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Introduction 

 In this tutorial: 

 Who studies networks? 

 Network patterns & mining them 

 Learning in networks 

 Focus on 

 Local patterns 

 Not so much on large scale properties 

 



Related ECML/PKDD 2013 
tutorials 

 [Fri-PM] Algorithmic techniques for modeling and 
mining large graphs (Alan Frieze et al.) 

 Focus is more on global properties 

 [Mon-PM] Discovering Roles and Anomalies in 
Graphs: Theory & Applications (T. Eliassi-Rad et al.) 

 Anomaly detection is not covered here 

 [Fri-AM] Statistically sound pattern discovery (G. 
Webb & W. Hamalainen) 

 Different statistical aspects 

 



Introduction 
Prerequisites 

Supervised learning:  Given i.i.d. training examples, 
learn a function from example to target value. 

 You could use SVM, DT, NB, IBL, GP, ... or any of 
your favorite supervised techniques 
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Basic concepts - Graphs 

 An undirected (labeled) graph is a tuple 
G=(V,E,) where 

 V is a set of vertices (nodes) [punten (knopen)] 

 𝐸 ⊆ 𝑣, 𝑤 |𝑣, 𝑤 ∈ 𝑉  is a set of edges [takken]  

 𝜆: 𝑉 ∪ 𝐸 → Σ is a labeling function 

 Unlabeled graph:  

 If  is constant (all vertices/edges have the same 
label),  may be omitted 



Basic concepts - Graphs 

 A directed graph is a tuple G=(V,E,) where 

 V is a set of vertices (nodes) [punten (knopen)] 

 𝐸 ⊆ 𝑣, 𝑤 |𝑣, 𝑤 ∈ 𝑉  is a set of arcs [bogen] 

 𝜆: 𝑉 ∪ 𝐸 → Σ is a labeling function  

 Further notations: 

 V(G) is the set of vertices of the graph G 

 E(G) is the set of edges / arcs of the graph G 

 G is the labeling function of the graph G 

 𝑁𝐻 𝑣 = 𝑤 ∈ 𝑉(𝐻)| 𝑣, 𝑤 ∈ 𝐸(𝐻)  is the neighborhood of v 

 Δ𝑣 = 𝑁𝐻 𝑣  is the degree of v 



Basic concepts 
adjacency matrix 

 Adjacency matrix of graph 𝐺 is a square 
matrix 𝐴 of dimension 𝑉(𝐺) × 𝑉 𝐺  such that 

 𝐴𝑢,𝑣 = 0 if 𝑢 and 𝑣 are not connected 

 𝐴𝑢,𝑣 = 1 if there is an edge between  𝑢 and 𝑣 

1 

3 2 

4 
  1 2 3 4 
1 0 1 1 1 
2 1 0 0 0 
3 1 0 0 1 
4 1 0 1 0 



Basic concepts – Walk/Path 

 A walk 𝑃 between vertices  𝑣 and 𝑤 in a graph 𝐺 
is a sequence of vertices 𝑢1, 𝑢2, … , 𝑢𝑛 ∈
𝑉(𝐺) such that 
 𝑢1 = 𝑣,  

 𝑢𝑛 = 𝑤 and 

 𝑢𝑖 , 𝑢𝑖+1 ∈ 𝐸(𝐺) for all 1 ≤ 𝑖 ≤ 𝑛 − 1. 

 The length of such walk 𝑃 is 𝑛 − 1 . 

 A path is a walk where all vertices are distinct 

 Slightly abusing terminology, a path 𝑃 can also 
be seen as a subgraph of 𝐺 



Basic concepts – Shortest path 

 A shortest path is a path of minimal length. 

 Distance 𝑑(𝑢, 𝑣) between 𝑢 and 𝑣 is length 
of shortest path between 𝑢 and 𝑣 

 The diameter of 𝐺 is 
𝑑𝑖𝑎𝑚 𝐺 = 𝑚𝑎𝑥𝑢,𝑣∈𝑉 𝐺 𝑑 𝑢, 𝑣  

 

 



Basic concepts – Diameter 

The diameter of 𝐺 is 
𝑑𝑖𝑎𝑚 𝐺 = 𝑚𝑎𝑥𝑢,𝑣∈𝑉 𝐺 𝑑 𝑢, 𝑣  

 

Many real-world graphs have small diameter. 

 V : all persons 

 E : an edge connects persons who have ever 
met each other 

 Many people have met a local politician who 
met the national prime minister  

 

 

 



Basic concepts – connected, tree 

 A graph G is connected  iff there is a path 
between every pair of vertices v, w  V(G) 

 A connected component of a graph G is a 
maximal connected subgraph of G. 

 A graph G is a tree iff there is a unique path 
between every pair of vertices v, w  V(G) 

 Intuition: if the path between two vertices is not 
unique, then there is a cycle. 

 



Basic concepts – morphisms 

 A homomorphism from a graph H into a graph G is 
a mapping :V(H)  V(G) such that 

 ∀𝑣, 𝑤 ∈ 𝑉 𝐻 : 𝑣, 𝑤 ∈ 𝐸 𝐻 ⇒ 𝜑 𝑣 , 𝜑 𝑤 ∈ 𝐸(𝐺) 

 ∀𝑣 ∈ 𝑉 𝐻 : 𝜆 𝑣 = 𝜆(𝜑 𝑣 ) 

 ∀𝑣, 𝑤 ∈ 𝑉 𝐻 : 𝜆 𝑣, 𝑤 = 𝜆 𝜑 𝑣 , 𝜑 𝑤  

 An injective homomorphism is a subgraph 
isomorphism. 

 



Basic concepts – subgraph 
isomorphism vs homomorphism 

 If there is a homomorphism from H to G, then we 
denote this 𝐻 ≤ℎ 𝐺 

 If there is a subgraph isomorphism from H to G, 
then we denote this 𝐻 ≤𝑖 𝐺 

 𝐻 ≡ 𝐺 iff 𝐻 ≤ 𝐺 and 𝐺 ≤ 𝐻 

A homomorphism, not an isomorphism 



Basic concepts – morphisms 

 An induced homomorphism from a graph H into a 
graph G is a mapping :V(H)  V(G) such that 

 ∀𝑣, 𝑤 ∈ 𝑉 𝐻 : 𝑣, 𝑤 ∈ 𝐸 𝐻 ⇔ 𝜑 𝑣 , 𝜑 𝑤 ∈ 𝐸(𝐺) 

 ∀𝑣 ∈ 𝑉 𝐻 : 𝜆 𝑣 = 𝜆(𝜑 𝑣 ) 

 ∀𝑣, 𝑤 ∈ 𝑉 𝐻 : 𝜆 𝑣, 𝑤 = 𝜆 𝜑 𝑣 , 𝜑 𝑤  

 An injective induced homomorphism is an induced 
subgraph isomorphism. 

 



Basic concepts – induced vs 
normal subgraph isomorphism 

Subgraph isomorphism 
NOT induced subgraph isomorphism 

Subgraph isomorphism 
Induced subgraph isomorphism 

Subgraph isomorphism 
Induced subgraph isomorphism 



Basic concepts 
Automorphisms 

 Automorphism = isomorphism of a graph on itself.  

 |aut(H)| is the size of the automorphism group aut(H).   

 For bounded degree H, one can compute |aut(H)| in 
polynomial time. 

Triangle                        “Rotation”                         
“Mirror” 

Aut(triangle)  has size 2*3=6 



Basic concepts - Networks 

Pattern =  

small graph 

 

Network =  

big database graph 

 

Y science-fiction 

X 

Likes Friend 
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Network data mining tasks 

Global / 
assymptotic 

Local 

Static 1. Clustering & 
community 
detection 

2. Pattern mining 
3. Edge/vertex 

structure/feature 
learning 

Evolution 5. Generative 
models 

4. Temporal 
learning 



Clustering & community 
detection 

 Given:  

 network 𝐷 

 Find:  

 Set of subsets (clusters, communities) 𝑉1, 𝑉2, … , 𝑉𝑛 of 𝑉(𝐺)  

 Covering 𝑉 𝐺  or not 

 Disjoint or overlapping 

 such that vertices in same cluster are close 

 similar or connected 

 and vertices from different clusters are distant 

 dissimilar / not connected 

 

Global / 
assymptotic 

Local 

Static 

Evolution 



Clusters & communities 
examples 
 Find groups of people who are densily 

connected 

 Find groups of people who have a similar 
opinion or behavior (and are connected) 

 

 People in the same country, company, school, 
domain, ... will often cluster together. 



Pattern mining 

 Given: 
 network 𝐷 

 pattern language 𝐿  

 interestingness criterion 𝐼: 𝐿 × 𝐷 → {𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒}  

  Find 

 all patterns 𝑃 ∈ 𝐿 for which 𝐼(𝑃, 𝐷)  

Global / 
assymptotic 

Local 

Static 

Evolution 



Pattern mining example 

Why do you (Y) watch “Jurassic park”  (JP)? 

Y JP 

X 

Likes Friend 

Y JP 

science-fiction 

about Likes 

Y JP 

science-fiction 

about Dislikes 

Friend 

Z X Friend Dislikes 

Likes 

Friend 

Y 

JP 

X 

Friend 

genetics about 

Researches 

Y 
... 

