Multi-Space Learning for Image Classification Using AdaBoost and Markov Random Fields

W. Zenga, X. Chenb, H. Chengc, J. Huab

aDepartment of Electrical Engineering and Computer Science, The University of Kansas, 1520 West 15th Street, Lawrence, Kansas, USA
bComputer Science Department, Wayne State University, 5057 Woodward Ave., 3010, Detroit, MI, USA
cUniversity of Electronic Science and Technology of China, Chengdu, China, 611731
wrzeng@ku.edu, xwchen@wayne.edu

Abstract. In various applications (e.g., automatic image tagging), image classification is typically treated as a multi-label learning problem, where each image can belong to multiple classes (labels). In this paper, we describe a novel strategy for multi-label image classification: instead of representing each image in one single feature space, we utilize a set of labeled image blocks (each with a single label) to represent an image in multi-feature spaces. This strategy is different from multi-instance multi-label learning, in which we model the relationship between image blocks and labels explicitly. Furthermore, instead of assigning labels to image blocks, we apply multi-class AdaBoost to learn a probability of a block belonging to a certain label. We then develop a Markov random field-based model to integrate the block information for final multi-label classification. To evaluate the performance, we compare the proposed method to six state-of-art multi-label algorithms on a real world data set collected on the internet. The result shows that our method outperforms other methods in several evaluation indicators, including Hamming loss, ranking-loss, macro-averaging F1, micro-averaging F1 and so on.

Keywords: Image classification, Multi-label learning, Markov random field

1 Introduction
With the rapid development of multimedia applications, the number of images in personal collection, public data sets, and web is growing. It is estimated that every minute around 3000 images are uploaded to Flickr. In 2010, the number of images Flickr hosted had exceeded five billion. The increasingly growing number of images presents significant challenges in organizing and indexing images. In addition to scene analysis [3, 31, 34, 35, 37], image retrieval [4, 19, 26], content-sensitive image filtering [6], and image representation [18], extensive attention has been drawn to automatic management of images. Automatic image tagging, for example, is a process to assign multiple keywords to a digital image. It is typically transformed as a multi-class or multi-label learning problem. In multi-class learning (MCL) [1, 2, 5, 8], an image is assigned with one and only one label
from a set of predefined categories, while in multi-label learning (MLL), an image is assigned with one or more labels from a predefined label set. In this paper, we focus on MLL in real-world application.

One of the commonly-used MLL methods is called problem transformation, which transforms a multi-label learning problem into multiple binary learning problems using a strategy called binary relevance (BR) [15, 27]. A BR-based learning model typically constructs a binary classifier for each label using regrouped data sets. While it is simple to implement, a BR-based method neglects label dependency, which is crucial in image classification. For example, an image labeled with beach may also be labeled with sea, while an image labeled with mountain is unlikely labeled with indoor. More sophisticated algorithms are advanced to address the label dependency [11, 12, 29, 31]. However, in most of the existing methods, an image with multiple labels is represented by one feature vector, while these labels are from different sub-regions in image responsible for different labels. To solve the ambiguity between image regions and labels, multi-instance learning (MIL) methods are developed in MLL methods. In multi-instance learning including multi-instance multi-label learning (MIMLL), an image is transformed into a bag of instances. The bag is positive, if at least one instance in the bag is positive and negative otherwise. MIL [30, 32] attempted to model the relationship between each sub-region in image with an associated label. To extract the sub-region, techniques from image segmentation is applied. However, image segmentation is an open problem in image processing, which will make MIL computationally expensive. Also the accuracy of segmentation interferes the performance of MIL.

In this paper, we propose a multi-space learning (MSL) method using Adaboost and Markov random field to transform MLL tasks into MCL problems. We utilize normalized real-value outputs from one-against-all multi-class Adaboost to represent the association between a block (instead of a bag or the entire image) and a potential label. The normalized real-valued output will also represent a contribution of a block in an entire image with a label. This step will solve the ambiguity between instances and labels, since the labels in multi-class classification share no intersection in labeling examples. This will solve the ambiguity of labeling an image. Then, we use Markov Random Fields (MRF) models to integrate label sets for an image. Compared to MIMLL, MRF-based integration is a more advanced way to integrate the results from blocks rather than the hard logic provided from MIL. In image classification, that different labels describes different regions is the major reason for labeling ambiguity. In our framework, we follow the characteristics in image classification to transform MLL task into MCL problem. The key contributions of this paper are highlighted as follows:

(1) We propose an algorithm for multi-space learning which explicitly models the relationship between each image block and labels.

