
LEARNING AND MINING WITH
NETWORK-STRUCTURED DATA

Jan Ramon
ECML 2013

Contents

 Introduction

 Networks from different points of view

 Patterns & pattern mining

 Learning

Introduction
 Network = Objects + Relations

Application Objects Relations

Introduction

 In this tutorial:

 Who studies networks?

 Network patterns & mining them

 Learning in networks

 Focus on

 Local patterns

 Not so much on large scale properties

Related ECML/PKDD 2013
tutorials

 [Fri-PM] Algorithmic techniques for modeling and
mining large graphs (Alan Frieze et al.)

 Focus is more on global properties

 [Mon-PM] Discovering Roles and Anomalies in
Graphs: Theory & Applications (T. Eliassi-Rad et al.)

 Anomaly detection is not covered here

 [Fri-AM] Statistically sound pattern discovery (G.
Webb & W. Hamalainen)

 Different statistical aspects

Introduction
Prerequisites

Supervised learning: Given i.i.d. training examples,
learn a function from example to target value.

 You could use SVM, DT, NB, IBL, GP, ... or any of
your favorite supervised techniques

Contents

 Introduction

 Networks from different points of view

 Patterns & pattern mining

 Learning

Contents

 Introduction

 Networks from different points of view

 Basic concepts

 Data mining tasks

 Relevant fields of research

 Patterns & pattern mining

 Learning

Basic concepts - Graphs

 An undirected (labeled) graph is a tuple
G=(V,E,) where

 V is a set of vertices (nodes) [punten (knopen)]

 𝐸 ⊆ 𝑣, 𝑤 |𝑣, 𝑤 ∈ 𝑉 is a set of edges [takken]

 𝜆: 𝑉 ∪ 𝐸 → Σ is a labeling function

 Unlabeled graph:

 If is constant (all vertices/edges have the same
label), may be omitted

Basic concepts - Graphs

 A directed graph is a tuple G=(V,E,) where

 V is a set of vertices (nodes) [punten (knopen)]

 𝐸 ⊆ 𝑣, 𝑤 |𝑣, 𝑤 ∈ 𝑉 is a set of arcs [bogen]

 𝜆: 𝑉 ∪ 𝐸 → Σ is a labeling function

 Further notations:

 V(G) is the set of vertices of the graph G

 E(G) is the set of edges / arcs of the graph G

 G is the labeling function of the graph G

 𝑁𝐻 𝑣 = 𝑤 ∈ 𝑉(𝐻)| 𝑣, 𝑤 ∈ 𝐸(𝐻) is the neighborhood of v

 Δ𝑣 = 𝑁𝐻 𝑣 is the degree of v

Basic concepts
adjacency matrix

 Adjacency matrix of graph 𝐺 is a square
matrix 𝐴 of dimension 𝑉(𝐺) × 𝑉 𝐺 such that

 𝐴𝑢,𝑣 = 0 if 𝑢 and 𝑣 are not connected

 𝐴𝑢,𝑣 = 1 if there is an edge between 𝑢 and 𝑣

1

3 2

4
 1 2 3 4
1 0 1 1 1
2 1 0 0 0
3 1 0 0 1
4 1 0 1 0

Basic concepts – Walk/Path

 A walk 𝑃 between vertices 𝑣 and 𝑤 in a graph 𝐺
is a sequence of vertices 𝑢1, 𝑢2, … , 𝑢𝑛 ∈
𝑉(𝐺) such that
 𝑢1 = 𝑣,

 𝑢𝑛 = 𝑤 and

 𝑢𝑖 , 𝑢𝑖+1 ∈ 𝐸(𝐺) for all 1 ≤ 𝑖 ≤ 𝑛 − 1.

 The length of such walk 𝑃 is 𝑛 − 1 .

 A path is a walk where all vertices are distinct

 Slightly abusing terminology, a path 𝑃 can also
be seen as a subgraph of 𝐺

Basic concepts – Shortest path

 A shortest path is a path of minimal length.

 Distance 𝑑(𝑢, 𝑣) between 𝑢 and 𝑣 is length
of shortest path between 𝑢 and 𝑣

 The diameter of 𝐺 is
𝑑𝑖𝑎𝑚 𝐺 = 𝑚𝑎𝑥𝑢,𝑣∈𝑉 𝐺 𝑑 𝑢, 𝑣

Basic concepts – Diameter

The diameter of 𝐺 is
𝑑𝑖𝑎𝑚 𝐺 = 𝑚𝑎𝑥𝑢,𝑣∈𝑉 𝐺 𝑑 𝑢, 𝑣

Many real-world graphs have small diameter.

 V : all persons

 E : an edge connects persons who have ever
met each other

 Many people have met a local politician who
met the national prime minister

Basic concepts – connected, tree

 A graph G is connected iff there is a path
between every pair of vertices v, w V(G)

 A connected component of a graph G is a
maximal connected subgraph of G.

 A graph G is a tree iff there is a unique path
between every pair of vertices v, w V(G)

 Intuition: if the path between two vertices is not
unique, then there is a cycle.

Basic concepts – morphisms

 A homomorphism from a graph H into a graph G is
a mapping :V(H) V(G) such that

 ∀𝑣, 𝑤 ∈ 𝑉 𝐻 : 𝑣, 𝑤 ∈ 𝐸 𝐻 ⇒ 𝜑 𝑣 , 𝜑 𝑤 ∈ 𝐸(𝐺)

 ∀𝑣 ∈ 𝑉 𝐻 : 𝜆 𝑣 = 𝜆(𝜑 𝑣)

 ∀𝑣, 𝑤 ∈ 𝑉 𝐻 : 𝜆 𝑣, 𝑤 = 𝜆 𝜑 𝑣 , 𝜑 𝑤

 An injective homomorphism is a subgraph
isomorphism.

Basic concepts – subgraph
isomorphism vs homomorphism

 If there is a homomorphism from H to G, then we
denote this 𝐻 ≤ℎ 𝐺

 If there is a subgraph isomorphism from H to G,
then we denote this 𝐻 ≤𝑖 𝐺

 𝐻 ≡ 𝐺 iff 𝐻 ≤ 𝐺 and 𝐺 ≤ 𝐻

A homomorphism, not an isomorphism

Basic concepts – morphisms

 An induced homomorphism from a graph H into a
graph G is a mapping :V(H) V(G) such that

 ∀𝑣, 𝑤 ∈ 𝑉 𝐻 : 𝑣, 𝑤 ∈ 𝐸 𝐻 ⇔ 𝜑 𝑣 , 𝜑 𝑤 ∈ 𝐸(𝐺)

 ∀𝑣 ∈ 𝑉 𝐻 : 𝜆 𝑣 = 𝜆(𝜑 𝑣)

 ∀𝑣, 𝑤 ∈ 𝑉 𝐻 : 𝜆 𝑣, 𝑤 = 𝜆 𝜑 𝑣 , 𝜑 𝑤

 An injective induced homomorphism is an induced
subgraph isomorphism.

Basic concepts – induced vs
normal subgraph isomorphism

Subgraph isomorphism
NOT induced subgraph isomorphism

Subgraph isomorphism
Induced subgraph isomorphism

Subgraph isomorphism
Induced subgraph isomorphism

Basic concepts
Automorphisms

 Automorphism = isomorphism of a graph on itself.

 |aut(H)| is the size of the automorphism group aut(H).

 For bounded degree H, one can compute |aut(H)| in
polynomial time.

Triangle “Rotation”
“Mirror”

Aut(triangle) has size 2*3=6

Basic concepts - Networks

Pattern =

small graph

Network =

big database graph

Y science-fiction

X

Likes Friend

Contents

 Introduction

 Networks from different points of view

 Basic concepts

 Data mining tasks

 Relevant fields of research

 Patterns & pattern mining

 Learning

Network data mining tasks

Global /
assymptotic

Local

Static 1. Clustering &
community
detection

2. Pattern mining
3. Edge/vertex

structure/feature
learning

Evolution 5. Generative
models

4. Temporal
learning

Clustering & community
detection

 Given:

 network 𝐷

 Find:

 Set of subsets (clusters, communities) 𝑉1, 𝑉2, … , 𝑉𝑛 of 𝑉(𝐺)

 Covering 𝑉 𝐺 or not

 Disjoint or overlapping

 such that vertices in same cluster are close

 similar or connected

 and vertices from different clusters are distant

 dissimilar / not connected

Global /
assymptotic

Local

Static

Evolution

Clusters & communities
examples
 Find groups of people who are densily

connected

 Find groups of people who have a similar
opinion or behavior (and are connected)

 People in the same country, company, school,
domain, ... will often cluster together.

