
LEARNING AND MINING WITH
NETWORK- STRUCTURED DATA

Jan Ramon
ECML 2013

Contents

ÁIntroduction

ÁNetworks from different points of view

ÁPatterns & pattern mining

ÁLearning

Introduction
 Network = Objects + Relations

Application Objects Relations

Introduction

ÁIn this tutorial:

ĞWho studies networks?

ĞNetwork patterns & mining them

ĞLearning in networks

ÁFocus on

ĞLocal patterns

ĞNot so much on large scale properties

Related ECML/PKDD 2013
tutorials

Á[Fri-PM] Algorithmic techniques for modeling and
mining large graphs (Alan Frieze et al.)

ĞFocus is more on global properties

Á[Mon-PM] Discovering Roles and Anomalies in
Graphs: Theory & Applications (T. Eliassi-Rad et al.)

ĞAnomaly detection is not covered here

Á[Fri-AM] Statistically sound pattern discovery (G.
Webb & W. Hamalainen)

ĞDifferent statistical aspects

Introduction
Prerequisites

Supervised learning: Given i.i.d. training examples,
learn a function from example to target value.

ĞYou could use SVM, DT, NB, IBL, GP, ... or any of
your favorite supervised techniques

Contents

ÁIntroduction

ÁNetworks from different points of view

ÁPatterns & pattern mining

ÁLearning

Contents

ÁIntroduction

ÁNetworks from different points of view

ĞBasic concepts

ĞData mining tasks

ĞRelevant fields of research

ÁPatterns & pattern mining

ÁLearning

Basic concepts - Graphs

ÁAn undirected (labeled) graph is a tuple
G=(V,E,l) where

ĞV is a set of vertices (nodes) [punten (knopen)]

ĞὉṖ ὺȟύȿὺȟύᶰὠ is a set of edges [takken]

Ğ‗ȡὠ᷾Ὁᴼɫ is a labeling function

ÁUnlabeled graph:

ĞIf l is constant (all vertices/edges have the same
label), l may be omitted

Basic concepts - Graphs

ÁA directed graph is a tuple G=(V,E,l) where

ĞV is a set of vertices (nodes) [punten (knopen)]

ĞὉṖ ὺȟύȿὺȟύᶰὠ is a set of arcs [bogen]

Ğ‗ȡὠ᷾Ὁᴼɫ is a labeling function

ÁFurther notations:

ĞV(G) is the set of vertices of the graph G

ĞE(G) is the set of edges / arcs of the graph G

ĞlG is the labeling function of the graph G

Ğὔ ὺ ύᶰὠὌȿὺȟύ ᶰὉὌ is the neighborhood of v

Ğɝὺ ὔ ὺ is the degree of v

Basic concepts
adjacency matrix

ÁAdjacency matrix of graph Ὃ is a square
matrix ὃ of dimension ὠὋ ὠὋ such that

Ğὃȟ π if ό and ὺ are not connected

Ğὃȟ ρ if there is an edge between ό and ὺ

1

3 2

4
 1 2 3 4
1 0 1 1 1
2 1 0 0 0
3 1 0 0 1
4 1 0 1 0

Basic concepts Ƶ Walk/Path

ÁA walk ὖ between vertices ὺ and ύ in a graph Ὃ
is a sequence of vertices όȟόȟȣȟό ᶰ
ὠὋ such that
Ğό ὺȟ

Ğό ύ and

Ğ όȟό ᶰὉὋ for all ρ Ὥ ὲ ρ.

ÁThe length of such walk ὖ is ὲ ρ .

ÁA path is a walk where all vertices are distinct

ÁSlightly abusing terminology, a path ὖ can also
be seen as a subgraph of Ὃ

Basic concepts Ƶ Shortest path

ÁA shortest path is a path of minimal length.

ÁDistance Ὠόȟὺ between ό ÁÎÄ ὺ is length
of shortest path between ό ÁÎÄ ὺ

ÁThe diameter of Ὃ is
ὨὭὥάὋ άὥὼȟɴ Ὠόȟὺ

Basic concepts Ƶ Diameter

The diameter of Ὃ is
ὨὭὥάὋ άὥὼȟɴ Ὠόȟὺ

Many real-world graphs have small diameter.

ÁV : all persons

ÁE : an edge connects persons who have ever
met each other

ÁMany people have met a local politician who
met the national prime minister

Basic concepts Ƶ connected, tree

ÁA graph G is connected iff there is a path
between every pair of vertices v, w Í V(G)

ÁA connected component of a graph G is a
maximal connected subgraph of G.

ÁA graph G is a tree iff there is a unique path
between every pair of vertices v, w Í V(G)

ĞIntuition: if the path between two vertices is not
unique, then there is a cycle.

Basic concepts Ƶ morphisms

ÁA homomorphism from a graph H into a graph G is
a mapping j:V(H) V(G) such that

Ğ ὺᶅȟύᶰὠὌȡὺȟύ ᶰὉὌ ᵼ •ὺȟ•ύ ᶰὉὋ

Ğ ὺᶅᶰὠὌȡ‗ὺ ‗•ὺ

Ğ ὺᶅȟύᶰὠὌȡ‗ὺȟύ ‗•ὺȟ•ύ

ÁAn injective homomorphism is a subgraph
isomorphism.

Basic concepts Ƶ subgraph
isomorphism vs homomorphism

ÁIf there is a homomorphism from H to G, then we
denote this Ὄ Ὃ

ÁIf there is a subgraph isomorphism from H to G,
then we denote this Ὄ Ὃ

ÁὌḳὋ iff Ὄ Ὃ and Ὃ Ὄ

A homomorphism, not an isomorphism

Basic concepts Ƶ morphisms

ÁAn induced homomorphism from a graph H into a
graph G is a mapping j:V(H) V(G) such that

Ğ ὺᶅȟύᶰὠὌȡὺȟύ ᶰὉὌ ᵾ •ὺȟ•ύ ᶰὉὋ

Ğ ὺᶅᶰὠὌȡ‗ὺ ‗•ὺ

Ğ ὺᶅȟύᶰὠὌȡ‗ὺȟύ ‗•ὺȟ•ύ

ÁAn injective induced homomorphism is an induced
subgraph isomorphism.

Basic concepts Ƶ induced vs
normal subgraph isomorphism

Subgraph isomorphism
NOT induced subgraph isomorphism

Subgraph isomorphism
Induced subgraph isomorphism

Subgraph isomorphism
Induced subgraph isomorphism

Basic concepts
Automorphisms

ÁAutomorphism = isomorphism of a graph on itself.

Á |aut(H)| is the size of the automorphism group aut(H).

ÁFor bounded degree H, one can compute |aut(H)| in
polynomial time.

¹×ÎÆÓÌÑÊdddddddddddddddddddddddd̆·ÔÙÆÙÎÔÓ̇ddddddddddddddddddddddddd
̆²Î××Ô×̇

Aut(triangle) has size 2*3=6

Basic concepts - Networks

Pattern =

small graph

Network =

big database graph

Y science - fiction

X

Likes Friend

Contents

ÁIntroduction

ÁNetworks from different points of view

ĞBasic concepts

ĞData mining tasks

ĞRelevant fields of research

ÁPatterns & pattern mining

ÁLearning

Network data mining tasks

Global /
assymptotic

Local

Static 1. Clustering &
community
detection

2. Pattern mining
3. Edge/vertex

structure/feature
learning

Evolution 5. Generative
models

4. Temporal
learning

Clustering & community
detection

ÁGiven:

Ğnetwork Ὀ

ÁFind:

ĞSet of subsets (clusters, communities) ὠȟὠȟȣȟὠ of ὠὋ

ÀCovering ὠὋ or not

ÀDisjoint or overlapping

Ğsuch that vertices in same cluster are close

Àsimilar or connected

Ğand vertices from different clusters are distant

Àdissimilar / not connected

Global /
assymptotic

Local

Static

Evolution

Clusters & communities
examples
ÁFind groups of people who are densily

connected

ÁFind groups of people who have a similar
opinion or behavior (and are connected)

ÁPeople in the same country, company, school,
domain, ... will often cluster together.