(2) We derive a MRF-based model to integrate the results from every block in an image. Instead of predefining values for parameters, the values of parameters in MRF and integration thresholds are obtained via training images.
The rest of the paper is organized as follows. In Section 2, we will describe the proposed method with multi-space learning and MRF-based integration. In Section 3, we will discuss our data set including all the image descriptors we have used and the final statistics. This is followed by experiment results of performance comparison. Finally, we will conclude and discuss about our future work in Section 5.

2 Methodology

The system overview is showed in Figure 1. In this framework, we convert training images and testing images into multi-space representations with overlapped blocks of fixed size. We utilize a set of single-labeled training blocks with the same fixed size to train a one-against-all multi-class AdaBoost classifier. The classifier is used to calculate the real-valued outputs related to the association between block and labels for training images and testing images. A Markov random field model is used to integrate these real-valued outputs. Via thresholds estimation from the integration results of training images, testing images are predicted label by label. We will discuss feature extraction in Section 3. In the

![Fig. 1. The Framework of Our Algorithm](image)

framework, we use a multi-space representation to extract blocks from every image. The blocks are fixed-sized and overlapped. From training images, we can create a set of training blocks. The set of training blocks are denoted as B_{trn}, which contains image blocks labeled with one and only one label from a finite label set of L with q semantic labels and a newly introduced label called background to filter out non-object blocks. The set of training images I_{trn} is labeled with the same label set L and I_{tst} denotes the testing images. Therefore, for labeled training blocks, we have $q + 1$ categories, i. e.,

$$B_{trn} = \{(b_1, y_{b_1}), \ldots, (b_N, y_{b_N})\}, \forall b_i, y_{b_i} \in L^*,$$
where \(L^* = \{L, \text{background}\} \). For training and testing images, we have the following representations as \(I_{\text{trn}} = \{(X_1, Y_1), \ldots, (X_n, Y_n)\}, \forall i, Y_i \subseteq L, I_{\text{tst}} = \{T_1, \ldots, T_m\}. \) In multi-space representation, we have the following definitions.

Let \(X_i = \{b^{(i)}_{(1,1)}, \ldots, b^{(i)}_{(j,k)}, \ldots, b^{(i)}_{(r_i, c_i)}\} \), where \(b^{(i)}_{(j,k)} \) denotes the image block in \(j \)-th row and \(k \)-th column in the \(i \)-th training image, and \(r_i \) and \(c_i \) denote the row and column numbers of blocks contained in \(X_i \). For testing images, we have the same representation as \(T_i = \{t^{(i)}_{(1,1)}, \ldots, t^{(i)}_{(j,k)}, \ldots, t^{(i)}_{(r_i, c_i)}\} \), where \(t^{(i)}_{(j,k)} \) denotes the image block in \(j \)-th row and \(k \)-th column in the \(i \)-th testing image, and \(r_i \) and \(c_i \) denote the row and column numbers of blocks contained in \(T_i \). It should be noted that the extracted blocks \(B_{\text{trn}} \) is not necessarily contained in the union set of multi-space representations of training images, which is \(B_{\text{trn}} \not\subseteq \bigcup_i X_i \).

Training image is blocked via multi-space representation. The blocks in training images are fixed, once the image is given. However, training blocks in \(B_{\text{trn}} \) are extracted in training images at random positions where an object locates. Figure 1 shows an multi-space representation, the rectangle size is 75*100 pixels. The overlapping along the x axis is 25 pixels, and 40 pixels along the y axis. The blocks are extracted with sequence. Thus, it efficiently records the content and spatial information of an individual image. Features are extracted upon every block in the image. It should be noted that given the size of the image, the number and the location of blocks can be calculated.