Pattern mining

 Given:
 network 𝐷

 pattern language 𝐿

 interestingness criterion 𝐼: 𝐿 × 𝐷 → {𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒}

 Find

 all patterns 𝑃 ∈ 𝐿 for which 𝐼(𝑃, 𝐷)

Global /
assymptotic

Local

Static

Evolution

Pattern mining example

Why do you (Y) watch “Jurassic park” (JP)?

Y JP

X

Likes Friend

Y JP

science-fiction

about Likes

Y JP

science-fiction

about Dislikes

Friend

Z X Friend Dislikes

Likes

Friend

Y

JP

X

Friend

genetics about

Researches

Y
...

1 3 2

4 5

Vertex/edge structure/
feature prediction

 Given:

 network 𝐷,

 example set 𝑋 = 𝑉 𝐷 ∪ 𝐸 𝐷 , target space 𝑌

 Unknown distribution 𝑃 on 𝑋 × 𝑌

 Training set 𝑍𝑡𝑟𝑎𝑖𝑛 ⊆ 𝑋 × 𝑌

 Test set 𝑋𝑡𝑒𝑠𝑡 ⊆ 𝑋

 Loss function 𝐿: 𝑌 → ℝ+

 Find

 𝑓 minimizing E 𝐿 𝑓 𝑥𝑖
𝑡𝑒𝑠𝑡 , 𝑦𝑖

𝑡𝑒𝑠𝑡
𝑖

Global Local

Static

Evolution

vertex/edge structure/
feature prediction example

 Predicting on existing objects:
 Social network: Given a user, his profile, his

friendship relations, is this user interested in
chess?

 Given a pair of friends (X,Y). Is X planning to send
a message to Y today?

 Predicting on hypothetical objects:
 Given a group of people, do they have a common

friend (not yet in the network) ?

 Given two people. do they know each other (even
though not yet represented in the network)?

Learning from temporal data

 Given:

 time-dependent network {𝐷𝑡} 𝑡=1
𝑇 , (possibly

represented by vertices and edges with time
stamps etc.)

 a loss function 𝐿: 𝒢 × 𝒢 → ℝ+

 Find:

 Prediction 𝐷 𝑇+Δ𝑡 of the network (or parts thereof)

to minimize E 𝐿 𝐷𝑇+Δ𝑡 , 𝐷 𝑇+Δ𝑡

Global /
assymptotic

Local

Static

Evolution

Learning from temporal data
example

 Social network:

 When will X update his profile?

 Will X and Y become friends?

 Will a common friend of X and Y join the network?

Learning generative models

 Generative model = probability distribution
mapping a network on a new network, i.e.

 ℎ: 𝒢 × 𝒢 → [0,1] s.t.
∀𝐷 ∈ 𝒢, ℎ 𝐷, 𝐷′ = 1𝐷′∈𝒢

Global /
assymptotic

Local

Static

Evolution

Learning generative models

 ℎ: 𝒢 × 𝒢 → [0,1]

 Given:
 A hypothesis space ℋ of generative models

 An unknown ℎ ∈ ℋ, we assume there was some
𝐷0 and for 𝑡 = 1. . 𝑇, 𝐷𝑡 was drawn from ℎ(𝐷𝑡−1,⋅)

 time-dependent network {𝐷𝑡} 𝑡=1
𝑇

 Find:
 Given loss function 𝐿: ℋ × ℋ → ℝ+ , a model

ℎ ∈ ℋ such that E L h, ℎ is minimal

 Model ℎ ∈ ℋ such that hn(D0) has the same
asymptotic properties as 𝐷𝑇.

Learning generative models

 Difference with ‘learning from temporal data”:

 Not just predicting a future event, but also global
properties should be right

 E.g. errors which propagate quickly should be
avoided. (e.g. positive feedback loops)

Wnat data do I need?

 Many datasets are undirected unlabeled
graphs (interaction = yes/no)

 Ok for many models focussing on global &
assymptotic aspects

 How about correlations between interests of
friends?

 Then you need to records people’s interests

 In general, “local” models will need richer data

Contents

 Introduction

 Networks from different points of view

 Basic concepts

 Data mining tasks

 Relevant fields of research

 Patterns & pattern mining

 Learning

Relevant fields of research

 Statistical physics

 Complex systems

 Multi agent systems, ants, other simulation

 Grammar induction

 (Algorithmic) graph theory

 Spectral graph theory

 pattern mining, data mining, machine
learning

Statistical physics

 If we assume a given set of laws, what will
happen?

 Law = graph generation model

 Erdos-Reny model:

 Barabasi-Albert model

 Result =

 Assymptotic behavior, what happens if there are
many particles?

Statistical physics
The Erdos-Reny model

 A random graph from the Erdos-Reny
distribution Gp(n,p) is constructed as follows:
 Let G be a graph on n vertices.

 For every pair of vertices {v,w}, connect v and w with
an edge with probability p.

 A random graph from the Erdos-Reny
distribution GM(n,M) is constructed as follows:
 Let G be a graph on n vertices.

 Choose randomly M elements from {{v,w} | v,wV(G)}
and draw an edge between the two elements of these
pairs.

Statistical physics
Allmost all graphs

 Let Gn be a random graph drawn from
G(n,p(n)), i.e. p is a function of n. A predicate
q (i.e. a boolean function) holds for
(asymptotically) allmost surely (a.a.s.) if

limnP(q(Gn)=true) = 1

 Similar for G(n,M)

 If no G(n,p) or G(n,M) specified: G(n, ½) by
default (“allmost every graph”).

Statistical physics
Assymptotic properties

 E.g. the “giant component”

 If limnnp<1, then the largest component of a G(n,p)
graph is a.a.s. not larger than 3.log(n)/(1-np)2

 If limnnp=1, then the largest component of a G(n,p)
graph is a.a.s. n2/3

 If limnnp>1, then the largest component of a G(n,p)
graph is a.a.s. close to n with +e-pn=1

Statistical physics
Assymptotic properties

 E.g. connectedness:

 If limnnp/ln(n)<1 then, G(n,p) is a.a.s. disconnected

 If limnnp/ln(n)>1 then, G(n,p) is a.a.s. connected

Statistical physics
0-1 law

 Given a first order logic formula F over
graphs, limnP(F(G(n, ½))=true) is either
1 or 0.

 E.g. “contains a triangle”: adding vertices
(and hence edges) only increases the
probability of a triangle; if many vertices,
the probability gets close to 1.

Statistical physics
What can ML and DM learn?

 Compute from the model the “expected
value” of a pattern.

 An “interesting pattern” is one which deviates
from the expected value according to the
model.

 E.g. assume 𝐺 is the union of a random graph
and a clique. Under what conditions can we
detect the clique as an abnormally dense
spot?1

1 E.g. “Detecting bicliques in GF[q]. ECML2013”

Complex systems

 Model processes in society

 systems of interacting individuals

 what (often large-scale) properties do we
observe?

 Study behavior of systems with such
properties

 assymptotics

 simulation of systems

 emerging patterns

Complex systems
What can ML/DM learn?

 Techniques to model application domains

 Social behavior

 Economics

 ...

Multi-agent systems, ants,
simulation

 How to simulate?

 Do artificial populations offer more value
than artificial individuals?

Multi-agent systems
What can ML/DM learn?

 Simulation (sampling a temporal model
forward in time)

 Multi-agent learning (and the effects of
changing behavior due to learning)

 Game theory (~statistical physics: Nash
equilibria)

Grammar induction

 Generative model ~ probabilistic grammar

 Initial state

 (probabilistic) production rules

 Graph grammars

 Hyperedge replacement grammars

 Vertex replace grammars

Grammar induction
What can DM/ML learn?

 Graph grammars: learning generative models
producing certain probability distributions
over graphs

(Algorithmic) graph theory

 Algorithms on graphs and their complexity
are well-studied.

 How to solve graph problems

 Complexity of solving problems

(Algorithmic) graph theory
What can ML/DM learn?

 Pattern matching

 E.g. see part 2

 Support measures

 e.g. Maximum independent set, Lovasz theta
function, ... (part 3)

 Shortest path algorithms

 Similarity, maximum common subgraph, ...

 ...

Relational databases

 A network is a relational database where the
binary “edge” relation has foreign keys to
itself.

 Matching patterns = evaluating queries

Relational databases
What can ML/DM learn?

 Database theory sometimes shows how to
match patterns (=evaluate queries), but is
usually not optimized for “recursive” foreign
keys.

 Many ideas for data structures (e.g. recently
growing interest in graph database indexing)

Spectral graph theory1

 Study of

 the adjacency matrix of a graph

 its eigenvalues

 the Laplacian matrix: 𝐿 = 𝐷 − 𝐴 with D degree
matrix (𝐷𝑣𝑣 is degree of 𝑣) and 𝐴 adjacency
matrix.

 ...