Pattern mining

ÁGiven:
Á network Ὀ

Á pattern language ὒ

Á interestingness criterion Ὅȡὒ Ὀᴼ ὸὶόὩȟὪὥὰίὩ

Á Find

Ğall patterns ὖᶰὒ for which ὍὖȟὈ

Global /
assymptotic

Local

Static

Evolution

Pattern mining example

Why do you (YɊ ×ÁÔÃÈ Ȱ*ÕÒÁÓÓÉÃ ÐÁÒËȱ ɉJP)?

Y JP

X

Likes Friend

Y JP

science - fiction

about Likes

Y JP

science - fiction

about Dislikes

Friend

Z X Friend Dislikes

Likes

Friend

Y

JP

X

Friend

genetics about

Researches

Y
...

1 3 2

4 5

Vertex/edge structure/
feature prediction

ÁGiven:

Ğnetwork Ὀ,

Ğexample set ὢ ὠὈ ᷾ὉὈ , target space ὣ

ĞUnknown distribution ὖ on ὢ ὣ

ĞTraining set ὤ Ṗὢ ὣ

ĞTest set ὢ Ṗὢ

ĞLoss function ὒȡὣᴼᴙ

ÁFind

ĞὪ minimizing %ВὒὪὼ ȟώ

Global Local

Static

Evolution

vertex/edge structure/
feature prediction example

ÁPredicting on existing objects:
ĞSocial network: Given a user, his profile, his

friendship relations, is this user interested in
chess?

ĞGiven a pair of friends (X,Y). Is X planning to send
a message to Y today?

ÁPredicting on hypothetical objects:
ĞGiven a group of people, do they have a common

friend (not yet in the network) ?

ĞGiven two people. do they know each other (even
though not yet represented in the network)?

Learning from temporal data

ÁGiven:

Ğtime-dependent network Ὀ , (possibly

represented by vertices and edges with time
stamps etc.)

Ğa loss function ὒȡ꞉ ꞉ᴼᴙ

ÁFind:

ĞPrediction Ὀ of the network (or parts thereof)

to minimize %ὒὈ ȟὈ

Global /
assymptotic

Local

Static

Evolution

Learning from temporal data
example

ÁSocial network:

ĞWhen will X update his profile?

ĞWill X and Y become friends?

ĞWill a common friend of X and Y join the network?

Learning generative models

ÁGenerative model = probability distribution
mapping a network on a new network, i.e.

ÁὬȡ꞉ ꞉ᴼ πȟρ s.t.
Ὀᶅᶰ ȟ꞉В ὬὈȟὈ ρᶰ꞉

Global /
assymptotic

Local

Static

Evolution

Learning generative models

ÁὬȡ꞉ ꞉ᴼ πȟρ

ÁGiven:
ĞA hypothesis space ꞊ of generative models

ĞAn unknown Ὤɴ ꞊, we assume there was some
Ὀ and for ὸ ρȢȢὝ, Ὀ was drawn from ὬὈ ȟẗ

Ğtime-dependent network Ὀ

ÁFind:
ĞGiven loss function ὒȡ꞊ ꞊ᴼᴙ , a model
Ὤɴ ꞊ such that %,ÈȟὬ is minimal

ĞModel Ὤɴ ꞊ such that È $ has the same
asymptotic properties as Ὀ .

Learning generative models

Á$ÉÆÆÅÒÅÎÃÅ ×ÉÔÈ ȬÌÅÁÒÎÉÎÇ ÆÒÏÍ ÔÅÍÐÏÒÁÌ ÄÁÔÁȱȡ

ĞNot just predicting a future event, but also global
properties should be right

ĞE.g. errors which propagate quickly should be
avoided. (e.g. positive feedback loops)

Wnat data do I need?

ÁMany datasets are undirected unlabeled
graphs (interaction = yes/no)

ĞOk for many models focussing on global &
assymptotic aspects

ÁHow about correlations between interests of
friends?

Ğ4ÈÅÎ ÙÏÕ ÎÅÅÄ ÔÏ ÒÅÃÏÒÄÓ ÐÅÏÐÌÅȭÓ ÉÎÔÅÒÅÓÔÓ

Ğ)Î ÇÅÎÅÒÁÌȟ ȰÌÏÃÁÌȱ ÍÏÄÅÌÓ ×ÉÌÌ ÎÅÅÄ ÒÉÃÈÅÒ ÄÁÔÁ

Contents

ÁIntroduction

ÁNetworks from different points of view

ĞBasic concepts

ĞData mining tasks

ĞRelevant fields of research

ÁPatterns & pattern mining

ÁLearning

Relevant fields of research

ÁStatistical physics

ÁComplex systems

ÁMulti agent systems, ants, other simulation

ÁGrammar induction

Á(Algorithmic) graph theory

ÁSpectral graph theory

Ápattern mining, data mining, machine
learning

Statistical physics

ÁIf we assume a given set of laws, what will
happen?

ÁLaw = graph generation model

ĞErdos-Reny model:

ĞBarabasi-Albert model

ÁResult =

ĞAssymptotic behavior, what happens if there are
many particles?

Statistical physics
The Erdos - Reny model

ÁA random graph from the Erdos-Reny
distribution Gp(n,p) is constructed as follows:
ĞLet G be a graph on n vertices.

ĞFor every pair of vertices {v,w}, connect v and w with
an edge with probability p.

ÁA random graph from the Erdos-Reny
distribution GM(n,M) is constructed as follows:
ĞLet G be a graph on n vertices.

ĞChoose randomly M elements from {{v,w} | v,wÍV(G)}
and draw an edge between the two elements of these
pairs.

Statistical physics
Allmost all graphs

ÁLet Gn be a random graph drawn from
G(n,p(n)), i.e. p is a function of n. A predicate
q (i.e. a boolean function) holds for
(asymptotically) allmost surely (a.a.s.) if

limn¤P(q(Gn)=true) = 1

ÁSimilar for G(n,M)

ÁIf no G(n,p) or G(n,M) specified: G(n, ½) by
ÄÅÆÁÕÌÔ ɉȰÁÌÌÍÏÓÔ ÅÖÅÒÙ ÇÒÁÐÈȱɊȢ

Statistical physics
Assymptotic properties

Á%ȢÇȢ ÔÈÅ ȰÇÉÁÎÔ ÃÏÍÐÏÎÅÎÔȱ

ĞIf limn¤np<1, then the largest component of a G(n,p)
graph is a.a.s. not larger than 3.log(n)/(1-np)2

ĞIf limn¤np=1, then the largest component of a G(n,p)
graph is a.a.s. n2/3

ĞIf limn¤np>1, then the largest component of a G(n,p)
graph is a.a.s. close to bn with b+e-bpn=1

Statistical physics
Assymptotic properties
ÁE.g. connectedness:

ĞIf limn¤np/ln(n)<1 then, G(n,p) is a.a.s. disconnected

ĞIf limn¤np/ln(n)>1 then, G(n,p) is a.a.s. connected

Statistical physics
0- 1 law

ÁGiven a first order logic formula F over
graphs, limn¤P(F(G(n, ½))=true) is either
1 or 0.

Á%ȢÇȢ ȰÃÏÎÔÁÉÎÓ Á ÔÒÉÁÎÇÌÅȱȡ ÁÄÄÉÎÇ ÖÅÒÔÉÃÅÓ
(and hence edges) only increases the
probability of a triangle; if many vertices,
the probability gets close to 1.

Statistical physics
What can ML and DM learn?

Á#ÏÍÐÕÔÅ ÆÒÏÍ ÔÈÅ ÍÏÄÅÌ ÔÈÅ ȰÅØÐÅÃÔÅÄ
ÖÁÌÕÅȱ ÏÆ Á ÐÁÔÔÅÒÎȢ

Á!Î ȰÉÎÔÅÒÅÓÔÉÎÇ ÐÁÔÔÅÒÎȱ ÉÓ ÏÎÅ ×ÈÉÃÈ ÄÅÖÉÁÔÅÓ
from the expected value according to the
model.

ÁE.g. assume Ὃ is the union of a random graph
and a clique. Under what conditions can we
detect the clique as an abnormally dense
spot?1

1 ªrÌrd̆©ÊÙÊÈÙÎÓÌdÇÎÈÑÎÖÚÊØdÎÓd¬«ÀÖÂrdª¨²±vtuẇ

Complex systems

ÁModel processes in society

Ğsystems of interacting individuals

Ğwhat (often large-scale) properties do we
observe?