In our framework, we train a multi-class classifier mapping every block in \(B_{\text{trn}} \) to a label in \(L^* \). In the experiment, we use multi-class AdaBoost [38] with one-against-all strategy and one dimensional decision stumps as weak learners denoted as \(h^l_i(b), i = 1, \ldots, M; l \in L^* \), where \(i \) is the index of different weak learners, \(l \) is the index of different labels, and \(M \) is the iteration number of AdaBoost. Accordingly, The weight for its corresponding weak learner is denoted as \(\alpha^l_i, i = 1, \ldots, M; l \in L^* \). The AdaBoost we used follows Algorithm 1 in [38]. The only difference is we record normalized real-valued outputs instead of direct labels to block \(b \). In the step of multi-class AdaBoost, for an assigned label \(l \), all the image blocks in \(B_{\text{trn}} \) labeled with \(l \) are considered as positive examples; while remaining image blocks in \(B_{\text{trn}} \) are considered as negative examples. To describe the normalized real-valued outputs, we firstly introduce a boolean expression operator as \(\llbracket \pi \rrbracket \) for a boolean statement \(\pi \). If \(\pi \) is true, \(\llbracket \pi \rrbracket = 1 \); otherwise, \(\llbracket \pi \rrbracket = 0 \). Then the normalized real-valued output \(f^l_i(b) \) for an image block \(b \) in \(I_{\text{trn}} \) and \(I_{\text{tst}} \) given an assigned label \(l \) is as follows:

\[
f^l_i(b) = \frac{\sum_{i=1}^{M} \alpha^l_i \cdot \llbracket h^l_i(b) = l \rrbracket}{\sum_{k \in L \setminus \{l\}} \sum_{i=1}^{M} \alpha^l_i \cdot \llbracket h^l_i(b) = l \rrbracket}.
\]

All these normalized outputs viewed as block-label association for image blocks in \(I_{\text{trn}} \) are kept in parameter estimation for MRF-based integration, which will be discussed in the next part.
Algorithm 1. Estimation of 2-node Potentials

1: For $l = 1$ to $|L|$:
2: Initialize $n_l = 0$;
3: Initialize $J_{H,l}$ and $J_{V,l}$ with 10x10 zero matrices.

4: For $X_i \in I_{trn}$ and $l \in Y_i$
5: $n_l \leftarrow n_l + 1$;
6: Initialize C_{H,l,X_i} and C_{V,l,X_i} with two 10x10 zeros matrices;

7: For $(b^{(i,k)}_i, b^{(i,k+1)}_i) \in X_i$ and $k + 1 \leq c_i$
8: $x = Q(f_l(b^{(i,k)}_i))$;
9: $y = Q(f_l(b^{(i,k+1)}_i))$;
10: $C_{H,l,X_i}(x, y) \leftarrow C_{H,l,X_i}(x, y) + 1$.
11: End
12: $J_{H,l,X_i}(x, y) = \frac{C_{H,l,X_i}}{n_l}$;

13: For $(b^{(i,k)}_i, b^{(i+1,k)}_i) \in X_i$ and $j + 1 \leq r_i$
14: $x = Q(f_l(b^{(i,k)}_i))$;
15: $y = Q(f_l(b^{(i+1,k)}_i))$;
16: $C_{V,l,X_i}(x, y) \leftarrow C_{V,l,X_i}(x, y) + 1$.
17: End
18: $J_{V,l,X_i}(x, y) = \frac{C_{V,l,X_i}}{n_l}$;

19: $J_{H,l} \leftarrow J_{H,l} + J_{H,l,X_i}$;
20: $J_{V,l} \leftarrow J_{V,l} + J_{V,l,X_i}$;
21: End
22: $J_{H,l} \leftarrow \frac{J_{H,l}}{n_l}$;
23: $J_{V,l} \leftarrow \frac{J_{V,l}}{n_l}$.

Outputs: $J_{H,l}$ and $J_{V,l}$.

Our method fully utilizes the normalized outputs from the multi-class AdaBoost classifier to build up Markov random field models for MLL. We derive a MRF model for information integration as follows. For an assigned label $l \in L$, our goal is to maximize the likelihood defined as $P(X_i|l)$, which is proportional to a Gibbs distribution as follows [14], $P(X_i|l) \propto e^{-U(X_i|l)}$, where $U(X_i|l)$ is called energy function. The energy function takes the following form [14],

$$U(X_i|l) = \sum_{b^{(i,k)}_i} V^1_i(b^{(i,k)}_i) + \sum_{b^{(i,k)}_i \epsilon N(b^{(j,k)}_{i,j'})} V^2_i(b^{(i,k)}_i, b^{(i,j,k')}_{i,j}), \quad (2)$$

Note that $V^1_i(b^{(i,k)}_i)$ and $V^2_i(b^{(i,k)}_i, b^{(i,j,k')}_{i,j})$ are potentials for one block and two adjacent blocks in MRFs horizontally or vertically, given a label l. We introduce
where to rate the different contribution on one-block potential and two-block potentials. The integration results are calculated to predict label sets via thresholds to test-otherwise, the following definition, \(V_l^1(b_{(j,k)}^{(i)}) = -f_l(b_{(j,k)}^{(i)}) \) where \(f_l(b_{(j,k)}^{(i)}) \) represents the contribution of each block belonging to a certain label. When the contribution is increasing, the energy function is decreasing. Thus, we introduce the format of one-block potential as in Formula (2).