1 Fan Chung, “Spectral graph theory”

Spectral graph theory
What can ML/DM learn?

 Laplacian describes “influence flow”, used in

 semi-supervised learning

 manifold embedding

 ...

 Clustering:

 # of zero eigenvalues = # of connected
components

Mining, learning

 Relational learning (e.g. SRL)

 Learning in graphs (e.g. MLG)

 Using logical representations (e.g. ILP)

 (but adding logic makes problems often
undecidable)

Introduction summary (1/3)
Basic concepts

 Graphs

 labels

 adjacency matrix

 Paths

 distance

 Morphisms (matching operators)

Introduction summary (2/3)
Network data mining tasks

Global /
assymptotic

Local

Static 1. Clustering &
community
detection

2. Pattern mining
3. Edge/vertex

structure/feature
learning

Evolution 5. Generative
models

4. Temporal
learning

Introduction summary (3/3)
Domains researching networks

Spectral
graph theory

Algorithmic
graph theory

Statistical
physics

Multi-agent
systems

Game theory

Databases Complex systems

Grammar
induction

ML & DM

Networks

Underlying process Analysis Techniques

...

Contents

 Introduction

 Networks from different points of view

 Patterns & pattern mining

 Introduction

 Pattern matching

 Frequency

 Additional remarks

 Learning

Introduction
What is a pattern?

 Pattern = collection of vertices that should
satisfy some constraints (connections, labels,
...)

Y science-fiction

X

Likes Friend

Introduction
A generic pattern miner

Assume interesting is anti-monotonic
𝑘 ← 0; 𝐶0 ← 𝑀𝑖𝑛𝑖𝑚𝑎𝑙𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝑠

While 𝐶𝑘 ≠ {}

 𝑆𝑘 ← {𝑃 ∈ 𝐶𝑘|𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡𝑖𝑛𝑔(𝑃)}

 𝐶𝑘+1 ← 𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛𝑠(𝑃)
𝑃∈𝑆𝑘

 𝑘 ← 𝑘 + 1

EndWhile

𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 ← 𝑆𝑘

𝑘

Introduction
A generic pattern miner

 “assume interesting is anti-monotonic” allows for
pruning.

𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡𝑖𝑛𝑔 𝐺 ∧ 𝐺 ≤ 𝐻
⟹ 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡𝑖𝑛𝑔(𝐻)

 Can also mine using non-anti-monotonic criterion (e.g.
correlated patterns1)

 Breadth-first “Apriori-style” 2
 Also depth-first possible 3

 To be instantiated:
 MinimalPatterns & Extensions
 Interesting

1 Zimmermann & DeRaedt, DS2004
2 Agrawal & Srikant, VLDB1994
3 Han, Pei, Yin SIGMOD2000

Introduction
Enumeration of patterns

 Many approaches are generate-and-test

 How to generate all graphs subject to anti-
monotonic constraint?

 Practice: mining graph patterns in databases of
transactions represented with graphs: AGM,
gSpan, FSG, Gaston2

use canonical form

 Theory: polynomial-delay (+evaluation anti-
monotone criterion) 1

1 Ramon & Nijssen, JMLR2008
2 Nijssen & Kok 2004

To be instantiated:
 MinimalPatterns & Extensions

 Interesting

Introduction
Complexity notions

 Enumeration/listing problems (“find all ...”)
may have output 𝑂 exponential in input size 𝐼.

 Polynomial delay: between solution 𝑗 − 1 and
𝑗 at most 𝑝𝑜𝑙𝑦 𝐼 time.

 Incremental polynomial time: between
solution 𝑗 − 1 and 𝑗 at most 𝑝𝑜𝑙𝑦 𝐼, 𝑗 time.

 Output-polynomial time: total running time
at most 𝑝𝑜𝑙𝑦 𝐼, 𝑂

Contents

 Introduction

 Networks from different points of view

 Patterns & pattern mining

 Introduction

 Pattern matching

 Frequency

 Additional remarks

 Learning

To be instantiated:
 MinimalPatterns & Extensions

 Interesting

Pattern matching
Overview

 Problem statement

 Hardness results

 Triangle counting

 Small patterns

 Larger patterns

 Cliques

 Sampling

 Fixed parameter tractability

Pattern matching
The problem

 Given:

 A network 𝐷

 A pattern 𝑃

 Find

 (all/some/one/...) embeddings of 𝑃 in 𝐷 OR

 an aggregate (count, average, ...) computed over
these embeddings

listing problem

decision problem

Pattern matching
Why do we care?

 Basic operation for both learning and mining

 There is a literature on basic pattern
matching, but learning & mining queries have
specific characteristics

 Data is rich, satisfies integrity constraints, ...

 Patterns may have wildcards

 DM/ML is aimed at collecting statistics

Pattern matching
Subgraph isomorphism complexity

 Pattern 𝑃, network 𝐷

 List embeddings π: 𝑃 → 𝐷

 #𝑃-complete

 Classic algorithms (backtracking search):

𝑂 |𝑉 𝐷 ||𝑉 𝑃 |

#P : counting problems f such that there is a polynomial-time non-deterministic Turing
machine for which upon input x the number of accepting states equalls f(x) . #𝑃 ⊇ 𝑁𝑃

Pattern matching
Heuristic search

Ullmann’s algorithm 1 (pattern 𝑃, network 𝐷)
 Match(𝑃, 𝐷, {})

Procedure Match (𝑃, 𝐷, partial embedding 𝜋)
 If 𝑉 𝑃 = 𝑑𝑜𝑚(𝜋)
 then ListSolution(𝜋)
 else
 Select 𝑣 ∈ 𝑉 𝑃 ∖ 𝑑𝑜𝑚(𝜋)
 Let 𝐶 = {𝑤 ∈ 𝑉 𝐷 | 𝑤 𝑚𝑎𝑦𝑏𝑒 𝑖𝑚𝑎𝑔𝑒 𝑜𝑓 𝑣}
 For all 𝑤 ∈ 𝐶 do
 𝑀𝑎𝑡𝑐ℎ 𝑃, 𝐷, 𝜋 ∪ { 𝑣, 𝑤 }

1 Ullmann, JACM 23(1), 1976

Pattern matching
Avoiding worst-case complexity

 Database of transactions of graphs

 E.g. many small molecule graphs, RNA

 exploit structure of database graphs, e.g.

 atoms have max degree = 6 1

 molecules are often planar (or even outerplanar 2)

 bounded treewidth 3

1 E.M.Luks, J Computer & System Sciences 25(1), 1982
2 Horvath & Ramon, DMKD 21(3), 2010
3 Horvath & Ramon, TCS 411, 2010

Pattern matching
Avoiding worst-case complexity

 Network

 No definite structure we can rely on

 Approximate matching may help but

 Subgraph isomorphism is hard to approximate

Structural properties of patterns

 Triangles and other small patterns

 Trees

Statistical properties of network

 Random graphs

Pattern matching
Triangle counting

 Simple problem:

 Given: a triangle 𝑃 and a network 𝐷

 List or count: all embeddings of 𝑃 in 𝐷

 but a lot of literature on solving it

Pattern matching
Triangle counting
 Idea 1: Brute force

 Check every triple of vertices of 𝐺

 Runtime 𝑂 |𝑉 𝐺 |3

Pattern matching
Triangle counting
 Idea 2: matrix multiplication 1

 Let 𝐴 be the adjacency matrix of 𝐺

 𝐴𝑛
𝑢,𝑣 = # of walks of length 𝑛 between 𝑢 and 𝑣

 Matrix multiplication is 𝑂 |𝑉 𝐺 |2.37 2

 Hence, compute 𝑡𝑟 𝐴3 /3!
1

3 2

4

𝐴 =

0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0

 𝐴3 =

2 3 4 4
3 0 1 1
4 1 2 3
4 1 3 2

 𝐴2 =

3 0 1 1
0 1 1 1
1 1 2 1
1 1 1 2

𝑡𝑟 𝐴3 /3! = (2+2+2)/6 = 1

1 Alon et al. 1997
2 For practical problems, the exponent will be higher

Pattern matching
Triangle counting
 Idea 3: Sparse graphs

 Iterate over edges1 : 𝑂 |𝐸(𝐺)|
3

2

 NodeIterator: Iterate over pairs of neighbors of
vertices: 𝑂 𝑑𝑚𝑎𝑥

2 |𝐸 𝐺 | with 𝑑𝑚𝑎𝑥 the maximal
degree of 𝐺.

1 Itai and Rodeh 1978

Pattern matching
Triangle counting
 Idea 4: Approximation

 Sparsification: delete randomly part of the graph,
count triangles, adjust for sampling

 Sampling: perform a number of random attempts,
adjust for sampling

 Partition graph into parts, solve them, adjust for
triangles spanning several partitions.