1 3 2 

4 5 



Vertex/edge structure/ 
feature prediction 

 Given: 

 network 𝐷,  

 example set 𝑋 = 𝑉 𝐷 ∪ 𝐸 𝐷 , target space 𝑌 

 Unknown distribution 𝑃 on 𝑋 × 𝑌 

 Training set 𝑍𝑡𝑟𝑎𝑖𝑛 ⊆ 𝑋 × 𝑌 

 Test set 𝑋𝑡𝑒𝑠𝑡 ⊆ 𝑋 

 Loss function 𝐿: 𝑌 → ℝ+ 

 Find 

 𝑓  minimizing  E  𝐿 𝑓 𝑥𝑖
𝑡𝑒𝑠𝑡 , 𝑦𝑖

𝑡𝑒𝑠𝑡
𝑖  

Global  Local 

Static 

Evolution 



vertex/edge structure/ 
feature prediction example 

 Predicting on existing objects: 
 Social network: Given a user, his profile, his 

friendship relations, is this user interested in 
chess? 

 Given a pair of friends (X,Y).  Is X planning to send 
a message to Y today? 

 Predicting on hypothetical objects: 
 Given a group of people, do they have a common 

friend (not yet in the network) ? 

 Given two people.  do they know each other (even 
though not yet represented in the network)? 

 



Learning from temporal data 

 Given: 

 time-dependent network {𝐷𝑡} 𝑡=1
𝑇 ,  (possibly 

represented by vertices and edges with time 
stamps etc.) 

 a loss function 𝐿: 𝒢 × 𝒢 → ℝ+  

 Find: 

 Prediction 𝐷 𝑇+Δ𝑡 of the network (or parts thereof) 

to minimize E 𝐿 𝐷𝑇+Δ𝑡 , 𝐷 𝑇+Δ𝑡  

Global / 
assymptotic 

Local 

Static 

Evolution 



Learning from temporal data 
example 

 Social network:  

 When will X update his profile? 

 Will X and Y become friends? 

 Will a common friend of X and Y join the network? 

 

 



Learning generative models 

 Generative model = probability distribution 
mapping a network on a new network, i.e.  

 ℎ: 𝒢 × 𝒢 → [0,1] s.t. 
∀𝐷 ∈ 𝒢,  ℎ 𝐷, 𝐷′ = 1𝐷′∈𝒢  

Global / 
assymptotic 

Local 

Static 

Evolution 



Learning generative models 

 ℎ: 𝒢 × 𝒢 → [0,1] 

 Given: 
 A hypothesis space ℋ of generative models 

 An unknown ℎ ∈ ℋ, we assume there was some 
𝐷0 and for 𝑡 = 1. . 𝑇, 𝐷𝑡  was drawn from ℎ(𝐷𝑡−1,⋅) 

 time-dependent network {𝐷𝑡} 𝑡=1
𝑇  

 Find: 
 Given loss function 𝐿: ℋ × ℋ → ℝ+ , a model 

ℎ ∈ ℋ such that E L h, ℎ  is minimal 

 Model ℎ ∈ ℋ such that hn(D0) has the same 
asymptotic properties as 𝐷𝑇. 



Learning generative models 

 Difference with ‘learning from temporal data”: 

 Not just predicting a future event, but also global 
properties should be right 

 E.g. errors which propagate quickly should be 
avoided.  (e.g. positive feedback loops) 

 



Wnat data do I need? 

 Many datasets are undirected unlabeled 
graphs (interaction = yes/no) 

 Ok for many models focussing on global & 
assymptotic aspects 

 How about correlations between interests of 
friends? 

 Then you need to records people’s interests 

 In general, “local” models will need richer data 
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Relevant fields of research 

 Statistical physics 

 Complex systems 

 Multi agent systems, ants, other simulation 

 Grammar induction 

 (Algorithmic) graph theory 

 Spectral graph theory 

 pattern mining, data mining, machine 
learning 



Statistical physics 

 If we assume a given set of laws, what will 
happen? 

 Law = graph generation model 

 Erdos-Reny model: 

 Barabasi-Albert model 

 Result = 

 Assymptotic behavior, what happens if there are 
many particles? 

 



Statistical physics 
The Erdos-Reny model 

 A random graph from the Erdos-Reny 
distribution Gp(n,p) is constructed as follows: 
 Let G be a graph on n vertices. 

 For every pair of vertices {v,w}, connect v and w with 
an edge with probability p. 

 A random graph from the Erdos-Reny 
distribution GM(n,M) is constructed as follows: 
 Let G be a graph on n vertices.  

 Choose randomly M elements from {{v,w} | v,wV(G)} 
and draw an edge between the two elements of these 
pairs. 

 



Statistical physics 
Allmost all graphs 

 Let Gn be a random graph drawn from 
G(n,p(n)), i.e. p is a function of n.  A predicate 
q (i.e. a boolean function) holds for 
(asymptotically) allmost surely (a.a.s.) if  

limnP(q(Gn)=true) = 1 

 Similar for G(n,M) 

 If no G(n,p) or G(n,M) specified: G(n, ½) by 
default (“allmost every graph”). 



Statistical physics 
Assymptotic properties 

 E.g. the “giant component” 

 If limnnp<1, then the largest component of a G(n,p) 
graph is a.a.s. not larger than 3.log(n)/(1-np)2 

 If limnnp=1, then the largest component of a G(n,p) 
graph is a.a.s. n2/3 

 If limnnp>1, then the largest component of a G(n,p) 
graph is a.a.s. close to n with +e-pn=1 



Statistical physics 
Assymptotic properties 

 E.g. connectedness: 

 If limnnp/ln(n)<1 then, G(n,p) is a.a.s. disconnected 

 If limnnp/ln(n)>1 then, G(n,p) is a.a.s. connected 



Statistical physics 
0-1 law 

 Given a first order logic formula F over 
graphs, limnP(F(G(n, ½))=true) is either 
1 or 0. 

 E.g. “contains a triangle”: adding vertices 
(and hence edges) only increases the 
probability of a triangle; if many vertices, 
the probability gets close to 1.   



Statistical physics 
What can ML and DM learn? 

 Compute from the model the “expected 
value” of a pattern. 

 An “interesting pattern” is one which deviates 
from the expected value according to the 
model. 

 E.g. assume 𝐺 is the union of a random graph 
and a clique.  Under what conditions can we 
detect the clique as an abnormally dense 
spot?1 

1 E.g. “Detecting bicliques in GF[q]. ECML2013” 



Complex systems 

 Model processes in society 

 systems of interacting individuals 

 what (often large-scale) properties do we 
observe? 

 Study behavior of systems with such 
properties 

 assymptotics 

 simulation of systems 

 emerging patterns 

 

 



Complex systems 
What can ML/DM learn? 

 Techniques to model application domains 

 Social behavior 

 Economics 

 ... 

 



Multi-agent systems, ants, 
simulation 

 How to simulate? 

 Do artificial populations offer more value 
than artificial individuals? 

 



Multi-agent systems 
What can ML/DM learn? 

 Simulation (sampling a temporal model 
forward in time) 

 Multi-agent learning (and the effects of 
changing behavior due to learning) 

 Game theory (~statistical physics: Nash 
equilibria) 



Grammar induction 

 Generative model ~ probabilistic grammar 

 Initial state 

 (probabilistic) production rules 

 Graph grammars 

 Hyperedge replacement grammars 

 Vertex replace grammars 



Grammar induction 
What can DM/ML learn? 

 Graph grammars: learning generative models 
producing certain probability distributions 
over graphs 



(Algorithmic) graph theory 

 Algorithms on graphs and their complexity 
are well-studied. 

 How to solve graph problems 

 Complexity of solving problems 

 



(Algorithmic) graph theory 
What can ML/DM learn? 

 Pattern matching  

 E.g. see part 2 

 Support measures 

 e.g. Maximum independent set, Lovasz theta 
function, ... (part 3) 

 Shortest path algorithms 

 Similarity, maximum common subgraph, ... 

 ... 

 



Relational databases 

 A network is a relational database where the 
binary “edge” relation has foreign keys to 
itself. 

 Matching patterns = evaluating queries 



Relational databases 
What can ML/DM learn? 

 Database theory sometimes shows how to 
match patterns (=evaluate queries), but is 
usually not optimized for “recursive” foreign 
keys. 

 Many ideas for data structures (e.g. recently 
growing interest in graph database indexing) 

 



Spectral graph theory1 

 Study of  

 the adjacency matrix of a graph 

 its eigenvalues  

 the Laplacian matrix: 𝐿 = 𝐷 − 𝐴 with D degree 
matrix (𝐷𝑣𝑣  is degree of 𝑣) and 𝐴 adjacency 
matrix. 

 ... 

 

1 Fan Chung, “Spectral graph theory”  



Spectral graph theory 
What can ML/DM learn? 

 Laplacian describes “influence flow”, used in 

 semi-supervised learning 

 manifold embedding 

 ... 

