  

What is the rule?  
Does everyone follow the class of its neighbors?  
Is v1 very influential?  
Is class + if there are green neighbors?  



Learning Ƶ network - specific 
challenges  

ÁSuppose the same rules stay true, but new 
nodes/edge (same distribution).  Distinction 
viral/features may matter 

ÁMovie database: 

ĞPersons from a fixed distribution 

ĞMovies from a fixed distribution 

ĞPersons watch movies  

ĞA few new persons and movies are added 

 

 



Contents  

ÁIntroduction 

ÁNetworks from different points of view 

ÁPatterns & pattern mining 

ÁLearning 

ĞIntroduction 

ĞLearning from non-independent examples 

ĞTemporal models 

 



Learning from dependent 
examples 

ÁMembers of a network are dependent 

ÁTypical assumptions of learning algorithms 
ÄÏÎȭÔ ÈÏÌÄȟ ÉÎ ÐÁÒÔÉÃÕÌÁÒ ÔÈÁÔ 

ĞExamples are independently and identically drawn 
(i.i.d.) 

 



Movie rating example  

ÁMovie rating 

ĞObj: Movie (genre, duration, actor popularity) 

ĞObj: Person (age, gender, ...) 

ĞObj: Screening (location, time, ...) 

ĞTarget: Rating 

ÁSeveral ratings per person / movie / cinema 



Lawsuit example  

ÁLawsuits: 

ĞObj: Person  

ĞObj: Lawyer 

ĞObj: Judge 

ĞExample: case 

ĞTarget: outcome 

ÁJudges handle several cases, persons may be 
involved in several cases 



Learning from pattern 
features  

ÁEach example is an embedding of a pattern 

ĞMovieRating: (Movie, Person, Cinema, Rating) 

ĞLawsuit: (Case, Person, Judge, Outcome) 

ÁExamples overlap:  

Ğ3ÅÅ ÁÌÓÏ ȰÓÕÐÐÏÒÔ ÍÅÁÓÕÒÅÓȱ 

ĞWe call them networked examples 

 



Representing networked 
examples 

ÁSeveral alternative equivalent representations: 

ĞEvery example is represented with a vertex 
connected to the participating objects 

ĞEvery example is represented with a hyperedge, 
containing all participating + all relevant objects. 



Learning from networked / 
dependent examples  

ÁTasks: 

1. Elementary statistics, confidence intervals, 
hypothesis testing, ... 

2. Learning, generalization guarantees 

ÁModels: 

a. bounding covariance between dependent 
examples 

b. modeling how examples are dependent 

ÁCombinations: 1a and 2b 



Bounding covariance of examples 
and hypothesis testing  

Á(Wang, Neville, Gallagher, Eliassi-Rad, 
ECML/PKDD-2011) :  

Ğvertices are examples 

Ğedges indicate a bounded covariance 

Ásafe correction for statistical significance tests 

Ásafe upper bound for variance on sums etc. 

ÁUpper bound for variance can be  an important 
tool in proving generalization guarantees. 



Bounding covariance of 
examples 

Áὲ independent random variables ὢ  with 
variance „  : Variance on В ὢ is ὲ„  

Áὲ identical random variables ὢ  with 
variance „  :  Variance on В ὢ is ὲ„  

 



Bounding covariance of 
examples 

Áὲ ÎÅÔ×ÏÒËÅÄ ÅØÁÍÐÌÅÓ 
ĞNo edge between ὢ and ὢ = independent : 

Ὁ ὢ Ὁὢ ὢ Ὁὢ π 

ĞEdge ὢȟὢ ᶰὉὈ  between ὢ and ὢ = bounded 

covariance Ὁ ὢ Ὁὢ ὢ Ὁὢ ‎ 

ÁVariance on В ὢ is 

Ὁ ὢ Ὁὢ ὢ Ὁὢ

ȟ

ὉὈ ‎ ὲ„  



Learning from networked / 
dependent examples  

ÁTasks: 

1. Elementary statistics, confidence intervals, 
hypothesis testing, ... 

2. Learning, generalization guarantees 

ÁModels: 

a. bounding covariance between dependent 
examples 

b. modeling how examples are dependent 

ÁCombinations: 1a and 2b 



Variance, significance, 
effective sample size  

ÁEffective sample size of a given set of 
networked examples is ὲ iff it contains as 
much information (for the task at hand, e.g. 
learning or hypothesis testing) as a set of ὲ 
i.i.d. examples1. 

 

1 Slightly different conventions/definitions exist  



Probably approximately 
correct (PAC) structure  

ÁPAC: with probability ρ  the loss is ‏
bounded by e where 

‏ Ὡὼὴ
άὛ‭

ὅ ὅ‭
 

Áwith άὛ the effective sample size of 
training set Ὓ. Higher άὛ = better 

Ái.i.d. sample Ὓ, άὛ ȿὛȿ = best possible 

 



Independence assumptions  

ÁWeaker form of i.i.d 

ÁBut not arbitrary  

Ğarbitrary Ý no bound possible 

 

 

 



Independence assumptions:  
i.i.d. vertex features  

ÁEdges are fixed.   

ÁThe features of every vertex are drawn i.i.d. (not 
even depending on the edges). 

1. Choose edges  
(possibly very  
dependently)  

2. Draw vertex  
ËÊÆÙÚ×ÊØdlÉÔÓ̃Ù 
look at edges)  



Independence  
assumptions applied  
YES 

ÁSneak preview 
 

 

ÁRandomized trial: patients 
are assigned randomly to 
set of treatment params 

 

ÁCases are assigned 
randomly to judges 

NO 

ÁSelect movie based on 
genre, or with friends 

 

ÁPatients go to closeby 
hospital or to hospital 
recommended by their 
friends 

 

Á Judges handle cases 
connected to their existing 
cases  



Training set measures  

ÁOverlap (hyper)graph Ὃ  

Ğvertices are objects 

Ğ(hyper)edges are examples 

ÁTraining set ὛṖὉὋ  

ÁMeasures ÍὛ of training set ÍὛȡ 
άὥὼὲ ȟὲ ὲ ‮ ▼ ὲ  



Approach 1:  
Equal - weight (EQW)  

ÍÁØ▪╔╠╦ȟ▪╘╝╓ ὲ ‮ ▼ ὲ  

 

(Janson 2004) & (Usunier 2005) 

 θ‏ Ὡὼὴ
ὲ ‭

ὅ ὅ‭
 

With ὲ
ȿȿ
ᶻ  

and …ᶻὋ  fractional edge chromatic 
number 

 

all examples get same weight  

 

…ᶻὋ σ Ƞ ὲ
φ

σ
ς  

 