1 Itai and Rodeh 1978

Pattern matching
Triangle counting

1 Itai and Rodeh 1978

Alon et al., 1997 Exact 𝑂 |𝑉 𝐺 |2.37

Itai & Radeh, 1978 Exact
 𝑂 |𝐸(𝐺)|

3

2

Tsourakakis ICDM2008 Exact

Faloutsos KDD2009 Approx Sparsification

Avron 2010 Approx Sampling

Pagh&Tsourakakis, InfProcLet 2012 Approx Partitioning

Becchetti et al. TKDD 2010 Approx

Pattern matching
Counting motifs of size 3-5

 Motifs = not necessarily connected induced
subgraph

 Brute force sometimes still works1

 Sampling strategy (e.g. GUISE2):

 Consider an induced graph

 Omit vertex or add neighbor

 Metropolis hastings: adjust for fact that higher-
degree vertices are reached more easily

1 Shen-Orr et al. Nat. Genet.2002
2 Bhuiyan et al. ICDM 2012

Pattern matching
Sampling motifs with MCMC

𝐺

Motifs

Pattern matching
Sampling motifs with MCMC

𝐺

Motifs

0

1

0

0

0

0

State

Pattern matching
Sampling motifs with MCMC
𝐺

Motifs

0

1

0

0

0

0

State s1
d(s1)=9

Pattern matching
Sampling motifs with MCMC
𝐺

Motifs

0

1

0

0

0

0

State s1
d(s1)=9

𝑇 𝑢, 𝑣 = min
1

𝑑(𝑢)
,

1

𝑑(𝑣)
 (for 𝑢 ≠ 𝑣)

𝑇 𝑢, 𝑢 = 1 − 𝑇(𝑢, 𝑣)

𝑣≠𝑢

Pattern matching
Sampling motifs with MCMC

Motifs

1

1

0

1

1

0

𝑠1 𝑠2

𝑠3 𝑠4

Pattern matching
Overview

 Problem statement

 Hardness results

 Triangle counting

 Small patterns

 Larger patterns

 Cliques

 Sampling

 Fixed parameter tractability

Pattern matching
Cliques

 Several approaches aim at finding maximal
cliques

 Clique detection for non-directed graphs,

Clusters & communities
Bicliques

 Bi-partite networks 𝐷 = (𝑉1 ∪ 𝑉2, 𝐸) with
𝐸 ⊆ 𝑉1 × 𝑉2.

 Bi-clique = 𝐶1 × 𝐶2 with 𝐶1 ⊆ 𝑉1 and 𝐶2 ⊆ 𝑉2.

 Several variants:

 Tile mining (in boolean matrices, unweighted
networks)

 Non-negative matrix factorization (real-valued
matrices, weighted networks)

Advertisement:
Join ECML/PKDD2013 Tue1B session on Networks (1)
J.Ramon, P.Miettinen, J.Vreeken, Detecting bicliques in GF[q],

Pattern matching
Larger patterns: Sampling

Pattern matching
Avoiding worst-case complexity

 Network
 No definite structure we can rely on

 Approximate matching may help but
 Subgraph isomorphism is hard to approximate

 Structural properties of patterns
 Triangles and other small patterns

 Trees

 Statistical properties of network
 Random graphs

DONE

Sampling

Pattern matching
Sampling – strategies

 Partitioning
 Match pattern in one or all partitions

 Assume that network has rather uniform structure

 Scale result to full network

 Worked for triangle counting, harder for larger
patterns.

 Simulation (e.g. Fürer)
 Attempt several times to find single match

 assume network is sufficiently uniform

 average over iterations

Fürer’s algorithm1 for pattern
matching in random graphs

 Input:

 Network G drawn from G(n,p)

 Pattern H with a decomposition (see later)

 Output:

 |𝐸𝑚𝑏(𝐻, 𝐺)|, the number of images of H in G.

 Complexity:

 Exact & worst case: #P-complete

 Exact for “most graphs”: still untractable

 Approximate for most graphs : this algorithm (FPRAS)

1 Martin Fürer & Shiva Prasad Kasiviswanathan Approx/Random 2008

Pattern matching
Fürer’s algorithm - FPRAS

 Fully Polynomial Randomized Approximation
Schema:
 Randomized algorithms outputting for almost every graph

in polynomial time a solution with relative error of .

 A little more formally:
 An FPRAS is a randomized algorithm such that there is a

polynomial p(,) such that for every there is an n0 such
that for all n>n0 and , and for at least a fraction 1- of the
graphs of size n, the algorithm outputs in time at most
p(n,1/) a solution within a factor 1± of the correct
solution.

Pattern matching
Fürer: Basic algorithm

Function unbiased_estimator(H,G) [estimates |𝐸𝑚𝑏(𝐻, 𝐺)|]

 (,P())=Try_to_find_embedding(H,G);

 IF =failed

 THEN return 0; [No embedding found]

 ELSE return 1/P() ; [return inverse

EndFunction probability of]

Function count_embeddings(H,G,)

 c = 0; s = C/2;

 For i = 1 .. s do c=c+unbiased_estimator(H,G); EndFor

 Return c/s;

EndFunction

Pattern matching
Fürer: Basic algorithm

 Count_embeddings works correctly:
 Every embedding is found with probability P()

by Try_to_find_embeddings(H,G). With
probability 1-P() Try_to_find_embeddings fails

 Every embedding , is found once in 1/P() calls,
and in that case, unbiased_estimator returns
1/P(). Hence, contributes 1 to each call to
unbiased_estimator, on average.

 Hence, on average, unbiased_estimator returns
the number of embeddings

 Task left: find a good Try_to_find_embedding

Pattern matching
Fürer - strategy

 Decompose vertex set of pattern

 match one partition at a time until complete

 Compute probability of finding this particular
solution

 Show the overall algorithm converges
sufficiently fast.
 The sum of a (very) large number of identical

distributions becomes Gaussian. Standard deviation
goes down with square of sample

 Whatever the sample size, we can always (with very
small probability) have a large error

Pattern matching
Fürer: finding embeddings

INPUT: 𝐺, 𝐻, partition {𝑉1, 𝑉2, … , 𝑉𝑙} of 𝑉(𝐺)

𝑋 ← 1; 𝜑0 ← {}

For 𝑖 = 1. . 𝑙

 𝐸 ← {𝜑 ∈ 𝐸𝑚𝑏(∪ 𝑗=1
𝑖 𝑉𝑗 , 𝐺)|𝜑 ⊃ 𝜑𝑖−1}

 𝑋𝑖 ← |𝐸|

 if 𝑋𝑖 = 0 then terminate and return (failed, 0)

 pick an embedding 𝜑𝑖 uniformly at random from 𝐸

 X ← 𝑋. 𝑋𝑖

EndFor

Return (𝜑𝑙 , 1/𝑋)

Fürer - Sample run (step 1.1)

 𝑋 = 1; 𝜑0 = {}

 𝑖 = 1

 V1 V2 V3 V4

Fürer - Sample run (step 1.2)

 𝑋 = 1; 𝜑0 = {}

 𝑖 = 1

 𝑋1 = 𝐸 = 8

 V1 V2 V3 V4

Fürer - Sample run (step 1.3)

 𝑖 = 1

 𝑋1 = 8

 𝜑1 = {(1, 𝑎)}

 𝑋 = 8

 V1 V2 V3 V4

1

a

3

5

4

2

f

e
d

c

b

h

g

Fürer - Sample run (step 2.1)

 𝑖 = 2

 𝑋 = 8 ; 𝜑1 = {(1, 𝑎)};

 V1 V2 V3 V4

1

a

3

5

4

2

f

e
d

c

b

h

g

Fürer - Sample run (step 2.2)

 𝑖 = 2

 𝑋 = 8 ; 𝜑1 = {(1, 𝑎)};

 𝑋2 = 𝐸 = 3.2 = 6

 𝑋 ← 𝑋. 𝑋2 = 8 ∗ 6 = 48

 V1 V2 V3 V4

1

a

3

5

4

2

f

e
d

c

b

h

g

Fürer - Sample run (step 2.3)

 𝑖 = 2

 𝜑1 = {(1, 𝑎)};

 𝑋2 = 𝐸 = 3.2 = 6

 𝑋 = 48

 𝜑2 =
{ 1, 𝑎 , 2, ℎ , (3, 𝑐)}

 V1 V2 V3 V4

1

a

3

5

4

2

f

e
d

c

b

h

g

Fürer - Sample run (step 3.1)

 𝑖 = 3

 𝜑2 = { 1, 𝑎 ; 2, ℎ , (3, 𝑐)};

 𝑋 = 48

 V1 V2 V3 V4

1

a

3

5

4

2

f

e
d

c

b

h

g

Fürer - Sample run (step 3.2)