 Clustering: 

 # of zero eigenvalues = # of connected 
components 

 



Mining, learning 

 Relational learning (e.g. SRL) 

 Learning in graphs (e.g. MLG) 

 Using logical representations (e.g. ILP) 

 (but adding logic makes problems often 
undecidable) 



Introduction summary (1/3) 
Basic concepts 

 Graphs 

 labels 

 adjacency matrix 

 Paths 

 distance 

 Morphisms (matching operators) 

 



Introduction summary (2/3) 
Network data mining tasks 

Global / 
assymptotic 

Local 

Static 1. Clustering & 
community 
detection 

2. Pattern mining 
3. Edge/vertex 

structure/feature 
learning 

Evolution 5. Generative 
models 

4. Temporal 
learning 



Introduction summary (3/3) 
Domains researching networks 

Spectral  
graph theory 

Algorithmic 
graph theory 

Statistical 
physics 

Multi-agent 
systems 

Game theory 

Databases Complex systems 

Grammar 
induction 

ML & DM 

Networks 

Underlying process Analysis Techniques 

... 
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Introduction 
What is a pattern? 

 Pattern = collection of vertices that should 
satisfy some constraints (connections, labels, 
...) 

 

Y science-fiction 

X 

Likes Friend 



Introduction 
A generic pattern miner 

Assume interesting  is anti-monotonic 
𝑘 ← 0; 𝐶0 ← 𝑀𝑖𝑛𝑖𝑚𝑎𝑙𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝑠 

While 𝐶𝑘 ≠ {} 

 𝑆𝑘 ← {𝑃 ∈ 𝐶𝑘|𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡𝑖𝑛𝑔(𝑃)} 

 𝐶𝑘+1 ←  𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛𝑠(𝑃) 
𝑃∈𝑆𝑘

 

 𝑘 ← 𝑘 + 1 

EndWhile 

𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 ←  𝑆𝑘
 
𝑘   



Introduction 
A generic pattern miner 

 “assume interesting is anti-monotonic” allows for 
pruning. 

𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡𝑖𝑛𝑔 𝐺 ∧ 𝐺 ≤ 𝐻  
⟹ 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡𝑖𝑛𝑔(𝐻) 

 Can also mine using non-anti-monotonic criterion (e.g. 
correlated patterns1) 

 Breadth-first “Apriori-style” 2  
 Also depth-first possible 3  

 To be instantiated: 
 MinimalPatterns & Extensions 
 Interesting 

1 Zimmermann & DeRaedt, DS2004 
2 Agrawal & Srikant, VLDB1994 
3 Han, Pei, Yin SIGMOD2000 



Introduction 
Enumeration of patterns 

 Many approaches are generate-and-test 

 How to generate all graphs subject to anti-
monotonic constraint? 

 Practice: mining graph patterns in databases of 
transactions represented with graphs: AGM, 
gSpan, FSG, Gaston2 

use canonical form 

 Theory: polynomial-delay (+evaluation anti-
monotone criterion) 1 

 

 

 

1 Ramon & Nijssen, JMLR2008 
2 Nijssen & Kok 2004 

To be instantiated: 
 MinimalPatterns & Extensions 

 Interesting 



Introduction 
Complexity notions 

 Enumeration/listing problems (“find all ...”) 
may have output 𝑂 exponential in input size 𝐼. 

 Polynomial delay: between solution 𝑗 − 1 and 
𝑗 at most 𝑝𝑜𝑙𝑦 𝐼  time. 

 Incremental polynomial time: between 
solution 𝑗 − 1 and 𝑗 at most 𝑝𝑜𝑙𝑦 𝐼, 𝑗  time. 

 Output-polynomial time: total running time 
at most 𝑝𝑜𝑙𝑦 𝐼, 𝑂  
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To be instantiated: 
 MinimalPatterns & Extensions 

 Interesting 



Pattern matching 
Overview 

 Problem statement 

 Hardness results 

 Triangle counting 

 Small patterns 

 Larger patterns 

 Cliques 

 Sampling 

 Fixed parameter tractability 

 



Pattern matching 
The problem 

 Given: 

 A network 𝐷 

 A pattern  𝑃 

 

 Find 

 (all/some/one/...) embeddings of  𝑃 in 𝐷 OR 

 an aggregate (count, average, ...) computed over 
these embeddings 

 

listing problem 

decision problem 



Pattern matching 
Why do we care? 

 Basic operation for both learning and mining 

 There is a literature on basic pattern 
matching, but learning & mining queries have 
specific characteristics 

 Data is rich, satisfies integrity constraints, ... 

 Patterns may have wildcards 

 DM/ML is aimed at collecting statistics 



Pattern matching 
Subgraph isomorphism complexity 

 Pattern 𝑃, network 𝐷 

 List embeddings π: 𝑃 → 𝐷  

 #𝑃-complete 

 Classic algorithms (backtracking search): 

𝑂 |𝑉 𝐷 ||𝑉 𝑃 |  

 

 

#P : counting problems f such that there is a polynomial-time non-deterministic Turing  
machine for which upon input x the number of accepting states equalls f(x)  . #𝑃 ⊇ 𝑁𝑃 



Pattern matching 
Heuristic search 

Ullmann’s algorithm 1  (pattern 𝑃, network 𝐷) 
 Match(𝑃, 𝐷, {}) 
 
Procedure Match (𝑃, 𝐷, partial embedding 𝜋) 
    If 𝑉 𝑃 = 𝑑𝑜𝑚(𝜋)  
    then ListSolution(𝜋) 
    else 
 Select 𝑣 ∈ 𝑉 𝑃 ∖ 𝑑𝑜𝑚(𝜋)  
 Let 𝐶 = {𝑤 ∈ 𝑉 𝐷 | 𝑤 𝑚𝑎𝑦𝑏𝑒 𝑖𝑚𝑎𝑔𝑒 𝑜𝑓 𝑣}  
 For all  𝑤 ∈ 𝐶 do 
  𝑀𝑎𝑡𝑐ℎ 𝑃, 𝐷, 𝜋 ∪ { 𝑣, 𝑤 }   

 
1 Ullmann, JACM 23(1), 1976 



Pattern matching 
Avoiding worst-case complexity 

 Database of transactions of  graphs 

 E.g. many small molecule graphs, RNA 

 exploit structure of database graphs, e.g.  

 atoms have max degree = 6   1  

 molecules are often planar (or even outerplanar 2 ) 

 bounded treewidth 3  

 

 

1 E.M.Luks, J Computer & System Sciences 25(1), 1982 
2 Horvath & Ramon, DMKD 21(3), 2010 
3 Horvath & Ramon, TCS 411, 2010 



Pattern matching 
Avoiding worst-case complexity 

 Network 

 No definite structure we can rely on 

 Approximate matching may help but  

 Subgraph isomorphism is hard to approximate 

Structural properties of patterns 

 Triangles and other small patterns 

 Trees 

Statistical properties of network 

 Random graphs 

 



Pattern matching 
Triangle counting 

 Simple problem: 

 Given: a triangle 𝑃 and a network 𝐷 

 List or count:  all embeddings of 𝑃 in 𝐷 

 but a lot of literature on solving it 



Pattern matching 
Triangle counting 
 Idea 1: Brute force 

 Check every triple of vertices of 𝐺 

 Runtime 𝑂 |𝑉 𝐺 |3   



Pattern matching 
Triangle counting 
 Idea 2: matrix multiplication 1 

 Let 𝐴 be the adjacency matrix of 𝐺 

 𝐴𝑛
𝑢,𝑣  = # of walks of length 𝑛 between 𝑢 and 𝑣 

 Matrix multiplication is 𝑂 |𝑉 𝐺 |2.37    2 

 Hence, compute 𝑡𝑟 𝐴3 /3! 
1 

3 2 

4 

𝐴 =

0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0

 𝐴3 =

2 3 4 4
3 0 1 1
4 1 2 3
4 1 3 2

 𝐴2 =

3 0 1 1
0 1 1 1
1 1 2 1
1 1 1 2

 

𝑡𝑟 𝐴3 /3! = (2+2+2)/6 = 1 

1 Alon et al. 1997 
2 For practical problems, the exponent will be higher 
 



Pattern matching 
Triangle counting 
 Idea 3: Sparse graphs 

 Iterate over edges1 : 𝑂 |𝐸(𝐺)|
3

2  

 NodeIterator: Iterate over pairs of neighbors of 
vertices: 𝑂 𝑑𝑚𝑎𝑥

2 |𝐸 𝐺 |  with 𝑑𝑚𝑎𝑥  the maximal 
degree of 𝐺. 

 

1 Itai and Rodeh 1978 



Pattern matching 
Triangle counting 
 Idea 4: Approximation 

 Sparsification: delete randomly part of the graph, 
count triangles, adjust for sampling 

 Sampling: perform a number of random attempts, 
adjust for sampling 

 Partition graph into parts, solve them, adjust for 
triangles spanning several partitions. 