ÁStudy behavior of systems with such
properties

Ğassymptotics

Ğsimulation of systems

Ğemerging patterns

Complex systems
What can ML/DM learn?

ÁTechniques to model application domains

ĞSocial behavior

ĞEconomics

Ğ...

Multi - agent systems, ants,
simulation

ÁHow to simulate?

ÁDo artificial populations offer more value
than artificial individuals?

Multi - agent systems
What can ML/DM learn?

ÁSimulation (sampling a temporal model
forward in time)

ÁMulti-agent learning (and the effects of
changing behavior due to learning)

ÁGame theory (~statistical physics: Nash
equilibria)

Grammar induction

ÁGenerative model ~ probabilistic grammar

ĞInitial state

Ğ(probabilistic) production rules

ÁGraph grammars

ĞHyperedge replacement grammars

ĞVertex replace grammars

Grammar induction
What can DM/ML learn?

ÁGraph grammars: learning generative models
producing certain probability distributions
over graphs

(Algorithmic) graph theory

ÁAlgorithms on graphs and their complexity
are well-studied.

ĞHow to solve graph problems

ĞComplexity of solving problems

(Algorithmic) graph theory
What can ML/DM learn?

ÁPattern matching

ĞE.g. see part 2

ÁSupport measures

Ğe.g. Maximum independent set, Lovasz theta
function, ... (part 3)

ÁShortest path algorithms

ÁSimilarity, maximum common subgraph, ...

Á...

Relational databases

ÁA network is a relational database where the
ÂÉÎÁÒÙ ȰÅÄÇÅȱ ÒÅÌÁÔÉÏÎ ÈÁÓ ÆÏÒÅÉÇÎ ËÅÙÓ ÔÏ
itself.

ÁMatching patterns = evaluating queries

Relational databases
What can ML/DM learn?

ÁDatabase theory sometimes shows how to
match patterns (=evaluate queries), but is
ÕÓÕÁÌÌÙ ÎÏÔ ÏÐÔÉÍÉÚÅÄ ÆÏÒ ȰÒÅÃÕÒÓÉÖÅȱ ÆÏÒÅÉÇÎ
keys.

ÁMany ideas for data structures (e.g. recently
growing interest in graph database indexing)

Spectral graph theory 1

ÁStudy of

Ğthe adjacency matrix of a graph

Ğits eigenvalues

Ğthe Laplacian matrix: ὒ Ὀ ὃ with D degree
matrix (Ὀ is degree of ὺ and ὃ adjacency
matrix.

Ğ...

1 «ÆÓd¨ÍÚÓÌpd̆¸ÕÊÈÙ×ÆÑdÌ×ÆÕÍdÙÍÊÔ×Þ̇d

Spectral graph theory
What can ML/DM learn?

Á,ÁÐÌÁÃÉÁÎ ÄÅÓÃÒÉÂÅÓ ȰÉÎÆÌÕÅÎÃÅ ÆÌÏ×ȱȟ ÕÓÅÄ ÉÎ

Ğsemi-supervised learning

Ğmanifold embedding

Ğ...

ÁClustering:

Ğ# of zero eigenvalues = # of connected
components

Mining, learning

ÁRelational learning (e.g. SRL)

ÁLearning in graphs (e.g. MLG)

ÁUsing logical representations (e.g. ILP)

Ğ(but adding logic makes problems often
undecidable)

Introduction summary (1/3)
Basic concepts

ÁGraphs

Ğlabels

Ğadjacency matrix

ÁPaths

Ğdistance

ÁMorphisms (matching operators)

Introduction summary (2/3)
Network data mining tasks

Global /
assymptotic

Local

Static 1. Clustering &
community
detection

2. Pattern mining
3. Edge/vertex

structure/feature
learning

Evolution 5. Generative
models

4. Temporal
learning

Introduction summary (3/3)
Domains researching networks

Spectral
graph theory

Algorithmic
graph theory

Statistical
physics

Multi- agent
systems

Game theory

Databases Complex systems

Grammar
induction

ML & DM

Networks

Underlying process Analysis Techniques

...

Contents

ÁIntroduction

ÁNetworks from different points of view

ÁPatterns & pattern mining

ĞIntroduction

ĞPattern matching

ĞFrequency

ĞAdditional remarks

ÁLearning

Introduction
What is a pattern?

ÁPattern = collection of vertices that should
satisfy some constraints (connections, labels,
...)

Y science - fiction

X

Likes Friend

Introduction
A generic pattern miner

Assume interesting is anti-monotonic
ὯᴺπȠ ὅᴺὓὭὲὭάὥὰὖὥὸὸὩὶὲί

While ὅ

 Ὓᴺ ὖᶰὅȿὭὲὸὩὶὩίὸὭὲὫὖ

 ὅ ᴺẕ ὩὼὸὩὲίὭέὲίὖ
ᶰ

 ὯᴺὯ ρ

EndWhile

ὛέὰόὸὭέὲίᴺẕ Ὓ

Introduction
A generic pattern miner

ÁȰÁÓÓÕÍÅ interesting is anti-ÍÏÎÏÔÏÎÉÃȱ ÁÌÌÏ×Ó ÆÏÒ
pruning.

ὭὲὸὩὶὩίὸὭὲὫὋ Ὃ᷈ Ὄ
ὭὲὸὩὶὩίὸὭὲὫὌ

ĞCan also mine using non-anti-monotonic criterion (e.g.
correlated patterns1)

ÁBreadth-ÆÉÒÓÔ Ȱ!ÐÒÉÏÒÉ-ÓÔÙÌÅȱ 2
ĞAlso depth-first possible 3

ÁTo be instantiated:
ĞMinimalPatterns & Extensions
ĞInteresting

1 Zimmermann & DeRaedt, DS2004
2 Agrawal & Srikant, VLDB1994
3 Han, Pei, Yin SIGMOD2000

Introduction
Enumeration of patterns

ÁMany approaches are generate-and-test

ÁHow to generate all graphs subject to anti-
monotonic constraint?

ĞPractice: mining graph patterns in databases of
transactions represented with graphs: AGM,
gSpan, FSG, Gaston2

Ąuse canonical form

ĞTheory: polynomial-delay (+evaluation anti-
monotone criterion) 1

1 Ramon & Nijssen, JMLR2008
2 Nijssen & Kok 2004

To be instantiated:
ĞMinimalPatterns & Extensions

Ğ Interesting

Introduction
Complexity notions

ÁEnumeration/listing problems ɉȰÆÉÎÄ ÁÌÌ ȢȢȢȱɊ
may have output ὕ exponential in input size Ὅ.

ÁPolynomial delay: between solution Ὦ ρ and
Ὦ at most ὴέὰώὍ time.

ÁIncremental polynomial time: between
solution Ὦ ρ and Ὦ at most ὴέὰώὍȟὮ time.

ÁOutput -polynomial time : total running time
at most ὴέὰώὍȟὕ

Contents

ÁIntroduction

ÁNetworks from different points of view

ÁPatterns & pattern mining

ĞIntroduction

ĞPattern matching

ĞFrequency

ĞAdditional remarks

ÁLearning

To be instantiated:
ĞMinimalPatterns & Extensions

Ğ Interesting

Pattern matching
Overview

ÁProblem statement

ÁHardness results

ÁTriangle counting

ÁSmall patterns

ÁLarger patterns

ĞCliques

ĞSampling

ĞFixed parameter tractability

Pattern matching
The problem

ÁGiven:

ĞA network Ὀ

ĞA pattern ὖ

ÁFind

Ğ(all/some/one/...) embeddings of ὖ in Ὀ OR

Ğan aggregate (count, average, ...) computed over
these embeddings

listing problem

decision problem

Pattern matching
Why do we care?

ÁBasic operation for both learning and mining

ÁThere is a literature on basic pattern
matching, but learning & mining queries have
specific characteristics

ĞData is rich, satisfies integrity constraints, ...