 𝑖 = 3

 𝜑2 = { 1, 𝑎 ; 2, ℎ , (3, 𝑐)};

 𝑋 = 48

 𝑋3 = 𝐸 = 2

 X = X . X3 = 48 * 2 = 96

 V1 V2 V3 V4

1

a

3

5

4

2

f

e
d

c

b

h

g

Fürer - Sample run (step 3.3)

 𝑖 = 3

 𝜑2 = { 1, 𝑎 ; 2, ℎ , (3, 𝑐)};

 𝑋 = 48

 X3 = 2; X = 96

 𝜑3 =
{ 1, 𝑎 , 2, ℎ , 3, 𝑐 , (4, 𝑓)}

 V1 V2 V3 V4

1

a

3

5

4

2

f

e
d

c

b

h

g

Fürer - Sample run (step 4.1)

 𝑖 = 4

 𝜑3 =
{ 1, 𝑎 ; 2, ℎ , 3, 𝑐 , (4, 𝑓)};

 𝑋 = 96

 V1 V2 V3 V4

1

a

3

5

4

2

f

e
d

c

b

h

g

Fürer - Sample run (step 4.2)

 𝑖 = 4

 𝜑3 =
{ 1, 𝑎 ; 2, ℎ , 3, 𝑐 , (4, 𝑓)};

 𝑋 = 96

 𝑋4 = 1

 𝜑4 = { 1, 𝑎 , 2, ℎ , 3, 𝑐 ,
4, 𝑓 , (5, 𝑔)}

 V1 V2 V3 V4

1

a

3

5

4

2

f

e
d

c

b

h

g

Fürer - Sample run – a solution

 X=96;

 ={(1,a),(2,h),(3,c),(4,f),(5,g)};

 V1 V2 V3 V4

1

a

3

5

4

2

f

e
d

c

b

h

g

Fürer - Sample run bis

 𝑖 = 3

 𝜑2 = { 1, 𝑎 ; 2, ℎ , 3, 𝑐 };

 X3 = |E| = 2

 X = X . X3 = 48 * 2 = 96

 V1 V2 V3 V4

1

a

3

5

4

2

f

e
d

c

b

h

g

Fürer - Sample run bis

 𝑖 = 3

 𝜑2 = { 1, 𝑎 ; 2, ℎ , 3, 𝑐 };

 X=96

 𝜑3 = { 1, 𝑎 , 2, ℎ , 3, 𝑐 ,
4, 𝑏 }

 V1 V2 V3 V4

1

a

3

5

4

2

f

e
d

c

b

h

g

Fürer - Sample run bis

 𝑖 = 3

 𝜑3 =
{ 1, 𝑎 ; 2, ℎ , 3, 𝑐 , (4, 𝑏)};

 X=96

 X4 = 0 no solution!

 V1 V2 V3 V4

1

a

3

5

4

2

f

e
d

c

b

h

g

Pattern matching
Fürer’s theorem

 Important: When does it work?

 The algorithm is an FPRAS (for allmost all G) if:

 Partitioning of V(H) is a “ordered bipartite
decomposition”

 p(n)n2

 np/4

 E(H)3n-4p-2 0

Where

 =max(2,), =max{|E(F)|/(|V(F)|-2) | FH, |V(F)|3}

Pattern matching
Fürer: Simplified theorem

 It works if the count is not too small.
 Intuition:

 The frequency of very rare events is hard to measure
(the “interesting” part of the sample where we
actually observe something, is smaller)

 The worst case is where one doesn’t know whether
𝐸𝑚𝑏 𝐻, 𝐺 = 0 or 𝐸𝑚𝑏 𝐻, 𝐺 = 1

 If we run the algorithm and we find some
embeddings, our estimate will be rather
accurate.

 If no “ordered bipartite decomposition”, then we
can still run this algorithm, but no FPRAS
guarantee.

Pattern matching; Fürer
Ordered bipartite decomposition

 An ordered bipartite decomposition of H is a
partition {V1, V2, ... , Vl} of V(H) such that

 Each Vi (i=1..l) is an independent set in H

 i, vVi j such that NH(v) k<iVk Vj

 So if a neighbor of a vertex vVi is in Vj with
j>i, then no neighbors of v must be in Vj’ with
j’>i and jj’.

Fürer - Graphs with a
decomposition

 Cycles longer than 3 (see above running example)
 Bounded degree outerplanar graphs without

triangle
 Trees
 Grids
 ...
 Not: triangles (but separate proof), ...

Pattern matching
Fixed parameter tractability

Pattern matching
Avoiding worst-case complexity

 Network
 No definite structure we can rely on

 Approximate matching may help but
 Subgraph isomorphism is hard to approximate

 Structural properties of patterns
 Triangles and other small patterns

 Trees

 Statistical properties of network
 Random graphs

DONE

Fixed
parameter
tractability

DONE

Pattern matching
Fixed parameter tractability

 Classic complexity classes:

 Input size: 𝑛

 𝑃 : Polynomial time 𝑂 𝑛𝑑 for some 𝑑

 Are all problems not in 𝑃 are hard: not 𝑂 𝑛𝑑 for

some 𝑑 ? No, some may still be easier than others

 Fixed parameter tractability:

 Input has two parts of sizes: 𝑛 and 𝑘

 For 𝑘 fixed, the problem is tractable: 𝑂 𝑛𝑑𝑓(𝑘)

 May be acceptable if 𝑘 is small

Pattern matching
Fixed parameter tractability

 Fixed parameter tractability:
 Input has two parts of sizes: 𝑛 and 𝑘

 For 𝑘 fixed, the problem is tractable: 𝑂 𝑛𝑑𝑓(𝑘)

 May be acceptable if 𝑘 is small

 Pattern matching:
 Network: size 𝑛

 Pattern: size 𝑘

 𝑘 is usually small, 𝑛 may be large.

 So fixed parameter tractability is suitable for
pattern matching!

Pattern matching
Fixed parameter tractability

 Matching trees in network in

𝑂 𝑚𝑘2𝑘 = 𝑂∗ 2𝑘

 𝑘 = 𝑉(𝑃) : pattern size

 𝑚 = 𝐸(𝐷) : network size

 Randomized algorithm1 which works well for
practical pattern mining2

1 R. Williams, Inf Proc Lett 2009
2 A. Kibriya & J.Ramon, DMKD 2013

Pattern matching summary

 Basic operation for mining and learning

 Networks have no hard structure we can rely on

 Approximate matching may help but

 Subgraph isomorphism is hard to approximate

Structural properties of patterns

 Triangles and other small patterns

 Trees

Statistical properties of network

 Random graphs

Pattern matching – open
problems

 Many matching problems for which fixed
parameter approach could help

 More complex queries

 Implicit relations

 Big data (not in RAM)

 combine with indexing

 reduce passes over data (or samples)

 distributed approaches, ...

Contents

 Introduction

 Networks from different points of view

 Patterns & pattern mining

 Introduction

 Pattern matching

 Frequency

 Additional remarks

 Learning

Frequency / support1 measures
The problem

 How frequent is pattern 𝑃 in network 𝐷?

 Why assign a “frequency” to a pattern?

 Popular criterion to measure relevance of pattern

 E.g. 40% of respondents liked both movie m1 and m2.

 Way to represent association rules

 E.g. Of all respondents liking movie m1 and m2, 50%
also liked m3 (i.e. 40%*50% = 20%)

 Measure of statistical power

 E.g. We rolled the dice 100 times and observed 40
times a 6. It must be biased.

1 both “frequency” and “support” are used, often interchangebly

Support measures
What do you want?

 Counting objects

 X% of people own a house in the same region where
they work.

 network unimportant, just count people

Person2

House1

Job2

Region1

Person1 Job1

Person3 Job3

Region2
House1

Support measures
What do you want?

 Counting objects

 Performing statistics

 We rolled the dice 100
times and observed 40
times a 6. It is biased!

 We rolled the dice. 100
people observed a 6. Would
it be biased?

Dice

Roll

Roll

Roll

Roll

Obs

Obs

Obs

Obs

Person

Thrustworthy

Dice Roll

Obs

Obs

Obs

Obs

Person

Person

Person

Person

Support measures
What do you want?

 Counting objects

 Performing statistics

 Association rules

 If X has a friend Y such that Y smokes, then with
probability a%, X smokes too

 If X and Y are friends and Y smokes, then with
probability b%, X smokes too

 Different quantor/aggregator placement, probably
𝑎 ≠ 𝑏

Support measures
What do you want?

 What do you want?

 Counting objects

 Performing statistics

 Association rules

 ...

 If you know what you want, you’re closer to
knowing what to do. No measure is good in all
cases.