1 Itai and Rodeh 1978 



Pattern matching 
Triangle counting 

1 Itai and Rodeh 1978 

Alon et al., 1997 Exact 𝑂 |𝑉 𝐺 |2.37   

Itai & Radeh, 1978 Exact 
 𝑂 |𝐸(𝐺)|

3

2  

Tsourakakis ICDM2008 Exact 

Faloutsos KDD2009 Approx Sparsification 

Avron 2010 Approx Sampling 

Pagh&Tsourakakis, InfProcLet 2012 Approx Partitioning 

Becchetti et al. TKDD 2010 Approx 



Pattern matching 
Counting motifs of size 3-5 

 Motifs = not necessarily connected induced 
subgraph 

 Brute force sometimes still works1 

 Sampling strategy (e.g. GUISE2): 

 Consider an induced graph 

 Omit vertex or add neighbor 

 Metropolis hastings: adjust for fact that higher-
degree vertices are reached more easily 

1 Shen-Orr et al. Nat. Genet.2002 
2 Bhuiyan et al. ICDM 2012 



Pattern matching 
Sampling motifs with MCMC 

𝐺 

Motifs 



Pattern matching 
Sampling motifs with MCMC 

𝐺 

Motifs 

0 

1 

0 

0 

0 

0 

State 



Pattern matching 
Sampling motifs with MCMC 
𝐺 

Motifs 

0 

1 

0 

0 

0 

0 

State s1 
d(s1)=9 



Pattern matching 
Sampling motifs with MCMC 
𝐺 

Motifs 

0 

1 

0 

0 

0 

0 

State s1 
d(s1)=9 

𝑇 𝑢, 𝑣 = min
1

𝑑(𝑢)
,

1

𝑑(𝑣)
  (for 𝑢 ≠ 𝑣) 

𝑇 𝑢, 𝑢 = 1 −  𝑇(𝑢, 𝑣)

𝑣≠𝑢

 



Pattern matching 
Sampling motifs with MCMC 

Motifs 

1 

1 

0 

1 

1 

0 

𝑠1 𝑠2 

𝑠3 𝑠4 



Pattern matching 
Overview 

 Problem statement 

 Hardness results 

 Triangle counting 

 Small patterns 

 Larger patterns 

 Cliques 

 Sampling 

 Fixed parameter tractability 

 



Pattern matching 
Cliques 

 Several approaches aim at finding maximal 
cliques 

 Clique detection for non-directed graphs,  



Clusters & communities 
Bicliques 

 Bi-partite networks 𝐷 = (𝑉1 ∪ 𝑉2, 𝐸) with 
𝐸 ⊆ 𝑉1 × 𝑉2. 

 Bi-clique = 𝐶1 × 𝐶2 with 𝐶1 ⊆ 𝑉1 and 𝐶2 ⊆ 𝑉2. 

 Several variants: 

 Tile mining (in boolean matrices, unweighted 
networks) 

 Non-negative matrix factorization (real-valued 
matrices, weighted networks) 

Advertisement:  
Join ECML/PKDD2013 Tue1B session on Networks (1) 
J.Ramon, P.Miettinen, J.Vreeken, Detecting bicliques in GF[q],  



Pattern matching 
Larger patterns: Sampling 

Pattern matching 
Avoiding worst-case complexity 

 Network 
 No definite structure we can rely on 

 Approximate matching may help but 
 Subgraph isomorphism is hard to approximate 

 Structural properties of patterns 
 Triangles and other small patterns 

 Trees 

 Statistical properties of network 
 Random graphs 

 

DONE 

Sampling 



Pattern matching 
Sampling – strategies 

 Partitioning 
 Match pattern in one or all partitions 

 Assume that network has rather uniform structure 

 Scale result to full network 

 Worked for triangle counting, harder for larger 
patterns. 

 Simulation (e.g. Fürer) 
 Attempt several times to find single match 

 assume network is sufficiently uniform 

 average over iterations 



Fürer’s algorithm1 for pattern 
matching in random graphs 

 Input: 

 Network G drawn from G(n,p) 

 Pattern H with a decomposition (see later) 

 Output: 

 |𝐸𝑚𝑏(𝐻, 𝐺)|, the number of images of H in G. 

 Complexity: 

 Exact & worst case: #P-complete 

 Exact for “most graphs”: still untractable 

 Approximate for most graphs : this algorithm (FPRAS) 

1 Martin Fürer & Shiva Prasad Kasiviswanathan  Approx/Random 2008 



Pattern matching 
Fürer’s algorithm - FPRAS 

 Fully Polynomial Randomized Approximation 
Schema: 
 Randomized algorithms outputting for almost every graph 

in polynomial time a solution with relative error of . 

 A little more formally: 
 An FPRAS is a randomized algorithm such that there is a 

polynomial p(,) such that for every  there is an n0 such 
that for all n>n0 and , and for at least a fraction 1- of the 
graphs of size n, the algorithm outputs in time at most 
p(n,1/) a solution within a factor 1± of the correct 
solution.  

 

 



Pattern matching 
Fürer: Basic algorithm 

Function unbiased_estimator(H,G)    [estimates |𝐸𝑚𝑏(𝐻, 𝐺)|] 

 (,P())=Try_to_find_embedding(H,G); 

 IF =failed  

  THEN return 0; [No embedding found] 

  ELSE return 1/P() ;   [return inverse 

EndFunction     probability of ] 

 

Function count_embeddings(H,G,) 

 c = 0;  s = C/2; 

 For i = 1 .. s do c=c+unbiased_estimator(H,G); EndFor 

 Return c/s; 

EndFunction 



Pattern matching 
Fürer: Basic algorithm 

 Count_embeddings works correctly: 
 Every embedding   is found with probability P() 

by Try_to_find_embeddings(H,G).  With 
probability 1-P() Try_to_find_embeddings fails 

 Every embedding , is found once in 1/P() calls, 
and in that case, unbiased_estimator returns 
1/P().  Hence,  contributes 1 to each call to 
unbiased_estimator, on average. 

 Hence, on average, unbiased_estimator returns 
the number of embeddings 

 Task left: find a good Try_to_find_embedding 



Pattern matching 
Fürer - strategy 

 Decompose vertex set of pattern 

 match one partition at a time until complete 

 Compute probability of finding this particular 
solution 

 Show the overall algorithm converges 
sufficiently fast. 
 The sum of a (very) large number of identical 

distributions becomes Gaussian.  Standard deviation 
goes down with square of sample 

 Whatever the sample size, we can always (with very 
small probability) have a large error 



Pattern matching 
Fürer: finding embeddings 

INPUT: 𝐺, 𝐻, partition {𝑉1, 𝑉2, … , 𝑉𝑙} of  𝑉(𝐺) 

𝑋 ← 1; 𝜑0 ← {}  

For 𝑖 = 1. . 𝑙 

   𝐸 ← {𝜑 ∈ 𝐸𝑚𝑏(∪ 𝑗=1
𝑖 𝑉𝑗 , 𝐺)|𝜑 ⊃ 𝜑𝑖−1}  

   𝑋𝑖 ← |𝐸| 

   if 𝑋𝑖 = 0 then terminate and return (failed, 0) 

   pick an embedding 𝜑𝑖  uniformly at  random from 𝐸  

   X ← 𝑋. 𝑋𝑖    

EndFor 

Return (𝜑𝑙 , 1/𝑋) 

 

 



Fürer - Sample run (step 1.1) 

 𝑋 = 1; 𝜑0 = {} 

 𝑖 = 1 

 

 

  V1      V2        V3       V4 



Fürer - Sample run (step 1.2) 

 𝑋 = 1; 𝜑0 = {} 

 𝑖 = 1 

 𝑋1 = 𝐸 = 8 

 

 

 

  V1      V2        V3       V4 



Fürer - Sample run (step 1.3) 

 𝑖 = 1 

 𝑋1 = 8 

 𝜑1 = {(1, 𝑎)} 

 𝑋 = 8  

 

 

 

  V1      V2        V3       V4 

1 

a 

3 

5 

4 

2 

f 

e 
d 

c 

b 

h 

g 



Fürer - Sample run (step 2.1) 

 𝑖 = 2 

 𝑋 = 8 ; 𝜑1 = {(1, 𝑎)};  

 

 

 

  V1      V2        V3      V4 

1 

a 

3 

5 

4 

2 

f 

e 
d 

c 

b 

h 

g 



Fürer - Sample run (step 2.2) 

 𝑖 = 2 

 𝑋 = 8 ; 𝜑1 = {(1, 𝑎)};  

 𝑋2 = 𝐸 = 3.2 = 6 

 𝑋 ← 𝑋. 𝑋2 = 8 ∗ 6 = 48 

 

 

 

  V1      V2        V3      V4 

1 

a 

3 

5 

4 

2 

f 

e 
d 

c 

b 

h 

g 



Fürer - Sample run (step 2.3) 

 𝑖 = 2 

 𝜑1 = {(1, 𝑎)};  

 𝑋2 = 𝐸 = 3.2 = 6 

 𝑋 = 48 

 𝜑2 =
{ 1, 𝑎 , 2, ℎ , (3, 𝑐)} 

 

 

  V1      V2        V3       V4 

1 

a 

3 

5 

4 

2 

f 

e 
d 

c 

b 

h 

g 



Fürer - Sample run (step 3.1) 

 𝑖 = 3 

 𝜑2 = { 1, 𝑎 ; 2, ℎ , (3, 𝑐)};  

 𝑋 = 48  

  V1      V2        V3       V4 

1 

a 

3 

5 

4 

2 

f 

e 
d 

c 

b 

h 

g 



Fürer - Sample run (step 3.2) 

 𝑖 = 3 

 𝜑2 = { 1, 𝑎 ; 2, ℎ , (3, 𝑐)};  

 𝑋 = 48  

 𝑋3 = 𝐸 = 2 

 X = X . X3 = 48 * 2 = 96 

  V1      V2       V3       V4 

1 

a 

3 

5 

4 

2 

f 

e 
d 

c 

b 

h 

g 



Fürer - Sample run (step 3.3) 