ĞPatterns may have wildcards

ĞDM/ML is aimed at collecting statistics

Pattern matching
Subgraph isomorphism complexity

ÁPattern ὖ, network Ὀ

ÁList embeddings ʌȡὖᴼὈ

ÁΠὖ-complete

ÁClassic algorithms (backtracking search):

ὕȿὠὈȿȿ ȿ

#P : counting problems f such that there is a polynomial - time non - deterministic Turing
machine for which upon input x the number of accepting states equalls f(x) . Πὖṗὔὖ

Pattern matching
Heuristic search

5ÌÌÍÁÎÎȭÓ ÁÌÇÏÒÉÔÈÍ 1 (pattern ὖ, network Ὀ
 Match(ὖ, Ὀ,)

Procedure Match (ὖ, Ὀ, partial embedding “)
 If ὠὖ Ὠέά“
 then ListSolution(“)
 else
 Select ὺɴ ὠὖ Ὠʌέά“
 Let ὅ ύᶰὠὈȿ ύ άὥώὦὩ ὭάὥὫὩ έὪ ὺ
 For all ύᶰὅ do
 ὓὥὸὧὬὖȟὈȟ“᷾ ὺȟύ

1 Ullmann, JACM 23(1), 1976

Pattern matching
Avoiding worst - case complexity

ÁDatabase of transactions of graphs

ĞE.g. many small molecule graphs, RNA

Ğexploit structure of database graphs, e.g.

Àatoms have max degree = 6 1

Àmolecules are often planar (or even outerplanar 2)

Àbounded treewidth 3

1 E.M.Luks, J Computer & System Sciences 25(1), 1982
2 Horvath & Ramon, DMKD 21(3), 2010
3 Horvath & Ramon, TCS 411, 2010

Pattern matching
Avoiding worst - case complexity

ÁNetwork

UNo definite structure we can rely on

UApproximate matching may help but

ÀSubgraph isomorphism is hard to approximate

VStructural properties of patterns

ÀTriangles and other small patterns

ÀTrees

VStatistical properties of network

ÀRandom graphs

Pattern matching
Triangle counting

ÁSimple problem:

ĞGiven: a triangle ὖ and a network Ὀ

ĞList or count: all embeddings of ὖ in Ὀ

Ábut a lot of literature on solving it

Pattern matching
Triangle counting
Á Idea 1: Brute force

ÁCheck every triple of vertices of Ὃ

ÁRuntime ὕȿὠὋȿ

Pattern matching
Triangle counting
Á Idea 2: matrix multiplication 1

ĞLet ὃ be the adjacency matrix of Ὃ

Ğ ὃ ȟ = # of walks of length ὲ between ό and ὺ

ĞMatrix multiplication is ὕȿὠὋȿȢ 2

ĞHence, compute ὸὶὃ ȾσȦ
1

3 2

4

ὃ

π ρ ρ ρ
ρ π π π
ρ π π ρ
ρ π ρ π

 ὃ

ς σ τ τ
σ π ρ ρ
τ ρ ς σ
τ ρ σ ς

 ὃ

σ π ρ ρ
π ρ ρ ρ
ρ ρ ς ρ
ρ ρ ρ ς

ὸὶὃ ȾσȦ = (2+2+2)/6 = 1

1 Alon et al. 1997
2 For practical problems, the exponent will be higher

Pattern matching
Triangle counting
Á Idea 3: Sparse graphs

ĞIterate over edges1 : ὕ ȿὉὋȿ

ĞNodeIterator: Iterate over pairs of neighbors of
vertices: ὕὨ ȿὉὋȿ with Ὠ the maximal
degree of ὋȢ

1 Itai and Rodeh 1978

Pattern matching
Triangle counting
Á Idea 4: Approximation

ĞSparsification: delete randomly part of the graph,
count triangles, adjust for sampling

ĞSampling: perform a number of random attempts,
adjust for sampling

ĞPartition graph into parts, solve them, adjust for
triangles spanning several partitions.

1 Itai and Rodeh 1978

Pattern matching
Triangle counting

1 Itai and Rodeh 1978

Alon et al., 1997 Exact ὕȿὠὋȿȢ

Itai & Radeh, 1978 Exact
 ὕ ȿὉὋȿ

Tsourakakis ICDM2008 Exact

Faloutsos KDD2009 Approx Sparsification

Avron 2010 Approx Sampling

Pagh&Tsourakakis, InfProcLet 2012 Approx Partitioning

Becchetti et al. TKDD 2010 Approx

Pattern matching
Counting motifs of size 3 - 5

ÁMotifs = not necessarily connected induced
subgraph

ÁBrute force sometimes still works1

ÁSampling strategy (e.g. GUISE2):

ĞConsider an induced graph

ĞOmit vertex or add neighbor

ĞMetropolis hastings: adjust for fact that higher-
degree vertices are reached more easily

1 Shen- Orr et al. Nat. Genet.2002
2 Bhuiyan et al. ICDM 2012

Pattern matching
Sampling motifs with MCMC

Ὃ

Motifs

Pattern matching
Sampling motifs with MCMC

Ὃ

Motifs

0

1

0

0

0

0

State

Pattern matching
Sampling motifs with MCMC
Ὃ

Motifs

0

1

0

0

0

0

State s1
d(s1)=9

Pattern matching
Sampling motifs with MCMC
Ὃ

Motifs

0

1

0

0

0

0

State s1
d(s1)=9

Ὕόȟὺ ÍÉÎ
ρ

Ὠό
ȟ
ρ

Ὠὺ
 ÆÏÒ ό ὺ

Ὕόȟό ρ Ὕόȟὺ

Pattern matching
Sampling motifs with MCMC

Motifs

1

1

0

1

1

0

ίρ ίς

ίσ ίτ

Pattern matching
Overview

ÁProblem statement

ÁHardness results

ÁTriangle counting

ÁSmall patterns

ÁLarger patterns

ĞCliques

ĞSampling

ĞFixed parameter tractability

Pattern matching
Cliques

ÁSeveral approaches aim at finding maximal
cliques

ÁClique detection for non-directed graphs,

Clusters & communities
Bicliques

ÁBi-partite networks Ὀ ὠ᷾ὠȟὉ with
ὉṖὠ ὠ.

ÁBi-clique = ὅ ὅ with ὅṖὠ and ὅṖὠ.

ÁSeveral variants:

ĞTile mining (in boolean matrices, unweighted
networks)

ĞNon-negative matrix factorization (real-valued
matrices, weighted networks)

Advertisement:
Join ECML/PKDD2013 Tue1B session on Networks (1)
J.Ramon, P.Miettinen, J.Vreeken, Detecting bicliques in GF[q],

Pattern matching
Larger patterns: Sampling

Pattern matching
Avoiding worst - case complexity

ÁNetwork
UNo definite structure we can rely on

UApproximate matching may help but
ÀSubgraph isomorphism is hard to approximate

VStructural properties of patterns
ÀTriangles and other small patterns

ÀTrees

VStatistical properties of network
ÀRandom graphs

DONE

Sampling

Pattern matching
Sampling Ƶ strategies

ÁPartitioning
ĞMatch pattern in one or all partitions

ĞAssume that network has rather uniform structure

ĞScale result to full network

ĞWorked for triangle counting, harder for larger
patterns.

ÁSimulation (e.g. Fürer)
ĞAttempt several times to find single match

Ğassume network is sufficiently uniform

Ğaverage over iterations

&ĶÒÅÒƦÓ ÁÌÇÏÒÉÔÈÍ1 for pattern
matching in random graphs

ÁInput:

ĞNetwork G drawn from G(n,p)

ĞPattern H with a decomposition (see later)

ÁOutput:

ĞȿὉάὦὌȟὋȿ, the number of images of H in G.

ÁComplexity:

ĞExact & worst case: #P-complete

Ğ%ØÁÃÔ ÆÏÒ ȰÍÏÓÔ ÇÒÁÐÈÓȱȡ ÓÔÉÌÌ ÕÎÔÒÁÃÔÁÂÌÅ

ĞApproximate for most graphs : this algorithm (FPRAS)

1 Martin Fürer & Shiva Prasad Kasiviswanathan Approx /Random 2008

Pattern matching
&ĶÒÅÒƦÓ ÁÌÇÏÒÉÔÈÍ - FPRAS

ÁFully Polynomial Randomized Approximation
Schema:
ĞRandomized algorithms outputting for almost every graph

in polynomial time a solution with relative error of e.

ÁA little more formally:
ĞAn FPRAS is a randomized algorithm such that there is a

polynomial p(Ö,Ö) such that for every d there is an n0 such
that for all n>n0 and e, and for at least a fraction 1-d of the
graphs of size n, the algorithm outputs in time at most
p(n,1/e) a solution within a factor 1±e of the correct
solution.