To formulate the potentials of two blocks \(V_l^2(b_{(j,k)}^{(i)}, b_{(j',k')}^{(i)}) \), we firstly quantify the normalized real-valued outputs from multi-class AdaBoost with function \(Q \), where \(b \) denotes a image block.

\[
\text{As } 0 \leq f_l(b) \leq 1, \quad Q(f_l(b)) = \begin{cases} p & \text{if } \frac{p-1}{10} \leq f_l(b) < \frac{p}{10}, \\ 10 & \text{if } f_l(b) = 0. \end{cases}
\]

After quantization, given a label \(l \), we count the different combinations of the ten levels horizontally and vertically upon a training image. Thus, we get two count matrices denoted as \(C_{H,l,X} \) and \(C_{V,l,X} \). The two matrices are normalized by the numbers of the two-adjacent blocks horizontally and vertically. \(J_{H,l,X} \) and \(J_{V,l,X} \) denote the normalized count matrices. Finally, the averages of \(J_{H,l,X} \) and \(J_{V,l,X} \) over all positive images labeled with \(l \) is created as \(J_{H,l} \) and \(J_{V,l} \) called joint contribution matrices of two adjacent blocks horizontally and vertically.

After parameter estimation for potentials of two blocks, \(J_{H,l} \) and \(J_{V,l} \) are outputs as a codebook to extend \(V_l^2(b_{(j,k)}^{(i)}, b_{(j',k')}^{(i)}) \) defined as follows, \(x = Q(f_l(b_{(j,k)}^{(i)})) \), \(y = Q(f_l(b_{(j',k')}^{(i)})) \), and if the two blocks are located in horizontal direction,

\[
V_l^2(b_{(j,k)}^{(i)}, b_{(j',k')}^{(i)}) = -\frac{\lambda}{|N(b_{(j,k)}^{(i)})|} J_{H,l}(x, y);
\]

otherwise,

\[
V_l^2(b_{(j,k)}^{(i)}, b_{(j',k')}^{(i)}) = -\frac{\lambda}{|N(b_{(j,k)}^{(i)})|} J_{V,l}(x, y),
\]

where \(N(b_{(j,k)}^{(i)}) \) denotes the neighbors of block \(b_{(j,k)}^{(i)} \) and \(\lambda \) denotes a parameter to rate the different contribution on one-block potential and two-block potentials.

The integration results are calculated to predict label sets via thresholds to testing images. For the convenience of numerical calculation, we derive the following formula for normalized integration by block number \(n_i \). As the number of blocks will lead bias to the integration results \(Intg_i(X_i) = \frac{\lambda e^{-U(X_i)}}{n_i} = \frac{-U(X_i)}{n_i} \). This formula is expanded with the following forms:

\[
\text{Intg}_i^1(X_i) = \sum_{b_{(j,k)}^{(i)} \in X_i} \sum_{b_{(j',k')}^{(i)} \in N(b_{(j,k)}^{(i)})} \frac{\lambda J_l(b_{(j,k)}^{(i)}, b_{(j',k')}^{(i)})}{|N(b_{(j,k)}^{(i)})|}, \quad \text{and}
\]

\[
\text{Intg}_i^2(X_i) = \sum_{b_{(j,k)}^{(i)} \in X_i} \sum_{b_{(j',k')}^{(i)} \in N(b_{(j,k)}^{(i)})} \frac{\lambda J_l(b_{(j,k)}^{(i)}, b_{(j',k')}^{(i)})}{|N(b_{(j,k)}^{(i)})|}, \quad \text{where } J_l(b_{(j,k)}^{(i)}, b_{(j',k')}^{(i)}) \text{ denotes joint contribution obtained by Algorithm 1. Whether to use horizontal or vertical direction}.
\]
depends on the locations of $b^{(i)}_{(j,k)}$ and $b^{(i)}_{(j,k')}$. With the integration results got from I_{trn}, the threshold for predicting assigned label l is estimated in maximizing F1 measurement in I_{trn}. An image will be predicted as a positive image for l, when the integration result is above the threshold. Otherwise, the image is predicted as a negative image for l. Integration results are used to predict label sets for testing images via thresholding. Since we want to evaluate the performance from ranking-based criteria in multi-label classification, we use the integration result subtracted by threshold given a label l. The thresholds are considered as zero-baselines for prediction.