 𝑖 = 3 

 𝜑2 = { 1, 𝑎 ; 2, ℎ , (3, 𝑐)};  

 𝑋 = 48  

 X3 = 2;  X = 96 

 𝜑3 =
{ 1, 𝑎 , 2, ℎ , 3, 𝑐 , (4, 𝑓)} 

  V1      V2       V3       V4 

1 

a 

3 

5 

4 

2 

f 

e 
d 

c 

b 

h 

g 



Fürer - Sample run (step 4.1) 

 𝑖 = 4 

 𝜑3 =
{ 1, 𝑎 ; 2, ℎ , 3, 𝑐 , (4, 𝑓)};  

 𝑋 = 96 

  V1      V2        V3      V4 

1 

a 

3 

5 

4 

2 

f 

e 
d 

c 

b 

h 

g 



Fürer - Sample run (step 4.2) 

 𝑖 = 4 

 𝜑3 =
{ 1, 𝑎 ; 2, ℎ , 3, 𝑐 , (4, 𝑓)};  

 𝑋 = 96 

 𝑋4 = 1 

 𝜑4 = { 1, 𝑎 , 2, ℎ , 3, 𝑐 ,  
4, 𝑓 , (5, 𝑔)} 

 

  V1      V2        V3      V4 
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a 

3 
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e 
d 

c 

b 

h 

g 



Fürer - Sample run – a solution 

 X=96;  

 ={(1,a),(2,h),(3,c),(4,f),(5,g)};  

  V1      V2        V3      V4 

1 

a 

3 

5 

4 

2 

f 

e 
d 

c 

b 

h 

g 



Fürer - Sample run bis 

 𝑖 = 3 

 𝜑2 = { 1, 𝑎 ; 2, ℎ , 3, 𝑐 };  

 X3 = |E| = 2 

 X = X . X3 = 48 * 2 = 96 

  V1      V2        V3      V4 

1 

a 

3 

5 

4 

2 

f 

e 
d 

c 

b 

h 

g 



Fürer - Sample run bis 

 𝑖 = 3 

 𝜑2 = { 1, 𝑎 ; 2, ℎ , 3, 𝑐 };  

 X=96 

 𝜑3 = { 1, 𝑎 , 2, ℎ , 3, 𝑐 ,  
4, 𝑏 } 

 

  V1      V2        V3      V4 

1 

a 

3 

5 

4 

2 

f 

e 
d 

c 

b 

h 

g 



Fürer - Sample run bis 

 𝑖 = 3 

 𝜑3 =
{ 1, 𝑎 ; 2, ℎ , 3, 𝑐 , (4, 𝑏)};  

 X=96 

 X4 = 0  no solution! 

 

 

  V1      V2       V3      V4 
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a 

3 

5 

4 
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e 
d 

c 

b 

h 

g 



Pattern matching 
Fürer’s theorem 

 Important: When does it work?   

 The algorithm is an FPRAS (for allmost all G) if: 

 Partitioning of V(H) is a “ordered bipartite 
decomposition” 

 p(n)n2    

 np/4    

 E(H)3n-4p-2  0 

Where 

    =max(2,), =max{|E(F)|/(|V(F)|-2) | FH, |V(F)|3} 

 

 



Pattern matching 
Fürer: Simplified theorem 

 It works if the count is not too small. 
 Intuition: 

 The frequency of very rare events is hard to measure 
(the “interesting” part of the sample where we 
actually observe something, is smaller) 

 The worst case is where one doesn’t know whether 
𝐸𝑚𝑏 𝐻, 𝐺 = 0 or 𝐸𝑚𝑏 𝐻, 𝐺 = 1 

 If we run the algorithm and we find some 
embeddings, our estimate will be rather 
accurate. 

 If no “ordered bipartite decomposition”, then we 
can still run this algorithm, but no FPRAS 
guarantee. 



Pattern matching; Fürer 
Ordered bipartite decomposition 

 An ordered bipartite decomposition of H is a 
partition {V1, V2, ... , Vl} of V(H) such that 

 Each Vi (i=1..l) is an independent set in H 

 i, vVi j such that NH(v)  k<iVk Vj 

 So if a neighbor of a vertex vVi is in Vj with 
j>i, then no neighbors of v must be in Vj’ with 
j’>i and jj’. 

 



Fürer - Graphs with a 
decomposition 

 Cycles longer than 3 (see above running example) 
 Bounded degree outerplanar graphs without 

triangle 
 Trees 
 Grids 
 ... 
 Not: triangles (but separate proof), ... 



Pattern matching 
Fixed parameter tractability 

Pattern matching 
Avoiding worst-case complexity 

 Network 
 No definite structure we can rely on 

 Approximate matching may help but  
 Subgraph isomorphism is hard to approximate 

 Structural properties of patterns 
 Triangles and other small patterns 

 Trees 

 Statistical properties of network 
 Random graphs 

 

DONE 

Fixed  
parameter 
tractability 

DONE 



Pattern matching 
Fixed parameter tractability 

 Classic complexity classes: 

 Input size: 𝑛 

 𝑃 : Polynomial time 𝑂 𝑛𝑑  for some 𝑑 

 Are all problems not in 𝑃 are hard: not 𝑂 𝑛𝑑  for 

some 𝑑 ?  No, some may still be easier than others 

 Fixed parameter tractability: 

 Input has two parts of sizes: 𝑛 and 𝑘 

 For 𝑘 fixed, the problem is tractable: 𝑂 𝑛𝑑𝑓(𝑘)   

 May be acceptable if 𝑘 is small 

 

 



Pattern matching 
Fixed parameter tractability 

 Fixed parameter tractability: 
 Input has two parts of sizes: 𝑛 and 𝑘 

 For 𝑘 fixed, the problem is tractable: 𝑂 𝑛𝑑𝑓(𝑘)   

 May be acceptable if 𝑘 is small 

 Pattern matching: 
 Network: size 𝑛 

 Pattern: size 𝑘 

 𝑘 is usually small, 𝑛 may be large. 

 So fixed parameter tractability is suitable for 
pattern matching! 



Pattern matching 
Fixed parameter tractability 

 Matching trees in network in 

𝑂 𝑚𝑘2𝑘 = 𝑂∗ 2𝑘  

 𝑘 = 𝑉(𝑃) : pattern size 

 𝑚 = 𝐸(𝐷) : network size 

 Randomized algorithm1 which works well for 
practical pattern mining2 

 

1 R. Williams, Inf Proc Lett 2009 
2 A. Kibriya & J.Ramon, DMKD 2013 



Pattern matching summary 

 Basic operation for mining and learning 

 Networks have no hard structure we can rely on 

 Approximate matching may help but  

 Subgraph isomorphism is hard to approximate 

Structural properties of patterns 

 Triangles and other small patterns 

 Trees 

Statistical properties of network 

 Random graphs 

 



Pattern matching – open 
problems 

 Many matching problems for which fixed 
parameter approach could help 

 More complex queries 

 Implicit relations 

 Big data (not in RAM) 

 combine with indexing 

 reduce passes over data (or samples) 

 distributed approaches, ... 
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Frequency / support1 measures 
The problem 

 How frequent is pattern 𝑃 in network 𝐷? 

 Why assign a “frequency” to a pattern? 

 Popular criterion to measure relevance of pattern 

 E.g. 40% of respondents liked both movie m1 and m2.  

 Way to represent association rules 

 E.g. Of all respondents liking movie m1 and m2, 50% 
also liked m3 (i.e. 40%*50% = 20%) 

 Measure of statistical power 

 E.g. We rolled the dice 100 times and observed 40 
times a 6.  It must be biased. 

1 both “frequency” and “support” are used, often interchangebly 



Support measures 
What do you want? 

 Counting objects 

 X% of people own a house in the same region where 
they work. 

 network unimportant, just count people 

Person2 

House1 

Job2 

Region1 

Person1 Job1 

Person3 Job3 

Region2 
House1 



Support measures 
What do you want? 

 Counting objects 

 Performing statistics 

 We rolled the dice 100 
times and observed 40 
times a 6. It is biased!   

 

 

 We rolled the dice.  100 
people   observed a 6. Would 
it be biased? 

Dice 

Roll 

Roll 

Roll 

Roll 

Obs 

Obs 

Obs 

Obs 

Person 

Thrustworthy 

Dice Roll 

Obs 

Obs 

Obs 

Obs 

Person 

Person 

Person 

Person 



Support measures 
What do you want? 

 Counting objects 

 Performing statistics 

 Association rules 

 If X has a friend Y such that Y smokes, then with 
probability a%, X smokes too 

 If X and Y are friends and Y smokes, then with 
probability b%, X smokes too 

 Different quantor/aggregator placement, probably 
𝑎 ≠ 𝑏 



Support measures 
What do you want? 

 What do you want? 

 Counting objects 

 Performing statistics 

 Association rules 

 ... 

 If you know what you want, you’re closer to 
knowing what to do.  No measure is good in all 
cases. 