Pattern matching
Fürer: Basic algorithm

Function unbiased_estimator(H,G) [estimates ȿὉάὦὌȟὋȿ]

 (j,P(j))=Try_to_find_embedding(H,G);

 IF j=failed

 THEN return 0; [No embedding found]

 ELSE return 1/P(j) ; [return inverse

EndFunction probability of j]

Function count_embeddings(H,G,e)

 c = 0; s = C/e2;

 For i = 1 .. s do c=c+unbiased_estimator(H,G); EndFor

 Return c/s;

EndFunction

Pattern matching
Fürer: Basic algorithm

ÁCount_embeddings works correctly:
ĞEvery embedding j is found with probability P(j)

by Try_to_find_embeddings(H,G). With
probability 1-SjP(j) Try_to_find_embeddings fails

ĞEvery embedding j, is found once in 1/P(j) calls,
and in that case, unbiased_estimator returns
1/P(j). Hence, j contributes 1 to each call to
unbiased_estimator, on average.

ĞHence, on average, unbiased_estimator returns
the number of embeddings

ÁTask left: find a good Try_to_find_embedding

Pattern matching
Fürer - strategy

ÁDecompose vertex set of pattern

Ámatch one partition at a time until complete

ÁCompute probability of finding this particular
solution

ÁShow the overall algorithm converges
sufficiently fast.
ĞThe sum of a (very) large number of identical

distributions becomes Gaussian. Standard deviation
goes down with square of sample

ĞWhatever the sample size, we can always (with very
small probability) have a large error

Pattern matching
Fürer : finding embeddings

INPUT: Ὃ, Ὄ, partition ὠȟὠȟȣȟὠ of ὠὋ

ὢᴺρȠ• ᴺ

For Ὥ ρȢȢὰ

 Ὁᴺ •ᶰὉάὦ᷾ ὠȟὋȿ•ṓ•

 ὢᴺȿὉȿ

 if ὢ π then terminate and return ÆÁÉÌÅÄȟπ

 pick an embedding • uniformly at random from Ὁ

 8ᴺὢȢὢ

EndFor

Return •ȟρȾὢ

Fürer - Sample run (step 1.1)

Áὢ ρȠ•

ÁὭ ρ

 V1 V2 V3 V4

Fürer - Sample run (step 1.2)

Áὢ ρȠ•

ÁὭ ρ

Áὢ Ὁ ψ

 V1 V2 V3 V4

Fürer - Sample run (step 1.3)

ÁὭ ρ

Áὢ ψ

Á• ρȟὥ

Áὢ ψ

 V1 V2 V3 V4

1

a

3

5

4

2

f

e
d

c

b

h

g

Fürer - Sample run (step 2.1)

ÁὭ ς

Áὢ ψ Ƞ• ρȟὥ ;

 V1 V2 V3 V4

1

a

3

5

4

2

f

e
d

c

b

h

g

Fürer - Sample run (step 2.2)

ÁὭ ς

Áὢ ψ Ƞ• ρȟὥ ;

Áὢ Ὁ 3.2 φ

ÁὢᴺὢȢὢ ψz φ τψ

 V1 V2 V3 V4

1

a

3

5

4

2

f

e
d

c

b

h

g

Fürer - Sample run (step 2.3)

ÁὭ ς

Á• ρȟὥ ;

Áὢ Ὁ 3.2 φ

Áὢ τψ

Á•
ρȟὥȟςȟὬȟσȟὧ

 V1 V2 V3 V4

1

a

3

5

4

2

f

e
d

c

b

h

g

Fürer - Sample run (step 3.1)

ÁὭ σ

Á• ρȟὥȠςȟὬȟσȟὧ ;

Áὢ τψ

 V1 V2 V3 V4

1

a

3

5

4

2

f

e
d

c

b

h

g

Fürer - Sample run (step 3.2)

ÁὭ σ

Á• ρȟὥȠςȟὬȟσȟὧ ;

Áὢ τψ

Áὢ Ὁ ς

ÁX = X . X3 = 48 * 2 = 96

 V1 V2 V3 V4

1

a

3

5

4

2

f

e
d

c

b

h

g

Fürer - Sample run (step 3.3)

ÁὭ σ

Á• ρȟὥȠςȟὬȟσȟὧ ;

Áὢ τψ

Á8 ςȠ 8 ωφ

Á•
ρȟὥȟςȟὬȟσȟὧȟτȟὪ

 V1 V2 V3 V4

1

a

3

5

4

2

f

e
d

c

b

h

g

Fürer - Sample run (step 4.1)

ÁὭ τ

Á•
ρȟὥȠςȟὬȟσȟὧȟτȟὪ ;

Áὢ ωφ

 V1 V2 V3 V4

1

a

3

5

4

2

f

e
d

c

b

h

g

Fürer - Sample run (step 4.2)

ÁὭ τ

Á•
ρȟὥȠςȟὬȟσȟὧȟτȟὪ ;

Áὢ ωφ

Áὢ ρ

Á• ρȟὥȟςȟὬȟσȟὧȟ
τȟὪȟυȟὫ

 V1 V2 V3 V4

1

a

3

5

4

2

f

e
d

c

b

h

g

Fürer - Sample run Ƶ a solution

ÁX=96;

Áj={(1,a),(2,h),(3,c),(4,f),(5,g)};

 V1 V2 V3 V4

1

a

3

5

4

2

f

e
d

c

b

h

g

Fürer - Sample run bis

ÁὭ σ

Á• ρȟὥȠςȟὬȟσȟὧ ;

ÁX3 = |E| = 2

ÁX = X . X3 = 48 * 2 = 96

 V1 V2 V3 V4

1

a

3

5

4

2

f

e
d

c

b

h

g

Fürer - Sample run bis

ÁὭ σ

Á• ρȟὥȠςȟὬȟσȟὧ ;

ÁX=96

Á• ρȟὥȟςȟὬȟσȟὧȟ
τȟὦ

 V1 V2 V3 V4

1

a

3

5

4

2

f

e
d

c

b

h

g

Fürer - Sample run bis

ÁὭ σ

Á•
ρȟὥȠςȟὬȟσȟὧȟτȟὦ ;

ÁX=96

ÁX4 = 0 Ą no solution!

 V1 V2 V3 V4

1

a

3

5

4

2

f

e
d

c

b

h

g

Pattern matching
&ĶÒÅÒƦÓ ÔÈÅÏÒÅÍ

ÁImportant: When does it work?

ÁThe algorithm is an FPRAS (for allmost all G) if:

Ğ0ÁÒÔÉÔÉÏÎÉÎÇ ÏÆ 6ɉ(Ɋ ÉÓ Á ȰÏÒÄÅÒÅÄ ÂÉÐÁÒÔÉÔÅ
ÄÅÃÏÍÐÏÓÉÔÉÏÎȱ

Ğp(n)n2 ¤

Ğnpu/D4 ¤

ĞE(H)3n-4p-2 0

Where

 u=max(2,g), g=max{|E(F)|/(|V(F)|-2) | F¢H, |V(F)|²3}

Pattern matching
Fürer: Simplified theorem

ÁIt works if the count is not too small.
ÁIntuition:
ĞThe frequency of very rare events is hard to measure
ɉÔÈÅ ȰÉÎÔÅÒÅÓÔÉÎÇȱ ÐÁÒÔ ÏÆ ÔÈÅ ÓÁÍÐÌÅ ×ÈÅÒÅ ×Å
actually observe something, is smaller)

Ğ4ÈÅ ×ÏÒÓÔ ÃÁÓÅ ÉÓ ×ÈÅÒÅ ÏÎÅ ÄÏÅÓÎȭÔ ËÎÏ× ×ÈÅÔÈÅÒ
ὉάὦὌȟὋ π or ὉάὦὌȟὋ ρ

ÁIf we run the algorithm and we find some
embeddings, our estimate will be rather
accurate.

Á)Æ ÎÏ ȰÏÒÄÅÒÅÄ ÂÉÐÁÒÔÉÔÅ ÄÅÃÏÍÐÏÓÉÔÉÏÎȱȟ ÔÈÅÎ ×Å
can still run this algorithm, but no FPRAS
guarantee.