Support measures
Overview

 Embedding-based
 Embedding count

 Image count

 Key-based
 Key image count

 Min-image

 Overlap-based
 Maximum independent set

 Minimum clique partition

 Intermediate measures and relaxations

Support measures
Embedding-based

 Embedding-count: |𝐸𝑚𝑏 𝑃, 𝐷 |

 Image-count: 𝐼𝑚𝑔 𝑃, 𝐷
𝐸𝑚𝑏 𝑃, 𝐷 = |𝐴𝑢𝑡(𝑃)|. |𝐼𝑚𝑔 𝑃, 𝐷 |

 E.g.: Among all triples (X,Y,Z) such that X and Y
are friends and Z is a family member of X, the
fraction of triples where Y knows Z is a%.

 Embeddings may be concentrated in small part
of network, e.g. large family where everyone is
friend with each other.

 Not anti-monotonic, no pattern-mining pruning

Support measures
Key-based

 Decide before the start of data mining what is
the type of object of interest (“the primary
key”)

 E.g. We are interested in ‘friends’ relationships

 a% of ‘friends’ relations are between colleagues.

 b% of friends have the same mother tongue,

 c% of friend pairs (X,Y) have at least one common
friend Z,

 ...

Support measures
Key-based

 Decide before the start on the “key”.

 The “key” is a common subpattern of all patterns
considered.

 There is a fixed, finite set of objects (all
images/embeddings of the “key”), the network
relations are not considered.

 Easy to count

 Anti-monotonic (good for pattern mining)

 Not all statistics are valid (e.g. the dice example)

Support measures
Key-based: dice example

 Key = dice observation

 Performing statistics:

 We rolled the dice 100
times and observed 40
times a 6. It is biased!

 We rolled the dice. 100
people observed a 6. Would
it be biased?

dice1

Roll

Roll

Roll

Roll

Obs

Obs

Obs

Obs

Person

Thrustworthy

dice1 Roll

Obs

Obs

Obs

Obs

Person

Person

Person

Person

dice1 Roll Obs Person

Key

4 images of Key
eqch showing a 6

4 images of Key
eqch showing a 6

Support measures
Min-image1

 𝑚𝑖𝑛𝐼𝑚𝑎𝑔𝑒 𝑃, 𝐷 =
𝑚𝑖𝑛𝑣∈𝑉(𝑃) {𝜋 𝑤 𝜋 ∈ 𝐸𝑚𝑏(𝑃, 𝐷)}|

 Allows for choosing each vertex as
(singleton) key, giving a lower bound for
each vertex-key-based frequency

 Anti-monotonic:
𝑃 ≤ 𝑄 ⇒ 𝑚𝑖𝑛𝐼𝑚𝑎𝑔𝑒 𝑃, 𝐷 ≥ 𝑚𝑖𝑛𝐼𝑚𝑎𝑔𝑒(𝑄, 𝐷)

1 Bringmann & Nijssen. PAKDD 2008

Support measures
Overlap-based: model dependence

 The easiest way to perform statistics is to
have independent observations.

 How do we get as much independent
observations as possible out of a network?

 Model the independences in “overlap graph”.

 Caution: selecting independent observations
is not necessarily a sample from the original
distribution!

Support measures
Overlap-based: Overlap graph

 Overlap graph 𝐺𝑃
𝐷:

 𝑉 𝐺𝑃
𝐷 = 𝐼𝑚𝑔(𝑃, 𝐷)

 𝑔1, 𝑔2 ∈ 𝐸 𝐺𝑃
𝐷 if images 𝑔1 and 𝑔2 overlap

 What is overlap?
 Two occurrences of a pattern overlap if we can’t consider

them independent in the context of the statistics we are
doing

 Vertex-overlap: 𝑔1, 𝑔2 ∈ 𝐸 𝐺𝑃
𝐷 ⇔ 𝑉 𝑔1 ∩ 𝑉 𝑔2 ≠ ∅

 Edge-overlap: 𝑔1, 𝑔2 ∈ 𝐸 𝐺𝑃
𝐷 ⇔ 𝐸 𝑔1 ∩ 𝐸 𝑔2 ≠ ∅

 Other options, e.g. Harmful overlap1

1 Fiedler & Borgelt MLG 2007

Support measures
Overlap-based: What is overlap?

 Dice example:

 Overlap if the Roll is the same.

 We are interested in dice1, so naturally all
embeddings will contain dice1.

dice1

Roll

Roll

Roll

Obs

Obs

Obs

Obs

Person2

dice1 Roll Obs Person

Person1

Support measures
Overlap-based: Court example

 Vertices: case, judges, (prodeo) lawyers, party

 Edges between case-judge, case-lawyer,
case-party

Party1

Case1

Lawyer1

Judge3

Judge1

Party3

Party2 Judge2 Lawyer1

Lawyer1

Case2

Case3

Case4

Independent set

 W is an independent set of H iff

 W V(H)

 There are no v,wW such that (v,w)E(H)

Independent set of size 2 Independent set of size 1

Support measures
Overlap-based: MIS measure

 The size of a Maximum Independent Set
(MIS) of the overlap graph 𝐺𝑃

𝐷 of pattern 𝑃 in
network 𝐷: 𝑀𝐼𝑆 𝑃, 𝐷 = 𝑀𝐼𝑆(𝐺𝑃

𝐷)

1 Vanetik et al. DMKD 2006

dice1

Roll

Roll

Roll

Obs1

Obs2

Obs3

Obs4

Person2

dice1 Roll Obs Person

Person1

(dice1,obs=6,Person1)

(dice1,obs=6,Person2)

(dice1,obs=6,Person2)

(dice1,obs=3,Person2)

𝑀𝐼𝑆(𝐺𝑃
𝐷) = 3 P

D

Support measures
Overlap-based: MIS measure

 The size of a Maximum Independent Set
(MIS) of the overlap graph 𝐺𝑃

𝐷 of pattern 𝑃 in
network 𝐷: 𝑀𝐼𝑆 𝑃, 𝐷 = 𝑀𝐼𝑆(𝐺𝑃

𝐷)

Party1

Case1

Lawyer1

Judge3

Judge1

Party3

Party2 Judge2 Lawyer1

Lawyer1

Case2

Case3

Case4

Case1

Case2

Case3

Case4

Party
Case1

Lawyer

Judge
P

D

𝑀𝐼𝑆(𝐺𝑃
𝐷) = 2

Support measures
Overlap-based: more measures

 Maximum independent set idea:

allows to measure overlap and extract
independent observations

Anti-monotonic

NP-hard to compute

Possibly ignores too much information

 Does the overlap graph allow for other
measures?

Support measures
Overlap-based: more measures

 Requirements for feasible measure:

 Anti-monotonic in pattern:

 𝑝 ≤ 𝑃 ⇒ 𝑓 𝑝, 𝐷 ≥ 𝑓(𝑃, 𝐷)

 Monotonic in network:

 𝐷 ≤ 𝐷′ ⇒ 𝑓 𝑃, 𝐷 ≤ 𝑓(𝑃, 𝐷′)

 Normalized

 If there are 𝑛 independent (non-overlapping)
observations (overlap graph = 𝑛 isolated vertices),
then support is 𝑛.

Support measures
Overlap-based: more measures

 If 𝑓 is a function on the overlap graph, and
𝑓 is feasible measure, then:

𝑀𝐼𝑆 𝑃, 𝐷 ≤ 𝑓 𝑃, 𝐷 ≤ 𝑀𝐶𝑃(𝑃, 𝐷)

 where 𝑀𝐶𝑃(𝐺𝑃
𝐷) is the minimum clique

partition number of the overlap graph,
another NP-hard to compute number.

Support measures
Overlap-based: more measures

 Fortunately, several efficiently computable
functions are between 𝑀𝐼𝑆 and 𝑀𝐶𝑃.

 Lovasz theta1: 𝜗
 feasible measure2; computable with semidefinite

program (SDP), which is still rather expensive

 MIS-relaxation3: s
 Is a feasible measure3; computable with linear

program (LP), hence efficiently.

 We have 𝑀𝐼𝑆 ≤ 𝜗 ≤ 𝑠 ≤ 𝑀𝐶𝑃

1 D. Knuth, Electr. J. Combin 1994
2 Calders et al. DMKD 2011
3 Wang & Ramon DMKD 2013

Support measures
Summary

Measure Anti-Monotonic? Statistics? Efficient?

Embedding count

Image count

key image count

min-image

Overlap-MIS

Overlap-MCP ?

Overlap-𝜗 ?