3 Database
We collect 4100 images from the internet and label them with building, car, dog, human, mountain, and water, according to their contents. The resolution of all the images is controlled under 800*600.

In feature extraction, we use 13 different descriptors to represent the images. They focus on different characteristics on the images, such as color, texture, edges, contour and frequency information. They also showed different advantages to describe local details or global features in images. Table 2 describes the feature sets we have used. In the proposed algorithm, we extract features upon every fixed size block. The dimensionality of features on a block is 2684. In experiment comparison, six MLL algorithms are used. Features for entire images are extracted with the same 13 feature sets. The dimensionality for an entire image is 2629.

<table>
<thead>
<tr>
<th>Label Train/Test</th>
<th>Label Train/Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>b 250/125</td>
<td>b+h 167/83</td>
</tr>
<tr>
<td>c 250/125</td>
<td>c+h 167/83</td>
</tr>
<tr>
<td>d 250/125</td>
<td>d+h 167/83</td>
</tr>
<tr>
<td>h 250/125</td>
<td>m+w 167/83</td>
</tr>
<tr>
<td>m 250/125</td>
<td>b+c+h 133/67</td>
</tr>
<tr>
<td>w 250/125</td>
<td>b+m+w 133/67</td>
</tr>
<tr>
<td>b+c 167/83</td>
<td>d+h+w 133/67</td>
</tr>
</tbody>
</table>

Among 4100 images, 2734 images are selected randomly for training and the remaining 1366 images are used for testing (2/3 for training and 1/3 for testing). In our algorithm, the training blocks is normalized according to sample mean and variance of every dimension. These sample means and variances are recorded to normalize the image blocks in both training and test images. The similar normalization strategy is used to normalize the data set used in multi-label classification for comparison experiment.

Label-Cardinality and Label-Density [27] are used commonly in multi-label data. Label-Cardinality = $\frac{\sum_{i=1}^{n} |Y_i|}{n}$, Label-Density = $\frac{\sum_{i=1}^{n} |Y_i|}{nq}$, where n denotes the sample size of training set, and q denotes the predefined label set size. For MLL problem in our database, Label-Cardinality in our database is 1.5973, and Label-Density is 0.2662. In Table 1, we use b, c, d, h, m, and w
Table 2. Feature Set Description

<table>
<thead>
<tr>
<th>Features</th>
<th>Description</th>
<th>Parameter(s) Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Block-wise color moment[24]</td>
<td>Mean, standard deviation and skewness of HSV</td>
<td>—</td>
</tr>
<tr>
<td>RGB histogram[23]</td>
<td>64-bin normalized histogram of RGB</td>
<td>bin-num = 64</td>
</tr>
<tr>
<td>HSV histogram[23]</td>
<td>64-bin normalized histogram of HSV</td>
<td>bin-num = 64</td>
</tr>
<tr>
<td>color correlogram[10]</td>
<td>Co-occurrence of pixels with a given distance and color level</td>
<td>dist=1 or 3 color-level=64</td>
</tr>
<tr>
<td>edge distribution histogram[13]</td>
<td>Global, local and semi-label edge distribution with five filters</td>
<td>global-bin=1 local-bin=25 horizon-bin=5 vertical-bin=5 center-bin=1</td>
</tr>
<tr>
<td>Gabor wavelet transformation[17]</td>
<td>Gabor wavelet transformation for texture</td>
<td>$U_h = 0.4$ $U_l = 0.05$ $K = 6$ $S = 4$</td>
</tr>
<tr>
<td>LBP[20],[36]</td>
<td>Local descriptor of binary patterns</td>
<td>Default parameter values</td>
</tr>
<tr>
<td>LPQ[21]</td>
<td>Local descriptor of phase quantization</td>
<td>Default parameter values</td>
</tr>
<tr>
<td>moment invariants[7]</td>
<td>Shape descriptor</td>
<td>—</td>
</tr>
<tr>
<td>Tamura texture feature[25]</td>
<td>Global descriptor of coarseness, contrast, and directionality</td>
<td>—</td>
</tr>
<tr>
<td>SIFT[16]</td>
<td>Scale-invariant feature transform</td>
<td>$numspatialbins=4$ $numorientbins=12$</td>
</tr>
<tr>
<td>GFD[28]</td>
<td>Generic Fourier descriptor</td>
<td>max-rad=4 max-ang=15</td>
</tr>
</tbody>
</table>
for short to represents building, car, dog, human, mountain, and water. From
the training images, we generate 3000 sample blocks for training for every label
including background. These image blocks are used to train the AdaBoost model.