 



Support measures 
Overview 

 Embedding-based 
 Embedding count 

 Image count 

 Key-based 
 Key image count 

 Min-image 

 Overlap-based 
 Maximum independent set 

 Minimum clique partition 

 Intermediate measures and relaxations 



Support measures 
Embedding-based 

 Embedding-count: |𝐸𝑚𝑏 𝑃, 𝐷 | 

 Image-count: 𝐼𝑚𝑔 𝑃, 𝐷  
𝐸𝑚𝑏 𝑃, 𝐷 = |𝐴𝑢𝑡(𝑃)|. |𝐼𝑚𝑔 𝑃, 𝐷 | 

 E.g.: Among all triples (X,Y,Z) such that X and Y 
are friends and Z is a family member of X, the 
fraction of triples where Y knows Z is a%. 

 Embeddings may be concentrated in small part 
of network, e.g. large family where everyone is 
friend with each other.  

 Not anti-monotonic, no pattern-mining pruning 



Support measures 
Key-based 

 Decide before the start of data mining what is 
the type of object of interest (“the primary 
key”) 

 E.g. We are interested in ‘friends’ relationships  

 a% of ‘friends’ relations are between colleagues.  

 b% of friends have the same mother tongue,  

 c% of friend pairs (X,Y) have at least one common 
friend Z,  

 ...  

 

 



Support measures 
Key-based 

 Decide before the start on the “key”. 

 The “key” is a common subpattern of all patterns 
considered. 

 There is a fixed, finite set of objects (all 
images/embeddings of the “key”), the network 
relations are not considered. 

 Easy to count 

 Anti-monotonic (good for pattern mining) 

 Not all statistics are valid (e.g. the dice example) 

 

 



Support measures 
Key-based: dice example  

 Key = dice observation 

 Performing statistics: 

 We rolled the dice 100 
times and observed 40 
times a 6. It is biased!   

 

 

 

 We rolled the dice.  100 
people   observed a 6. Would 
it be biased? 

dice1 

Roll 

Roll 

Roll 

Roll 

Obs 

Obs 

Obs 

Obs 

Person 

Thrustworthy 

dice1 Roll 

Obs 

Obs 

Obs 

Obs 

Person 

Person 

Person 

Person 

dice1 Roll Obs Person 

Key 

4 images of Key 
eqch showing a 6 

4 images of Key 
eqch showing a 6 



Support measures 
Min-image1 

 𝑚𝑖𝑛𝐼𝑚𝑎𝑔𝑒 𝑃, 𝐷 = 
𝑚𝑖𝑛𝑣∈𝑉(𝑃) {𝜋 𝑤 𝜋 ∈ 𝐸𝑚𝑏(𝑃, 𝐷)}| 

 Allows for choosing each vertex as 
(singleton) key, giving a lower bound for 
each vertex-key-based frequency 

 Anti-monotonic:  
𝑃 ≤ 𝑄 ⇒ 𝑚𝑖𝑛𝐼𝑚𝑎𝑔𝑒 𝑃, 𝐷 ≥ 𝑚𝑖𝑛𝐼𝑚𝑎𝑔𝑒(𝑄, 𝐷) 

 

 
1 Bringmann & Nijssen. PAKDD 2008 



Support measures 
Overlap-based: model dependence 

 The easiest way to perform statistics is to 
have independent observations. 

 How do we get as much independent 
observations as possible out of a network? 

 Model the independences in “overlap graph”. 

 

 Caution: selecting independent observations 
is not necessarily a sample from the original 
distribution! 



Support measures 
Overlap-based: Overlap graph 

 Overlap graph 𝐺𝑃
𝐷: 

 𝑉 𝐺𝑃
𝐷 = 𝐼𝑚𝑔(𝑃, 𝐷) 

 𝑔1, 𝑔2 ∈ 𝐸 𝐺𝑃
𝐷  if images 𝑔1 and 𝑔2 overlap 

 What is overlap? 
 Two occurrences of a pattern overlap if we can’t consider 

them independent in the context of the statistics we are 
doing 

 Vertex-overlap: 𝑔1, 𝑔2 ∈ 𝐸 𝐺𝑃
𝐷 ⇔ 𝑉 𝑔1 ∩ 𝑉 𝑔2 ≠ ∅ 

 Edge-overlap: 𝑔1, 𝑔2 ∈ 𝐸 𝐺𝑃
𝐷 ⇔ 𝐸 𝑔1 ∩ 𝐸 𝑔2 ≠ ∅ 

 Other options, e.g. Harmful overlap1 

1 Fiedler & Borgelt MLG 2007 



Support measures 
Overlap-based: What is overlap? 

 Dice example:  

 Overlap if the Roll is the same. 

 We are interested in dice1, so naturally all 
embeddings will contain dice1. 

dice1 

Roll 

Roll 

Roll 

Obs 

Obs 

Obs 

Obs 

Person2 

dice1 Roll Obs Person 

Person1 



Support measures 
Overlap-based: Court example 

 Vertices: case, judges, (prodeo) lawyers, party 

 Edges between case-judge, case-lawyer, 
case-party 

Party1 

Case1 

Lawyer1 

Judge3 

Judge1 

Party3 

Party2 Judge2 Lawyer1 

Lawyer1 

Case2 

Case3 

Case4 



Independent set 

 W is an independent set of H iff 

 W  V(H) 

 There are no v,wW such that (v,w)E(H) 

Independent set of size 2                          Independent set of size 1 



Support measures 
Overlap-based: MIS measure 

 The size of a Maximum Independent Set 
(MIS) of the overlap graph 𝐺𝑃

𝐷 of pattern 𝑃 in 
network 𝐷: 𝑀𝐼𝑆 𝑃, 𝐷 = 𝑀𝐼𝑆(𝐺𝑃

𝐷) 

 

1 Vanetik et al. DMKD 2006 

dice1 

Roll 

Roll 

Roll 

Obs1 

Obs2 

Obs3 

Obs4 

Person2 

dice1 Roll Obs Person 

Person1 

(dice1,obs=6,Person1) 

(dice1,obs=6,Person2) 

(dice1,obs=6,Person2) 

(dice1,obs=3,Person2) 

𝑀𝐼𝑆(𝐺𝑃
𝐷) = 3  P 

D 



Support measures 
Overlap-based: MIS measure 

 The size of a Maximum Independent Set 
(MIS) of the overlap graph 𝐺𝑃

𝐷 of pattern 𝑃 in 
network 𝐷: 𝑀𝐼𝑆 𝑃, 𝐷 = 𝑀𝐼𝑆(𝐺𝑃

𝐷) 

 

Party1 

Case1 

Lawyer1 

Judge3 

Judge1 

Party3 

Party2 Judge2 Lawyer1 

Lawyer1 

Case2 

Case3 

Case4 

Case1 

Case2 

Case3 

Case4 

Party 
Case1 

Lawyer 

Judge 
P 

D 

𝑀𝐼𝑆(𝐺𝑃
𝐷) = 2  



Support measures 
Overlap-based: more measures 

 Maximum independent set idea: 

allows to measure overlap and extract 
independent observations 

Anti-monotonic 

NP-hard to compute 

Possibly ignores too much information 

 Does the overlap graph allow for other 
measures? 



Support measures 
Overlap-based: more measures 

 Requirements for feasible measure: 

 Anti-monotonic in pattern: 

 𝑝 ≤ 𝑃 ⇒ 𝑓 𝑝, 𝐷 ≥ 𝑓(𝑃, 𝐷) 

 Monotonic in network: 

 𝐷 ≤ 𝐷′ ⇒ 𝑓 𝑃, 𝐷 ≤ 𝑓(𝑃, 𝐷′) 

 Normalized 

 If there are 𝑛 independent (non-overlapping) 
observations (overlap graph = 𝑛 isolated vertices), 
then support is 𝑛. 

 



Support measures 
Overlap-based: more measures 

 If 𝑓 is a function on the overlap graph, and 
𝑓 is feasible measure, then: 

𝑀𝐼𝑆 𝑃, 𝐷 ≤ 𝑓 𝑃, 𝐷 ≤ 𝑀𝐶𝑃(𝑃, 𝐷) 

 where 𝑀𝐶𝑃(𝐺𝑃
𝐷) is the minimum clique 

partition number of the overlap graph, 
another NP-hard to compute number. 

 



Support measures 
Overlap-based: more measures 

 Fortunately, several efficiently computable 
functions are between 𝑀𝐼𝑆 and 𝑀𝐶𝑃. 

 Lovasz theta1: 𝜗 
 feasible measure2; computable with semidefinite 

program (SDP), which is still rather expensive 

 MIS-relaxation3: s 
 Is a feasible measure3; computable with linear 

program (LP), hence efficiently. 

 We have 𝑀𝐼𝑆 ≤ 𝜗 ≤ 𝑠 ≤ 𝑀𝐶𝑃 

1 D. Knuth, Electr. J. Combin 1994 
2 Calders et al. DMKD 2011 
3 Wang & Ramon DMKD 2013 



Support measures 
Summary 

Measure Anti-Monotonic? Statistics? Efficient? 

Embedding count    

Image count    

key image count    

min-image    

Overlap-MIS    

Overlap-MCP  ?  

Overlap-𝜗   ? 