Overlap-s

Frequency – open problems

 Combine pattern matching and frequency

 Exploit network structure to increase speed
(methods up to now don’t)

Contents

 Introduction

 Networks from different points of view

 Patterns & pattern mining

 Introduction

 Pattern matching

 Frequency

 Additional remarks

 Learning

Expected number of
embeddings

 Let 𝐷~𝐺(𝑛, 𝑝), then

𝐸𝑚𝑏 𝑃, 𝐷 = 𝑛|𝑉 𝑃 |𝑝|𝐸 𝑃 | 1 − 𝑝
𝑛(𝑛−1)

2
−|𝐸 𝑃 |

 For small 𝑝:

𝐸𝑚𝑏 𝑃, 𝐷 = 𝑛|𝑉 𝑃 |𝑝|𝐸 𝑃 |

 For trees:

𝐸𝑚𝑏 𝑃, 𝐷 = (𝑛𝑝)|𝑉 𝑃 |/𝑝

 Often 𝐷 is connected and 𝑛𝑝 > 1

Expected number of
embeddings

 # of expected embeddings grows with
pattern size for sparse patterns

 Denser patterns may be easier to interprete

 Also patterns less frequent than expected
may be of interest.

 This also happens with itemsets: items may be
correlated, uncorrelate or anti-correlated

Contents

 Introduction

 Networks from different points of view

 Patterns & pattern mining

 Learning

 Introduction

 Learning from non-independent examples

 Temporal models

Learning - introduction

 Popular learning ideas:

 connected vertices have similar target value

 correlation between features and target value

 more classic feature-to-target supervised learning

 “Dual space” idea: one feature per vertex u, is 1 for
vertices connected to that vertex u (else 0).

 If individuals are important (but not many features
are known)

Learning – introduction
Similar to your neighbor

 Semi-supervised learning

 E.g.: try to minimize the number of edges with on
both sides different labels

 E.g. target values tend to average of neighbors.

 ...

 Manifold embedding:

 Assign all vertices a coordinate such that
connected vertices are close together (and not-
connected vertices are far apart)

Learning – Introduction
From feature to target value

 Learning tasks1:

 Vertices / edges / ...

 (existence)prediction / labeling / weighting
/feature construction / ...

1 Rossi et al. “Transforming graph data for
statistical relational learning”, JAIR 2012

vertex/edge structure/
feature prediction example

 Supervised learning

 Input:

 vertex/edge to predict

 Neighborhood

 Output:

 Label or existence

 But how about the classic i.i.d. assumptions?

Learning – Prediction in a
fixed network

 Most common setting:

 Fixed network 𝐷

 training and test vertices (edges) in 𝐷

 But what if the network changes (e.g. an
influential node is added/deleted)?

 Causal patterns remain the same

 Correlation patterns may change significantly

1 Rossi et al. “Transforming graph data for
statistical relational learning”, JAIR 2012

Learning – Can’t distinguish
individual and its features

𝑣1: +

𝑣2: + 𝑣3: −

𝑣4: +

𝑣5: +

𝑣6: +

𝑣7: + 𝑣8: + 𝑣9: − 𝑣10: −

𝑣12: −
𝑣11: − 𝑣13: −

𝑣2: ? 𝑣3: ?

𝑣4: ?

𝑣5: ?

𝑣6: ?

𝑣7: ? 𝑣8: ? 𝑣9: ? 𝑣10: −

𝑣12: −
𝑣11: −

What is the rule?
Does everyone follow the class of its neighbors?
Is v1 very influential?
Is class + if there are green neighbors?

Learning – network-specific
challenges

 Suppose the same rules stay true, but new
nodes/edge (same distribution). Distinction
viral/features may matter

 Movie database:

 Persons from a fixed distribution

 Movies from a fixed distribution

 Persons watch movies

 A few new persons and movies are added

Contents

 Introduction

 Networks from different points of view

 Patterns & pattern mining

 Learning

 Introduction

 Learning from non-independent examples

 Temporal models

Learning from dependent
examples

 Members of a network are dependent

 Typical assumptions of learning algorithms
don’t hold, in particular that

 Examples are independently and identically drawn
(i.i.d.)

Movie rating example

 Movie rating

 Obj: Movie (genre, duration, actor popularity)

 Obj: Person (age, gender, ...)

 Obj: Screening (location, time, ...)

 Target: Rating

 Several ratings per person / movie / cinema

Lawsuit example

 Lawsuits:

 Obj: Person

 Obj: Lawyer

 Obj: Judge

 Example: case

 Target: outcome

 Judges handle several cases, persons may be
involved in several cases

Learning from pattern
features

 Each example is an embedding of a pattern

 MovieRating: (Movie, Person, Cinema, Rating)

 Lawsuit: (Case, Person, Judge, Outcome)

 Examples overlap:

 See also “support measures”

 We call them networked examples

Representing networked
examples

 Several alternative equivalent representations:

 Every example is represented with a vertex
connected to the participating objects

 Every example is represented with a hyperedge,
containing all participating + all relevant objects.

Learning from networked /
dependent examples

 Tasks:

1. Elementary statistics, confidence intervals,
hypothesis testing, ...

2. Learning, generalization guarantees

 Models:

a. bounding covariance between dependent
examples

b. modeling how examples are dependent

 Combinations: 1a and 2b

Bounding covariance of examples
and hypothesis testing

 (Wang, Neville, Gallagher, Eliassi-Rad,
ECML/PKDD-2011) :

 vertices are examples

 edges indicate a bounded covariance

 safe correction for statistical significance tests

 safe upper bound for variance on sums etc.

 Upper bound for variance can be an important
tool in proving generalization guarantees.

Bounding covariance of
examples

 𝑛 independent random variables {𝑋𝑖}𝑖=1
𝑛 with

variance 𝜎2 : Variance on 𝑋𝑖
𝑛
𝑖=1 is 𝑛𝜎2

 𝑛 identical random variables {𝑋𝑖}𝑖=1
𝑛 with

variance 𝜎2 : Variance on 𝑋𝑖
𝑛
𝑖=1 is 𝑛2𝜎2

Bounding covariance of
examples

 𝑛 networked examples
 No edge between 𝑋𝑖 and 𝑋𝑗 = independent :

𝐸 (𝑋𝑖 − 𝐸 𝑋𝑖)(𝑋𝑗 − 𝐸[𝑋𝑗] = 0

 Edge (𝑋𝑖 , 𝑋𝑗) ∈ 𝐸(𝐷) between 𝑋𝑖 and 𝑋𝑗 = bounded

covariance 𝐸 (𝑋𝑖 − 𝐸 𝑋𝑖)(𝑋𝑗 − 𝐸[𝑋𝑗] ≤ 𝛾

 Variance on 𝑋𝑖
𝑛
𝑖=1 is

 𝐸 (𝑋𝑖 − 𝐸 𝑋𝑖)(𝑋𝑗 − 𝐸[𝑋𝑗]

𝑖,𝑗

≤ 𝐸 𝐷 𝛾 + 𝑛𝜎2

Learning from networked /
dependent examples

 Tasks:

1. Elementary statistics, confidence intervals,
hypothesis testing, ...

2. Learning, generalization guarantees

 Models:

a. bounding covariance between dependent
examples

b. modeling how examples are dependent

 Combinations: 1a and 2b

Variance, significance,
effective sample size

 Effective sample size of a given set of
networked examples is 𝑛 iff it contains as
much information (for the task at hand, e.g.
learning or hypothesis testing) as a set of 𝑛
i.i.d. examples1.

1 Slightly different conventions/definitions exist

Probably approximately
correct (PAC) structure

 PAC: with probability 1 − 𝛿 the loss is
bounded by where

𝛿 = 𝑒𝑥𝑝
−𝑚 𝑆 𝜖2

𝐶1 + 𝐶2𝜖

 with 𝑚(𝑆) the effective sample size of
training set 𝑆. Higher 𝑚(𝑆) = better

 i.i.d. sample 𝑆, 𝑚 𝑆 = |𝑆| = best possible

Independence assumptions

 Weaker form of i.i.d

 But not arbitrary

 arbitrary no bound possible

Independence assumptions:
i.i.d. vertex features

 Edges are fixed.

 The features of every vertex are drawn i.i.d. (not
even depending on the edges).