4 Experiment

In this section, we evaluate the proposed multi-space learning on the database.
We compare our algorithm with six state-of-art MLL algorithms, namely Ad-
aBoost.MH [22] which combines MCL with label ranking, back-propagation (BP)
for MLL (BP-MLL) [33] which modifies the error term of traditional BP, instance
differentiation (INSDIF) [35] which converts MLL into MIML upon differences
between an image from different label centroids, binary relevance SVM with linear
kernel (LBRSVM), multi-label kNN (ML-KNN) [34] which combines MAP
principle with kNN, SVM with low-dimensional shared space named as MLLS

In the experiment, we assign 100 as maximum number of iterations for BP-
MLL, AdaBoost.MH, and also multi-class AdaBoost. Other parameters are ob-
tained via 3-fold cross-validation. The criteria of optimization in cross-validation
is F1-measure. We use three different aspects of criteria for evaluation, namely,
example-based, ranking-based and label-based criteria, including hamming loss,
one-error, coverage, ranking loss, average precision, together with micro-averaging
and macro-averaging recall, precision and F1.

Let H be a learned classifier, f denote the real-valued function associated
with H, and $T = \{ t_1, t_2, \ldots, t_m \}$ be the testing data set. Y_i is the true label
for t_i. The definitions for example-based and ranking-based criteria are listed as
follows:

$$hloss(H) = \frac{\sum_{i=1}^{m} |H(t_i) \Delta Y_i|}{mq}, \quad 1 - err(f) = \frac{\text{argmax}_{y \in L} f_y(t_i) \notin Y_i}{m},$$

$$\text{cov}(f) = \frac{\sum_{i=1}^{m} \max_{y \in Y_i} \text{rank}_f(t_i, Y_i)}{m} - 1,$$

$$rloss(f) = \frac{\sum_{i=1}^{m} |S_i|}{m}, \quad S_i = \{(y_1, y_2) | f_{y_1}(t_i) \leq f_{y_2}(t_i), (y_1, y_2) \in Y_i \times \bar{Y}_i \},$$

$$\text{avgprec}(f) = \frac{1}{m} \sum_{i=1}^{m} \frac{1}{|Y_i|} \sum_{y \in Y_i} \frac{|S'_i|}{\text{rank}_f(t_i, y)},$$

$$S'_i = \{ y' \in Y_i | \text{rank}_f(t_i, y') \leq \text{rank}_f(t_i, y) \}.$$
Table 3 and Table 4 show the comparison results. (-) means the smaller the value is, the better the performance is; while (+) means the opposite. As can be seen, the proposed MSL algorithm outperforms the other six algorithms in several important criteria, including hamming loss, one-error, coverage, ranking loss, average precision, micro-averaging F1 and macro-averaging F1.

For multi-label classification, not only the prediction with higher accuracy is important, but also the ranking on the association between examples and labels is vital. As other than thresholding, label ranking is another popular integration strategy for prediction on multi-label data. Label-based criteria are borrowed from the field of information retrieval, which reflect classifier performance excluding the imbalance factor from learning domain. The label-based criteria are recall and precision. F1 measure shows the balance between recall and precision. F1 is highly related to two factors. The first one is the absolute value of either recall or precision. The second one is the difference between recall and precision. High-value of F1 means the values of precision and recall are both high. Multi-label classification utilizes F1 as a crucial evaluation criterion via different averaging strategies. Among them, micro-averaging and macro-averaging are two common ones. The former describes the performance based on equal power of every example, while the latter focuses on the equal power of every label to generate F1 measure.