Overlap-s    



Frequency – open problems 

 Combine pattern matching and frequency 

 Exploit network structure to increase speed 
(methods up to now don’t) 



Contents 

 Introduction 

 Networks from different points of view 

 Patterns & pattern mining 

 Introduction 

 Pattern matching 

 Frequency 

 Additional remarks 

 Learning 

 



Expected number of 
embeddings 

 Let 𝐷~𝐺(𝑛, 𝑝), then  

𝐸𝑚𝑏 𝑃, 𝐷 = 𝑛|𝑉 𝑃 |𝑝|𝐸 𝑃 | 1 − 𝑝
𝑛(𝑛−1)

2
−|𝐸 𝑃 | 

 For small 𝑝: 

𝐸𝑚𝑏 𝑃, 𝐷 = 𝑛|𝑉 𝑃 |𝑝|𝐸 𝑃 | 

 For trees: 

𝐸𝑚𝑏 𝑃, 𝐷 = (𝑛𝑝)|𝑉 𝑃 |/𝑝 

 Often 𝐷 is connected and 𝑛𝑝 > 1  

 

 



Expected number of 
embeddings 

 # of expected embeddings grows with 
pattern size for sparse patterns 

 Denser patterns may be easier to interprete 

 Also patterns less frequent than expected 
may be of interest. 

 This also happens with itemsets: items may be 
correlated, uncorrelate or anti-correlated 
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Learning - introduction 

 Popular learning ideas: 

 connected vertices have similar target value 

 correlation between features and target value 

 more classic feature-to-target supervised learning 

 “Dual space” idea: one feature per vertex u, is 1 for 
vertices connected to that vertex u (else 0).  

 If individuals are important (but not many features 
are known) 



Learning – introduction 
Similar to your neighbor 

 Semi-supervised learning 

 E.g.: try to minimize the number of edges with on 
both sides different labels 

 E.g. target values tend to average of neighbors. 

 ... 

 Manifold embedding: 

 Assign all vertices a coordinate such that 
connected vertices are close together (and not-
connected vertices are far apart) 



Learning – Introduction 
From feature to target value 

 Learning tasks1: 

 Vertices / edges / ... 

 (existence)prediction / labeling / weighting 
/feature construction / ... 

 

1 Rossi et al. “Transforming graph data for  
statistical relational learning”, JAIR 2012 



vertex/edge structure/ 
feature prediction example 

 Supervised learning 

 Input:  

 vertex/edge to predict 

 Neighborhood 

 Output: 

 Label or existence 

 But how about the classic i.i.d. assumptions? 



Learning – Prediction in a 
fixed network 

 Most common setting: 

 Fixed network 𝐷 

 training and test vertices (edges) in 𝐷 

 But what if the network changes (e.g. an 
influential node is added/deleted)? 

 Causal patterns remain the same 

 Correlation patterns may change significantly 

 

1 Rossi et al. “Transforming graph data for  
statistical relational learning”, JAIR 2012 



Learning – Can’t distinguish 
individual and its features 

 

 

𝑣1: + 

𝑣2: + 𝑣3: − 

𝑣4: + 

𝑣5: + 

𝑣6: + 

𝑣7: + 𝑣8: + 𝑣9: − 𝑣10: − 

𝑣12: − 
𝑣11: − 𝑣13: − 

𝑣2: ? 𝑣3: ? 

𝑣4: ? 

𝑣5: ? 

𝑣6: ? 

𝑣7: ? 𝑣8: ? 𝑣9: ? 𝑣10: − 

𝑣12: − 
𝑣11: − 

What is the rule? 
Does everyone follow the class of its neighbors? 
Is v1 very influential? 
Is class + if there are green neighbors? 



Learning – network-specific 
challenges 

 Suppose the same rules stay true, but new 
nodes/edge (same distribution).  Distinction 
viral/features may matter 

 Movie database: 

 Persons from a fixed distribution 

 Movies from a fixed distribution 

 Persons watch movies  

 A few new persons and movies are added 

 

 



Contents 

 Introduction 

 Networks from different points of view 

 Patterns & pattern mining 

 Learning 

 Introduction 

 Learning from non-independent examples 

 Temporal models 

 



Learning from dependent 
examples 

 Members of a network are dependent 

 Typical assumptions of learning algorithms 
don’t hold, in particular that 

 Examples are independently and identically drawn 
(i.i.d.) 

 



Movie rating example 

 Movie rating 

 Obj: Movie (genre, duration, actor popularity) 

 Obj: Person (age, gender, ...) 

 Obj: Screening (location, time, ...) 

 Target: Rating 

 Several ratings per person / movie / cinema 



Lawsuit example 

 Lawsuits: 

 Obj: Person  

 Obj: Lawyer 

 Obj: Judge 

 Example: case 

 Target: outcome 

 Judges handle several cases, persons may be 
involved in several cases 



Learning from pattern 
features 

 Each example is an embedding of a pattern 

 MovieRating: (Movie, Person, Cinema, Rating) 

 Lawsuit: (Case, Person, Judge, Outcome) 

 Examples overlap:  

 See also “support measures” 

 We call them networked examples 

 



Representing networked 
examples 

 Several alternative equivalent representations: 

 Every example is represented with a vertex 
connected to the participating objects 

 Every example is represented with a hyperedge, 
containing all participating + all relevant objects. 



Learning from networked / 
dependent examples 

 Tasks: 

1. Elementary statistics, confidence intervals, 
hypothesis testing, ... 

2. Learning, generalization guarantees 

 Models: 

a. bounding covariance between dependent 
examples 

b. modeling how examples are dependent 

 Combinations: 1a and 2b 



Bounding covariance of examples 
and hypothesis testing 

 (Wang, Neville, Gallagher, Eliassi-Rad, 
ECML/PKDD-2011) :  

 vertices are examples 

 edges indicate a bounded covariance 

 safe correction for statistical significance tests 

 safe upper bound for variance on sums etc. 

 Upper bound for variance can be  an important 
tool in proving generalization guarantees. 



Bounding covariance of 
examples 

 𝑛 independent random variables {𝑋𝑖}𝑖=1
𝑛  with 

variance 𝜎2 : Variance on  𝑋𝑖
𝑛
𝑖=1  is 𝑛𝜎2 

 𝑛 identical random variables {𝑋𝑖}𝑖=1
𝑛  with 

variance 𝜎2 :  Variance on  𝑋𝑖
𝑛
𝑖=1  is 𝑛2𝜎2 

 



Bounding covariance of 
examples 

 𝑛 networked examples 
 No edge between 𝑋𝑖  and 𝑋𝑗  = independent : 

𝐸 (𝑋𝑖 − 𝐸 𝑋𝑖 )(𝑋𝑗 − 𝐸[𝑋𝑗] = 0 

 Edge (𝑋𝑖 , 𝑋𝑗) ∈ 𝐸(𝐷) between 𝑋𝑖  and 𝑋𝑗  = bounded 

covariance 𝐸 (𝑋𝑖 − 𝐸 𝑋𝑖 )(𝑋𝑗 − 𝐸[𝑋𝑗] ≤ 𝛾 

 Variance on  𝑋𝑖
𝑛
𝑖=1  is 

 𝐸 (𝑋𝑖 − 𝐸 𝑋𝑖 )(𝑋𝑗 − 𝐸[𝑋𝑗]

𝑖,𝑗

≤ 𝐸 𝐷 𝛾 + 𝑛𝜎2 



Learning from networked / 
dependent examples 

 Tasks: 

1. Elementary statistics, confidence intervals, 
hypothesis testing, ... 

2. Learning, generalization guarantees 

 Models: 

a. bounding covariance between dependent 
examples 

b. modeling how examples are dependent 

 Combinations: 1a and 2b 



Variance, significance, 
effective sample size 

 Effective sample size of a given set of 
networked examples is 𝑛 iff it contains as 
much information (for the task at hand, e.g. 
learning or hypothesis testing) as a set of 𝑛 
i.i.d. examples1. 

 

1 Slightly different conventions/definitions exist 



Probably approximately 
correct (PAC) structure 

 PAC: with probability 1 − 𝛿 the loss is 
bounded by  where 

𝛿 = 𝑒𝑥𝑝
−𝑚 𝑆 𝜖2

𝐶1 + 𝐶2𝜖
 

 with 𝑚(𝑆) the effective sample size of 
training set 𝑆. Higher 𝑚(𝑆) = better 

 i.i.d. sample 𝑆, 𝑚 𝑆 = |𝑆| = best possible 

 



Independence assumptions 

 Weaker form of i.i.d 

 But not arbitrary  

 arbitrary  no bound possible 

 

 

 



Independence assumptions: 
i.i.d. vertex features 

 Edges are fixed.   

 The features of every vertex are drawn i.i.d. (not 
even depending on the edges). 