Pattern matching; Fürer
Ordered bipartite decomposition

ÁAn ordered bipartite decomposition of H is a
partition {V1, V2, ... , Vl} of V(H) such that

ĞEach Vi (i=1..l) is an independent set in H

Ğ"i, vÍVi $j such that NH(v) Ì Çk<iVkÇ Vj

ÁSo if a neighbor of a vertex vÍVi is in Vj with
j>i, then no neighbors of v must be in VÊȭ with
ÊȭІÉ ÁÎÄ ÊȨ̂ȭȢ

Fürer - Graphs with a
decomposition

ÁCycles longer than 3 (see above running example)
ÁBounded degree outerplanar graphs without

triangle
ÁTrees
ÁGrids
Á...
ÁNot: triangles (but separate proof), ...

Pattern matching
Fixed parameter tractability

Pattern matching
Avoiding worst - case complexity

ÁNetwork
UNo definite structure we can rely on

UApproximate matching may help but
ÀSubgraph isomorphism is hard to approximate

VStructural properties of patterns
ÀTriangles and other small patterns

ÀTrees

VStatistical properties of network
ÀRandom graphs

DONE

Fixed
parameter
tractability

DONE

Pattern matching
Fixed parameter tractability

ÁClassic complexity classes:

ĞInput size: ὲ

Ğὖ : Polynomial time ὕὲ for some Ὠ

ĞAre all problems not in ὖ are hard: not ὕὲ for

some Ὠ ? No, some may still be easier than others

ÁFixed parameter tractability:

ĞInput has two parts of sizes: ὲ and Ὧ

ĞFor Ὧ fixed, the problem is tractable: ὕὲὪὯ

ĞMay be acceptable if Ὧ is small

Pattern matching
Fixed parameter tractability

ÁFixed parameter tractability:
ĞInput has two parts of sizes: ὲ and Ὧ

ĞFor Ὧ fixed, the problem is tractable: ὕὲὪὯ

ĞMay be acceptable if Ὧ is small

ÁPattern matching:
ĞNetwork: size ὲ

ĞPattern: size Ὧ

ĞὯ is usually small, ὲ may be large.

ÁSo fixed parameter tractability is suitable for
pattern matching!

Pattern matching
Fixed parameter tractability

ÁMatching trees in network in

ὕάὯς ὕᶻς

ĞὯ ὠὖ : pattern size

Ğά ὉὈ : network size

ÁRandomized algorithm1 which works well for
practical pattern mining2

1 R. Williams, Inf Proc Lett 2009
2 A. Kibriya & J.Ramon, DMKD 2013

Pattern matching summary

ÁBasic operation for mining and learning

ÁNetworks have no hard structure we can rely on

UApproximate matching may help but

ÀSubgraph isomorphism is hard to approximate

VStructural properties of patterns

ÀTriangles and other small patterns

ÀTrees

VStatistical properties of network

ÀRandom graphs

Pattern matching Ƶ open
problems

ÁMany matching problems for which fixed
parameter approach could help

ĞMore complex queries

ÁImplicit relations

ÁBig data (not in RAM)

Ğcombine with indexing

Ğreduce passes over data (or samples)

Ğdistributed approaches, ...

Contents

ÁIntroduction

ÁNetworks from different points of view

ÁPatterns & pattern mining

ĞIntroduction

ĞPattern matching

ĞFrequency

ĞAdditional remarks

ÁLearning

Frequency / support 1 measures
The problem

ÁHow frequent is pattern ὖ in network Ὀ?

Á7ÈÙ ÁÓÓÉÇÎ Á ȰÆÒÅÑÕÅÎÃÙȱ ÔÏ Á ÐÁÔÔÅÒÎȩ

ĞPopular criterion to measure relevance of pattern

ÀE.g. 40% of respondents liked both movie m1 and m2.

ĞWay to represent association rules

ÀE.g. Of all respondents liking movie m1 and m2, 50%
also liked m3 (i.e. 40%*50% = 20%)

ĞMeasure of statistical power

ÀE.g. We rolled the dice 100 times and observed 40
times a 6. It must be biased.

1 ÇÔÙÍd̆Ë×ÊÖÚÊÓÈÞ̇dÆÓÉd̆ØÚÕÕÔ×Ù̇dÆ×ÊdÚØÊÉpdÔËÙÊÓdÎÓÙÊ×ÈÍÆÓÌÊÇÑÞ

Support measures
What do you want?

ÁCounting objects

ĞX% of people own a house in the same region where
they work.

Ğnetwork unimportant, just count people

Person2

House1

Job2

Region1

Person1 Job1

Person3 Job3

Region2
House1

Support measures
What do you want?

ÁCounting objects

ÁPerforming statistics

ĞWe rolled the dice 100
times and observed 40
times a 6. It is biased!

ĞWe rolled the dice. 100
people observed a 6. Would
it be biased?

Dice

Roll

Roll

Roll

Roll

Obs

Obs

Obs

Obs

Person

Thrustworthy

Dice Roll

Obs

Obs

Obs

Obs

Person

Person

Person

Person

Support measures
What do you want?

ÁCounting objects

ÁPerforming statistics

ÁAssociation rules

ĞIf X has a friend Y such that Y smokes, then with
probability a%, X smokes too

ĞIf X and Y are friends and Y smokes, then with
probability b%, X smokes too

ĞDifferent quantor/aggregator placement, probably
ὥ ὦ

Support measures
What do you want?

ÁWhat do you want?

ĞCounting objects

ĞPerforming statistics

ĞAssociation rules

Ğ...

Á)Æ ÙÏÕ ËÎÏ× ×ÈÁÔ ÙÏÕ ×ÁÎÔȟ ÙÏÕȭÒÅ ÃÌÏÓÅÒ ÔÏ
knowing what to do. No measure is good in all
cases.

Support measures
Overview

ÁEmbedding-based
ĞEmbedding count

ĞImage count

ÁKey-based
ĞKey image count

ĞMin-image

ÁOverlap-based
ĞMaximum independent set

ĞMinimum clique partition

ĞIntermediate measures and relaxations

Support measures
Embedding- based

ÁEmbedding-count: ȿὉάὦὖȟὈȿ

ÁImage-count: ὍάὫὖȟὈ
ὉάὦὖȟὈ ȿὃόὸὖȿȢȿὍάὫὖȟὈȿ

ÁE.g.: Among all triples (X,Y,Z) such that X and Y
are friends and Z is a family member of X, the
fraction of triples where Y knows Z is a%.

ÁEmbeddings may be concentrated in small part
of network, e.g. large family where everyone is
friend with each other.

ÁNot anti-monotonic, no pattern-mining pruning

Support measures
Key- based

ÁDecide before the start of data mining what is
ÔÈÅ ÔÙÐÅ ÏÆ ÏÂÊÅÃÔ ÏÆ ÉÎÔÅÒÅÓÔ ɉȰÔÈÅ ÐÒÉÍÁÒÙ
ËÅÙȱɊ

ÁE.g. 7Å ÁÒÅ ÉÎÔÅÒÅÓÔÅÄ ÉÎ ȬÆÒÉÅÎÄÓȭ ÒÅÌÁÔÉÏÎÓÈÉÐÓ

ĞÁϻ ÏÆ ȬÆÒÉÅÎÄÓȭ ÒÅÌÁÔÉÏÎÓ ÁÒÅ ÂÅÔ×ÅÅÎ ÃÏÌÌÅÁÇÕÅÓȢ

Ğb% of friends have the same mother tongue,

Ğc% of friend pairs (X,Y) have at least one common
friend Z,

Ğ...

Support measures
Key- based

Á$ÅÃÉÄÅ ÂÅÆÏÒÅ ÔÈÅ ÓÔÁÒÔ ÏÎ ÔÈÅ ȰËÅÙȱȢ

Á4ÈÅ ȰËÅÙȱ ÉÓ Á ÃÏÍÍÏÎ ÓÕÂÐÁÔÔÅÒÎ ÏÆ ÁÌÌ ÐÁÔÔÅÒÎÓ
considered.

ÁThere is a fixed, finite set of objects (all
ÉÍÁÇÅÓȾÅÍÂÅÄÄÉÎÇÓ ÏÆ ÔÈÅ ȰËÅÙȱɊȟ ÔÈÅ ÎÅÔ×ÏÒË
relations are not considered.

ÁEasy to count

ÁAnti-monotonic (good for pattern mining)

ÁNot all statistics are valid (e.g. the dice example)

Support measures
Key- based: dice example

ÁKey = dice observation

ÁPerforming statistics:

ĞWe rolled the dice 100
times and observed 40
times a 6. It is biased!