1. Choose edges
(possibly very
dependently)

2. Draw vertex
features (don’t
look at edges)

Independence
assumptions applied
YES

 Sneak preview

 Randomized trial: patients
are assigned randomly to
set of treatment params

 Cases are assigned
randomly to judges

NO

 Select movie based on
genre, or with friends

 Patients go to closeby
hospital or to hospital
recommended by their
friends

 Judges handle cases
connected to their existing
cases

Training set measures

 Overlap (hyper)graph 𝐺

 vertices are objects

 (hyper)edges are examples

 Training set 𝑆 ⊆ 𝐸(𝐺)

 Measures m(𝑆) of training set m 𝑆 :
𝑚𝑎𝑥(𝑛𝐸𝑄𝑊, 𝑛𝐼𝑁𝐷) ≤ 𝑛𝑀𝐼𝑆 ≤ 𝜗 ≤ 𝒔 ≤ 𝑛𝑀𝑆𝐶

Approach 1:
Equal-weight (EQW)

max(𝒏𝑬𝑸𝑾, 𝒏𝑰𝑵𝑫) ≤ 𝑛𝑀𝐼𝑆 ≤ 𝜗 ≤ 𝒔 ≤ 𝑛𝑀𝑆𝐶

(Janson 2004) & (Usunier 2005)

 𝛿 ∝ 𝑒𝑥𝑝
−𝑛𝐸𝑄𝑊𝜖2

𝐶1 + 𝐶2𝜖

With 𝑛𝐸𝑄𝑊 =
|𝑆|

𝜒∗(𝐺)

and 𝜒∗ 𝐺 fractional edge chromatic
number

all examples get same weight

𝜒∗ 𝐺 = 3 ; 𝑛𝐸𝑄𝑊 =
6

3
= 2

Approach 2:
Independent set (IND)

max (𝑛𝐸𝑄𝑊, 𝑛𝐼𝑁𝐷) ≤ 𝑛𝑀𝐼𝑆 ≤ 𝜗 ≤ 𝒔 ≤ 𝑛𝑀𝑆𝐶

 𝛿 ∝ 𝑒𝑥𝑝
−𝑛𝐼𝑁𝐷𝜖2

𝐶1 + 𝐶2𝜖

With 𝑛𝐼𝑁𝐷 = |𝑆| (examples in 𝑆
independent!)

We find 𝑛𝐼𝑁𝐷 independent examples

𝑛𝐼𝑁𝐷 = 2

Approach 3:
Maximum independent set

max (𝑛𝐸𝑄𝑊, 𝑛𝐼𝑁𝐷) ≤ 𝑛𝑀𝐼𝑆 ≤ 𝜗 ≤ 𝒔 ≤ 𝑛𝑀𝑆𝐶

𝑛𝑀𝐼𝑆 = 𝑀𝐼𝑆 𝐺

𝑀𝐼𝑆 𝐺 hard to approximate!

no const lower bound for
𝑛𝐼𝑁𝐷

𝑛𝑀𝐼𝑆

For some 𝐺,
𝑛𝐸𝑄𝑊

𝑛𝑀𝐼𝑆
= 2/|𝑆|

Maximum independent set of examples

𝑛𝑀𝐼𝑆 = 2

Minimum clique partition
number

max (𝑛𝐸𝑄𝑊, 𝑛𝐼𝑁𝐷) ≤ 𝑛𝑀𝐼𝑆 ≤ 𝜗 ≤ 𝒔 ≤ 𝑛𝑀𝑆𝐶

𝑛𝑀𝑆𝐶 = 𝑀𝑆𝐶 𝐺

𝑛𝑀𝑆𝐶 ≤ 𝑘 − 1 +
1

𝑘
𝑛𝑀𝐼𝑆

𝑀𝑆𝐶 𝐺 too is hard to compute

Minimum set cover

𝑛𝑀𝑆𝐶 = 3

 𝑘 − 1 +
1

𝑘
= 2.5

Approach 4: MIS-relaxation

max (𝑛𝐸𝑄𝑊, 𝑛𝐼𝑁𝐷) ≤ 𝑛𝑀𝐼𝑆 ≤ 𝜗 ≤ 𝒔 ≤ 𝑛𝑀𝑆𝐶

• (Wang & Ramon, DMKD 2013)

• Graph pattern support measure

– Anti-monotonic, Normalized

• Linear program efficient

LP relaxation of MIS

𝑠 = 2.5

networked PAC

 PAC: P(Loss ≤ 𝜖) ≥ 1 − 𝛿 where

𝛿 = 𝑒𝑥𝑝
−𝒔𝜖2

𝐶1 + 𝐶2𝜖

 with 𝒔

𝑠 = max 𝑤𝑖

|𝑆|

𝑖=1

subject to

∀𝑣 ∈ 𝑉 𝐺 ∶ 𝑤𝑖

𝑒𝑖:𝑣∈𝑒𝑖

 ≤ 1

Networked PAC

• Influence of each factor is at most 1:

max s
𝑠 = 𝑤1 + 𝑤2 + 𝑤3 + 𝑤4 + 𝑤5 + 𝑤6

s.t.
𝑣1: 𝑤1 + 𝑤2 ≤ 1
𝑣3: 𝑤1 + 𝑤3 ≤ 1
𝑣2: 𝑤2 + 𝑤3 ≤ 1
𝑣4: 𝑤4 + 𝑤5 + 𝑤6 ≤ 1

𝑠 = 2.5

𝑣2

𝑣1 𝑣3

𝑣4

𝑒1

𝑒2 𝑒3

𝑒4

𝑒5

𝑒6

Technical elaboration

 Chernoff bound for weighted sums:

 For 𝑿𝒊 (𝒊 = 𝟏. . 𝒏) independent random variables,

 𝑬 𝑿𝒊 = 𝟎 ; 𝑿𝒊 ≤ 𝒂𝒊 + 𝑴 ; 𝑿 = 𝑿𝒊𝒊 :

𝑷 𝑿𝒊

𝒏

𝒊=𝟏
≥ 𝒏𝝐 ≤ 𝐞𝐱𝐩

−𝒏𝝐𝟐

𝐕𝐚𝐫 𝑿 + 𝒂𝒊𝒊 + 𝑴𝝐/𝟑

 Let 𝑿𝒊 = 𝝃({𝝓 𝒗 }𝒗∈𝒆𝒊
) and ∀𝑣 ∶ 𝑤𝑖 ≤ 1

𝑒𝑖:𝑣∈𝑒𝑖
,

then the above Chernoff inequality still holds

Learning from non-independent
examples: Summary

 Networks modeling relations induce
dependencies between objects and examples

 Modeling such dependencies is useful to

 better understand the learning setting

 get more statistical power from the data

 Upper bound correlation between examples

 Model common factors of examples

Learning from non-independent
data: Open problems

 Can we formalize & structure models for
learning?

 How to extract most statistical value from
data?

 How to take intervention into account (very
important for applications) ?

Contents

 Introduction

 Networks from different points of view

 Patterns & pattern mining

 Learning

 Introduction

 Learning from non-independent exammples

 Temporal models

Temporal models

 Temporal model = probability distribution
mapping a network on a new network, i.e.
ℎ: 𝒢 × 𝒢 → [0,1] s.t. ∀𝐷 ∈ 𝒢, ℎ 𝐷, 𝐷′ = 1𝐷′∈𝒢

 Results in Markov chain

 When starting from empty network: generative
model

 Often one attempts to find a simple rule, when
provided to all individuals of a group producing
an interesting/real-life pattern

 Communities, powerlaws, emerging structures, ...

Temporal models

 Global temporal models

 How will communities evolve?

 How will global network properties evolve?

 Models aiming at emerging behavior

 Local temporal models

 How will individual nodes/edge/local
neighborhoods evolve?

Global temporal models
Examples

 How will communities evolve?

 Research topics emerging and disappearing1

 Online groups emerging and disappearing2

1 Ferlez et al. ICDE 2008
2 Kairam, Wang & Leskovec WSDM 2012

Models for emerging or
assymptotic patterns - Examples

 Theory: Barabasi-Albert: Preferential
attachment

 Complex systems:

 Economics (e.g. company fusions1)

 Between networks and physics: Groups of animals
(formations of flying birds2)

 No systematic integration with DM/ML

1 Garnett & Mollan, ECCS 2012
2 Hemelrijk & Hildenbrandt, ECCS 2012

Local temporal models

 Local models:

 Link prediction: what could exist may get known
as existing soon.

 Learn from temporal data

 Few combined local/global approaches

 Emerging behavior shown by simulation (Complex
systems)

 Model microscopic social network evolution, show
that it has powerlaw assymptotics1

1 Leskovec et al. KDD 2008

Evolving large networks:
Types of data

Snapshot
 At one point in time

Temporal data

 A log of the evolution

 hard: nobody logged all
events in the creation of
the internet up to now

Temporal models:
Types of data

 Snapshot:

 Historical information may be missing

 Can we still detect traces of evolution in the
network?

 Sometimes yes, e.g. phylogenetic trees

Temporal models: Summary

 Scale of evolution:

 local

 global

 assymptotical

 Types of data:

 Snapshot

 Temporal

Temporal data:
Open problems

 Integration of local and global/assymptotic
levels?

 Can we learn dynamics from snapshots?

Conclusions

 Several domains study networks from
different points of view (and can learn from
each other)

 This tutorial: local level

 Others: global level

 Progress towards integration

Questions?

?