1. Choose edges 
(possibly very  
dependently) 

2. Draw vertex  
features (don’t 
look at edges) 



Independence 
assumptions applied 
YES 

 Sneak preview 
 

 

 Randomized trial: patients 
are assigned randomly to 
set of treatment params 

 

 Cases are assigned 
randomly to judges 

NO 

 Select movie based on 
genre, or with friends 

 

 Patients go to closeby 
hospital or to hospital 
recommended by their 
friends 

 

 Judges handle cases 
connected to their existing 
cases  



Training set measures 

 Overlap (hyper)graph 𝐺  

 vertices are objects 

 (hyper)edges are examples 

 Training set 𝑆 ⊆ 𝐸(𝐺) 

 Measures m(𝑆) of training set m 𝑆 : 
𝑚𝑎𝑥(𝑛𝐸𝑄𝑊, 𝑛𝐼𝑁𝐷) ≤ 𝑛𝑀𝐼𝑆 ≤ 𝜗 ≤ 𝒔 ≤ 𝑛𝑀𝑆𝐶  



Approach 1:  
Equal-weight (EQW) 

max(𝒏𝑬𝑸𝑾, 𝒏𝑰𝑵𝑫) ≤ 𝑛𝑀𝐼𝑆 ≤ 𝜗 ≤ 𝒔 ≤ 𝑛𝑀𝑆𝐶  

 

(Janson 2004) & (Usunier 2005) 

 𝛿 ∝ 𝑒𝑥𝑝
−𝑛𝐸𝑄𝑊𝜖2

𝐶1 + 𝐶2𝜖
 

With 𝑛𝐸𝑄𝑊 =
|𝑆|

𝜒∗(𝐺)
 

and 𝜒∗ 𝐺  fractional edge chromatic 
number 

 

all examples get same weight  

 

𝜒∗ 𝐺 = 3 ;  𝑛𝐸𝑄𝑊 =
6

3
= 2  

 



Approach 2: 
Independent set (IND) 

max (𝑛𝐸𝑄𝑊, 𝑛𝐼𝑁𝐷) ≤ 𝑛𝑀𝐼𝑆 ≤ 𝜗 ≤ 𝒔 ≤ 𝑛𝑀𝑆𝐶  

 

 𝛿 ∝ 𝑒𝑥𝑝
−𝑛𝐼𝑁𝐷𝜖2

𝐶1 + 𝐶2𝜖
 

With 𝑛𝐼𝑁𝐷 = |𝑆| (examples in 𝑆 
independent!) 
 

We find 𝑛𝐼𝑁𝐷  independent examples 

𝑛𝐼𝑁𝐷 = 2 

 



Approach 3: 
Maximum independent set 

max (𝑛𝐸𝑄𝑊, 𝑛𝐼𝑁𝐷) ≤ 𝑛𝑀𝐼𝑆 ≤ 𝜗 ≤ 𝒔 ≤ 𝑛𝑀𝑆𝐶  

 

𝑛𝑀𝐼𝑆 = 𝑀𝐼𝑆 𝐺  
 

𝑀𝐼𝑆 𝐺 hard to approximate! 

no const lower bound for 
𝑛𝐼𝑁𝐷

𝑛𝑀𝐼𝑆
  

 

For some 𝐺, 
𝑛𝐸𝑄𝑊

𝑛𝑀𝐼𝑆
= 2/|𝑆| 

 

Maximum independent set of examples 

𝑛𝑀𝐼𝑆 = 2 

 



Minimum clique partition 
number 

max (𝑛𝐸𝑄𝑊, 𝑛𝐼𝑁𝐷) ≤ 𝑛𝑀𝐼𝑆 ≤ 𝜗 ≤ 𝒔 ≤ 𝑛𝑀𝑆𝐶  

 

𝑛𝑀𝑆𝐶 = 𝑀𝑆𝐶 𝐺  
 

𝑛𝑀𝑆𝐶 ≤ 𝑘 − 1 +
1

𝑘
𝑛𝑀𝐼𝑆 

 

𝑀𝑆𝐶 𝐺  too is hard to compute 
 

Minimum set cover 

𝑛𝑀𝑆𝐶 = 3  

 𝑘 − 1 +
1

𝑘
= 2.5  

 



Approach 4: MIS-relaxation 

max (𝑛𝐸𝑄𝑊, 𝑛𝐼𝑁𝐷) ≤ 𝑛𝑀𝐼𝑆 ≤ 𝜗 ≤ 𝒔 ≤ 𝑛𝑀𝑆𝐶  

 

• (Wang & Ramon, DMKD 2013) 

• Graph pattern support measure 

– Anti-monotonic, Normalized 

• Linear program  efficient 

 
 

LP relaxation of MIS 

𝑠 = 2.5  

 



networked PAC 

 PAC: P(Loss ≤ 𝜖) ≥ 1 − 𝛿 where 

𝛿 = 𝑒𝑥𝑝
−𝒔𝜖2

𝐶1 + 𝐶2𝜖
 

 with 𝒔 

𝑠 = max  𝑤𝑖

|𝑆|

𝑖=1
 

subject to  

∀𝑣 ∈ 𝑉 𝐺 ∶  𝑤𝑖

 

𝑒𝑖:𝑣∈𝑒𝑖

 ≤ 1 

 



Networked PAC 

• Influence of each factor is at most 1: 

max s 
𝑠 = 𝑤1 + 𝑤2 + 𝑤3 + 𝑤4 + 𝑤5 + 𝑤6 

s.t. 
𝑣1:               𝑤1 + 𝑤2 ≤ 1 
𝑣3:               𝑤1 + 𝑤3 ≤ 1 
𝑣2:               𝑤2 + 𝑤3 ≤ 1 
𝑣4:    𝑤4 + 𝑤5 + 𝑤6 ≤ 1 

 

 

 

 
 

𝑠 = 2.5  

 

𝑣2 

𝑣1 𝑣3 

𝑣4 

𝑒1 

𝑒2 𝑒3 

𝑒4 

𝑒5 

𝑒6 



Technical elaboration 

 Chernoff bound for weighted sums: 

    For 𝑿𝒊 (𝒊 = 𝟏. . 𝒏) independent random variables, 

    𝑬 𝑿𝒊 = 𝟎  ;   𝑿𝒊 ≤ 𝒂𝒊 + 𝑴  ;   𝑿 =  𝑿𝒊𝒊 : 

𝑷  𝑿𝒊

𝒏

𝒊=𝟏
≥ 𝒏𝝐 ≤ 𝐞𝐱𝐩

−𝒏𝝐𝟐

𝐕𝐚𝐫 𝑿 +  𝒂𝒊𝒊 + 𝑴𝝐/𝟑
 

 

 Let 𝑿𝒊 = 𝝃({𝝓 𝒗 }𝒗∈𝒆𝒊
) and ∀𝑣 ∶  𝑤𝑖 ≤ 1 

𝑒𝑖:𝑣∈𝑒𝑖
,  

then the above Chernoff inequality still holds 



Learning from non-independent 
examples: Summary 

 Networks modeling relations induce 
dependencies between objects and examples 

 Modeling such dependencies is useful to  

 better understand the learning setting 

 get more statistical power from the data 

 Upper bound  correlation between examples 

 Model common factors of examples 

 



Learning from non-independent 
data: Open problems 

 Can we formalize & structure models for 
learning? 

 How to extract most statistical value from 
data? 

 How to take intervention into account (very 
important for applications) ? 
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Temporal models 

 Temporal model = probability distribution 
mapping a network on a new network, i.e. 
ℎ: 𝒢 × 𝒢 → [0,1] s.t. ∀𝐷 ∈ 𝒢,  ℎ 𝐷, 𝐷′ = 1𝐷′∈𝒢  

 Results in Markov chain 

 When starting from empty network: generative 
model 

 Often one attempts to find a simple rule, when 
provided to all individuals of a group producing 
an interesting/real-life pattern 

 Communities, powerlaws, emerging structures, ... 



Temporal models 

 Global temporal models 

 How will communities evolve? 

 How will global network properties evolve? 

 Models aiming at emerging behavior 

 Local temporal models 

 How will individual nodes/edge/local 
neighborhoods evolve? 



Global temporal models 
Examples 

 How will communities evolve? 

 Research topics emerging and disappearing1 

 Online groups emerging and disappearing2 

 

 

 

 

1 Ferlez et al. ICDE 2008 
2 Kairam, Wang & Leskovec WSDM 2012 



Models for emerging or 
assymptotic patterns - Examples 

 Theory: Barabasi-Albert: Preferential 
attachment 

 Complex systems: 

 Economics (e.g. company fusions1) 

 Between networks and physics: Groups of animals 
(formations of flying birds2) 

 No systematic integration with DM/ML 

1 Garnett & Mollan, ECCS 2012 
2 Hemelrijk & Hildenbrandt, ECCS 2012 



Local temporal models 

 Local models: 

 Link prediction: what could exist may get known 
as existing soon. 

 Learn from temporal data 

 Few combined local/global approaches 

 Emerging behavior shown by simulation (Complex 
systems) 

 Model microscopic social network evolution, show 
that it has powerlaw assymptotics1 

 
1 Leskovec et al. KDD 2008 



Evolving large networks:  
Types of data 

Snapshot 
 At one point in time 

 

Temporal data 

 A log of the evolution 

 hard: nobody logged all 
events in the creation of 
the internet up to now 

 



Temporal models: 
Types of data 

 Snapshot:  

 Historical information may be missing 

 Can we still detect traces of evolution in the 
network? 

 Sometimes yes, e.g. phylogenetic trees 

 



Temporal models: Summary 

 Scale of evolution: 

 local 

 global 

 assymptotical 

 Types of data: 

 Snapshot 

 Temporal 



Temporal data: 
Open problems 

 Integration of local and global/assymptotic 
levels? 

 Can we learn dynamics from snapshots? 



Conclusions 

 Several domains study networks from 
different points of view (and can learn from 
each other) 

 This tutorial: local level 

 Others: global level 

 Progress towards integration 



 



Questions? 

? 