ĞWe rolled the dice. 100
people observed a 6. Would
it be biased?

dice1

Roll

Roll

Roll

Roll

Obs

Obs

Obs

Obs

Person

Thrustworthy

dice1 Roll

Obs

Obs

Obs

Obs

Person

Person

Person

Person

dice1 Roll Obs Person

Key

4 images of Key
eqch showing a 6

4 images of Key
eqch showing a 6

Support measures
Min- image1

ÁάὭὲὍάὥὫὩὖȟὈ
άὭὲɴ “ύ “ᶰὉάὦὖȟὈ ȿ

ÁAllows for choosing each vertex as
(singleton) key, giving a lower bound for
each vertex-key-based frequency

ÁAnti-monotonic:
ὖ ὗᵼάὭὲὍάὥὫὩὖȟὈ άὭὲὍάὥὫὩὗȟὈ

1 Bringmann & Nijssen. PAKDD 2008

Support measures
Overlap - based: model dependence

ÁThe easiest way to perform statistics is to
have independent observations.

ÁHow do we get as much independent
observations as possible out of a network?

Á-ÏÄÅÌ ÔÈÅ ÉÎÄÅÐÅÎÄÅÎÃÅÓ ÉÎ ȰÏÖÅÒÌÁÐ ÇÒÁÐÈȱȢ

ÁCaution: selecting independent observations
is not necessarily a sample from the original
distribution!

Support measures
Overlap - based: Overlap graph

ÁOverlap graph Ὃȡ

ĞὠὋ ὍάὫὖȟὈ

Ğ ὫȟὫ ᶰὉὋ if images Ὣ and Ὣ overlap

ÁWhat is overlap?
Ğ4×Ï ÏÃÃÕÒÒÅÎÃÅÓ ÏÆ Á ÐÁÔÔÅÒÎ ÏÖÅÒÌÁÐ ÉÆ ×Å ÃÁÎȭÔ ÃÏÎÓÉÄÅÒ

them independent in the context of the statistics we are
doing

ĞVertex-overlap: ὫȟὫ ᶰὉὋ ᵾ ὠὫ ᷊ὠὫ ɲ

ĞEdge-overlap: ὫȟὫ ᶰὉὋ ᵾ ὉὫ ᷊ὉὫ ɲ

ĞOther options, e.g. Harmful overlap1

1 Fiedler & Borgelt MLG 2007

Support measures
Overlap - based: What is overlap?

ÁDice example:

ĞOverlap if the Roll is the same.

ĞWe are interested in dice1, so naturally all
embeddings will contain dice1.

dice1

Roll

Roll

Roll

Obs

Obs

Obs

Obs

Person2

dice1 Roll Obs Person

Person1

Support measures
Overlap - based: Court example

ÁVertices: case, judges, (prodeo) lawyers, party

ÁEdges between case-judge, case-lawyer,
case-party

Party1

Case1

Lawyer1

Judge3

Judge1

Party3

Party2 Judge2 Lawyer1

Lawyer1

Case2

Case3

Case4

Independent set

ÁW is an independent set of H iff

ĞW Ì V(H)

ĞThere are no v,wÍW such that (v,w)ÍE(H)

Independent set of size 2 Independent set of size 1

Support measures
Overlap - based: MIS measure

ÁThe size of a Maximum Independent Set
(MIS) of the overlap graph Ὃ of pattern ὖ in
network Ὀ: ὓὍὛὖȟὈ ὓὍὛὋ

1 Vanetik et al. DMKD 2006

dice1

Roll

Roll

Roll

Obs1

Obs2

Obs3

Obs4

Person2

dice1 Roll Obs Person

Person1

(dice1,obs=6,Person1)

(dice1,obs=6,Person2)

(dice1,obs=6,Person2)

(dice1,obs=3,Person2)

ὓὍὛὋ σ P

D

Support measures
Overlap - based: MIS measure

ÁThe size of a Maximum Independent Set
(MIS) of the overlap graph Ὃ of pattern ὖ in
network Ὀ: ὓὍὛὖȟὈ ὓὍὛὋ

Party1

Case1

Lawyer1

Judge3

Judge1

Party3

Party2 Judge2 Lawyer1

Lawyer1

Case2

Case3

Case4

Case1

Case2

Case3

Case4

Party
Case1

Lawyer

Judge
P

D

ὓὍὛὋ ς

Support measures
Overlap - based: more measures

ÁMaximum independent set idea:

Jallows to measure overlap and extract
independent observations

JAnti-monotonic

LNP-hard to compute

LPossibly ignores too much information

ÁDoes the overlap graph allow for other
measures?

Support measures
Overlap - based: more measures

ÁRequirements for feasible measure:

ĞAnti-monotonic in pattern:

Àὴ ὖᵼὪὴȟὈ ὪὖȟὈ

ĞMonotonic in network:

ÀὈ ὈᵼὪὖȟὈ ὪὖȟὈᴂ

ĞNormalized

ÀIf there are ὲ independent (non-overlapping)
observations (overlap graph = ὲ isolated vertices),
then support is ὲ.

Support measures
Overlap - based: more measures

ÁIf Ὢ is a function on the overlap graph, and
Ὢ is feasible measure, then:
ὓὍὛὖȟὈ ὪὖȟὈ ὓὅὖὖȟὈ

Áwhere ὓὅὖὋ is the minimum clique
partition number of the overlap graph,
another NP-hard to compute number.

Support measures
Overlap - based: more measures
ÁFortunately, several efficiently computable

functions are between ὓὍὛ and ὓὅὖ.

ÁLovasz theta1:
Ğfeasible measure2; computable with semidefinite

program (SDP), which is still rather expensive

ÁMIS-relaxation3: s
ĞIs a feasible measure3; computable with linear

program (LP), hence efficiently.

ÁWe have ὓὍὛ ί ὓὅὖ

1 D. Knuth, Electr. J. Combin 1994
2 Calders et al. DMKD 2011
3 Wang & Ramon DMKD 2013

Support measures
Summary

Measure Anti-Monotonic? Statistics? Efficient?

Embedding count U U V

Image count U U V

key image count V U V

min-image V U V

Overlap-MIS V V U

Overlap-MCP V ? U

Overlap-? V V

Overlap-s V V V

Frequency Ƶ open problems

ÁCombine pattern matching and frequency

ÁExploit network structure to increase speed
ɉÍÅÔÈÏÄÓ ÕÐ ÔÏ ÎÏ× ÄÏÎȭÔɊ

Contents

ÁIntroduction

ÁNetworks from different points of view

ÁPatterns & pattern mining

ĞIntroduction

ĞPattern matching

ĞFrequency

ĞAdditional remarks

ÁLearning

Expected number of
embeddings

ÁLet Ὀͯ Ὃὲȟὴ, then

ὉάὦὖȟὈ ὲȿ ȿὴȿ ȿρ ὴ ȿ ȿ

ÁFor small ὴ:

ὉάὦὖȟὈ ὲȿ ȿὴȿ ȿ

ÁFor trees:

ὉάὦὖȟὈ ὲὴȿ ȿȾὴ

ĞOften Ὀ is connected and ὲὴ ρ

Expected number of
embeddings

Á# of expected embeddings grows with
pattern size for sparse patterns

ÁDenser patterns may be easier to interprete

ÁAlso patterns less frequent than expected
may be of interest.

ĞThis also happens with itemsets: items may be
correlated, uncorrelate or anti-correlated

Contents

ÁIntroduction

ÁNetworks from different points of view

ÁPatterns & pattern mining

ÁLearning

ĞIntroduction

ĞLearning from non-independent examples

ĞTemporal models

Learning - introduction

ÁPopular learning ideas:

Ğconnected vertices have similar target value

Ğcorrelation between features and target value

Àmore classic feature-to-target supervised learning

ĞȰ$ÕÁÌ ÓÐÁÃÅȱ ÉÄÅÁȡ ÏÎÅ ÆÅÁÔÕÒÅ ÐÅÒ ÖÅÒÔÅØ Õȟ ÉÓ Χ ÆÏÒ
vertices connected to that vertex u (else 0).

ÀIf individuals are important (but not many features
are known)

Learning Ƶ introduction
Similar to your neighbor

ÁSemi-supervised learning

ĞE.g.: try to minimize the number of edges with on
both sides different labels

ĞE.g. target values tend to average of neighbors.