Table 3. Performance on Hamming loss, One-error, Coverage, Ranking loss, and Average precision

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Hamming Loss</th>
<th>One-Error</th>
<th>Coverage</th>
<th>Ranking Loss</th>
<th>Average Precision</th>
</tr>
</thead>
<tbody>
<tr>
<td>AdaBoost.MH</td>
<td>21.18</td>
<td>33.82</td>
<td>1.49</td>
<td>16.46</td>
<td>75.98</td>
</tr>
<tr>
<td>BP-MLL</td>
<td>27.45</td>
<td>23.72</td>
<td>1.68</td>
<td>23.26</td>
<td>73.48</td>
</tr>
<tr>
<td>INSDF</td>
<td>17.18</td>
<td>24.31</td>
<td>1.23</td>
<td>11.61</td>
<td>83.48</td>
</tr>
<tr>
<td>LBRSVM</td>
<td>18.95</td>
<td>24.13</td>
<td>1.31</td>
<td>12.95</td>
<td>81.78</td>
</tr>
<tr>
<td>ML-KNN</td>
<td>16.34</td>
<td>24.45</td>
<td>1.25</td>
<td>12.04</td>
<td>83.77</td>
</tr>
<tr>
<td>MLLS</td>
<td>24.91</td>
<td>22.41</td>
<td>1.23</td>
<td>11.38</td>
<td>84.48</td>
</tr>
<tr>
<td>MSL</td>
<td>13.68</td>
<td>10.83</td>
<td>1.04</td>
<td>7.16</td>
<td>91.03</td>
</tr>
</tbody>
</table>

In addition to the evaluation showed above in Table 3 and Table 4, we change the threshold values for prediction to draw precision-recall curves in Figure 2 and Figure 3. The micro-averaging and macro-averaging precision-recall curves basically show how sensitive a classifier would be interfered by threshold change. In summary, the larger the area under precision-recall curve (AUPRC) is, the
Table 4. Performance on micro-averaging and macro-averaging recall, precision and F1

<table>
<thead>
<tr>
<th>Method</th>
<th>micro-rec</th>
<th>macro-rec</th>
<th>micro-prec</th>
<th>macro-prec</th>
<th>micro-F1</th>
<th>macro-F1</th>
</tr>
</thead>
<tbody>
<tr>
<td>AdaBoost.MH</td>
<td>57.01</td>
<td>75.18</td>
<td>64.84</td>
<td>60.61</td>
<td>60.16</td>
<td>60.38</td>
</tr>
<tr>
<td>BP-MLL</td>
<td>77.63</td>
<td>48.51</td>
<td>59.71</td>
<td>78.52</td>
<td>49.04</td>
<td>60.37</td>
</tr>
<tr>
<td>INSDIF</td>
<td>60.65</td>
<td>75.93</td>
<td>67.43</td>
<td>62.21</td>
<td>69.96</td>
<td>65.86</td>
</tr>
<tr>
<td>LBRSVM</td>
<td>62.84</td>
<td>73.56</td>
<td>67.78</td>
<td>64.32</td>
<td>64.46</td>
<td>64.39</td>
</tr>
<tr>
<td>ML-KNN</td>
<td>61.67</td>
<td>72.95</td>
<td>66.84</td>
<td>62.91</td>
<td>72.19</td>
<td>67.22</td>
</tr>
<tr>
<td>MLLS</td>
<td>90.41</td>
<td>53.01</td>
<td>66.82</td>
<td>89.61</td>
<td>51.87</td>
<td>65.71</td>
</tr>
<tr>
<td>MSL</td>
<td>77.01</td>
<td>72.26</td>
<td>74.56</td>
<td>77.65</td>
<td>72.81</td>
<td>75.15</td>
</tr>
</tbody>
</table>

better the classifier is. The better here means more robust with the threshold change. Overall, MSL method yields superior performance compared to the other six MLL algorithms.

5 Conclusion

In this paper, we present an algorithm using training blocks extracted in training images and image multi-space representations to generate a multi-space learning method, which utilizes a multi-class AdaBoost to train a multi-class classifier. In this sense, we try to transform image classification from a multi-label learning problem to a multi-class learning problem. In addition to that, rather than using a predefined logic to integrate results from regions in multi-instance learning, we derive a Markov random field model to integrate the normalized real-valued outputs from AdaBoost. MRF-based multi-space learning maintains the content and spatial information in images. Hence, MRF-based integration is a more advanced method to integrate results from different regions. Our algorithm is ex-
experimentally evaluated through a multi-label image database and proven highly effective for image classification.

6 Acknowledgement

This material is based upon work supported by the National Science Foundation under Grant No. 0066126.

References