Ğ...

ÁManifold embedding:

ĞAssign all vertices a coordinate such that
connected vertices are close together (and not-
connected vertices are far apart)

Learning Ƶ Introduction
From feature to target value

ÁLearning tasks1:

ĞVertices / edges / ...

Ğ(existence)prediction / labeling / weighting
/feature construction / ...

1 ·ÔØØÎdÊÙdÆÑrd̆¹×ÆÓØËÔ×ÒÎÓÌdÌ×ÆÕÍdÉÆÙÆdËÔ×d
ØÙÆÙÎØÙÎÈÆÑd×ÊÑÆÙÎÔÓÆÑdÑÊÆ×ÓÎÓÌ̇pd¯¦®·dvtuv

vertex/edge structure/
feature prediction example

ÁSupervised learning

ĞInput:

Àvertex/edge to predict

ÀNeighborhood

ĞOutput:

ÀLabel or existence

ÁBut how about the classic i.i.d. assumptions?

Learning Ƶ Prediction in a
fixed network

ÁMost common setting:

ĞFixed network Ὀ

Ğtraining and test vertices (edges) in Ὀ

ÁBut what if the network changes (e.g. an
influential node is added/deleted)?

ĞCausal patterns remain the same

ĞCorrelation patterns may change significantly

1 ·ÔØØÎdÊÙdÆÑrd̆¹×ÆÓØËÔ×ÒÎÓÌdÌ×ÆÕÍdÉÆÙÆdËÔ×d
ØÙÆÙÎØÙÎÈÆÑd×ÊÑÆÙÎÔÓÆÑdÑÊÆ×ÓÎÓÌ̇pd¯¦®·dvtuv

Learning Ƶ #ÁÎƦÔ ÄÉÓÔÉÎÇÕÉÓÈ
individual and its features

ὺȡ

ὺȡ ὺȡ

ὺȡ

ὺȡ

ὺȡ

ὺȡ ὺȡ ὺȡ ὺ ȡ

ὺ ȡ
ὺ ȡ ὺ ȡ

ὺȡȩ ὺȡȩ

ὺȡȩ

ὺȡȩ

ὺȡȩ

ὺȡȩ ὺȡȩ ὺȡȩ ὺ ȡ

ὺ ȡ
ὺ ȡ

What is the rule?
Does everyone follow the class of its neighbors?
Is v1 very influential?
Is class + if there are green neighbors?

Learning Ƶ network - specific
challenges

ÁSuppose the same rules stay true, but new
nodes/edge (same distribution). Distinction
viral/features may matter

ÁMovie database:

ĞPersons from a fixed distribution

ĞMovies from a fixed distribution

ĞPersons watch movies

ĞA few new persons and movies are added

Contents

ÁIntroduction

ÁNetworks from different points of view

ÁPatterns & pattern mining

ÁLearning

ĞIntroduction

ĞLearning from non-independent examples

ĞTemporal models

Learning from dependent
examples

ÁMembers of a network are dependent

ÁTypical assumptions of learning algorithms
ÄÏÎȭÔ ÈÏÌÄȟ ÉÎ ÐÁÒÔÉÃÕÌÁÒ ÔÈÁÔ

ĞExamples are independently and identically drawn
(i.i.d.)

Movie rating example

ÁMovie rating

ĞObj: Movie (genre, duration, actor popularity)

ĞObj: Person (age, gender, ...)

ĞObj: Screening (location, time, ...)

ĞTarget: Rating

ÁSeveral ratings per person / movie / cinema

Lawsuit example

ÁLawsuits:

ĞObj: Person

ĞObj: Lawyer

ĞObj: Judge

ĞExample: case

ĞTarget: outcome

ÁJudges handle several cases, persons may be
involved in several cases

Learning from pattern
features

ÁEach example is an embedding of a pattern

ĞMovieRating: (Movie, Person, Cinema, Rating)

ĞLawsuit: (Case, Person, Judge, Outcome)

ÁExamples overlap:

Ğ3ÅÅ ÁÌÓÏ ȰÓÕÐÐÏÒÔ ÍÅÁÓÕÒÅÓȱ

ĞWe call them networked examples

Representing networked
examples

ÁSeveral alternative equivalent representations:

ĞEvery example is represented with a vertex
connected to the participating objects

ĞEvery example is represented with a hyperedge,
containing all participating + all relevant objects.

Learning from networked /
dependent examples

ÁTasks:

1. Elementary statistics, confidence intervals,
hypothesis testing, ...

2. Learning, generalization guarantees

ÁModels:

a. bounding covariance between dependent
examples

b. modeling how examples are dependent

ÁCombinations: 1a and 2b

Bounding covariance of examples
and hypothesis testing

Á(Wang, Neville, Gallagher, Eliassi-Rad,
ECML/PKDD-2011) :

Ğvertices are examples

Ğedges indicate a bounded covariance

Ásafe correction for statistical significance tests

Ásafe upper bound for variance on sums etc.

ÁUpper bound for variance can be an important
tool in proving generalization guarantees.

Bounding covariance of
examples

Áὲ independent random variables ὢ with
variance „ : Variance on В ὢ is ὲ„

Áὲ identical random variables ὢ with
variance „ : Variance on В ὢ is ὲ„

Bounding covariance of
examples

Áὲ ÎÅÔ×ÏÒËÅÄ ÅØÁÍÐÌÅÓ
ĞNo edge between ὢ and ὢ = independent :

Ὁ ὢ Ὁὢ ὢ Ὁὢ π

ĞEdge ὢȟὢ ᶰὉὈ between ὢ and ὢ = bounded

covariance Ὁ ὢ Ὁὢ ὢ Ὁὢ

ÁVariance on В ὢ is

Ὁ ὢ Ὁὢ ὢ Ὁὢ

ȟ

ὉὈ ὲ„

Learning from networked /
dependent examples

ÁTasks:

1. Elementary statistics, confidence intervals,
hypothesis testing, ...

2. Learning, generalization guarantees

ÁModels:

a. bounding covariance between dependent
examples

b. modeling how examples are dependent

ÁCombinations: 1a and 2b

Variance, significance,
effective sample size

ÁEffective sample size of a given set of
networked examples is ὲ iff it contains as
much information (for the task at hand, e.g.
learning or hypothesis testing) as a set of ὲ
i.i.d. examples1.

1 Slightly different conventions/definitions exist

Probably approximately
correct (PAC) structure

ÁPAC: with probability ρ the loss is
bounded by e where

 Ὡὼὴ
άὛ

ὅ ὅ

Áwith άὛ the effective sample size of
training set Ὓ. Higher άὛ = better

Ái.i.d. sample Ὓ, άὛ ȿὛȿ = best possible

Independence assumptions

ÁWeaker form of i.i.d

ÁBut not arbitrary

Ğarbitrary Ý no bound possible

Independence assumptions:
i.i.d. vertex features

ÁEdges are fixed.

ÁThe features of every vertex are drawn i.i.d. (not
even depending on the edges).

1. Choose edges
(possibly very
dependently)

2. Draw vertex
ËÊÆÙÚ×ÊØdlÉÔÓ̃Ù
look at edges)

Independence
assumptions applied
YES

ÁSneak preview

ÁRandomized trial: patients
are assigned randomly to
set of treatment params

ÁCases are assigned
randomly to judges

NO

ÁSelect movie based on
genre, or with friends

ÁPatients go to closeby
hospital or to hospital
recommended by their
friends

Á Judges handle cases
connected to their existing
cases

Training set measures

ÁOverlap (hyper)graph Ὃ

Ğvertices are objects

Ğ(hyper)edges are examples

ÁTraining set ὛṖὉὋ

ÁMeasures ÍὛ of training set ÍὛȡ
άὥὼὲ ȟὲ ὲ ▼ ὲ

Approach 1:
Equal - weight (EQW)

ÍÁØ▪╔╠╦ȟ▪╘╝╓ ὲ ▼ ὲ

(Janson 2004) & (Usunier 2005)

 θ Ὡὼὴ
ὲ

ὅ ὅ

With ὲ
ȿȿ
ᶻ

and …ᶻὋ fractional edge chromatic
number

all examples get same weight

…ᶻὋ σ Ƞ ὲ
φ

σ
ς

