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Abstract. In this paper, we address multi-labeler active learning, where
data labels can be acquired from multiple labelers with various levels
of expertise. Because obtaining labels for data instances can be very
costly and time-consuming, it is highly desirable to model each labeler’s
expertise and only to query an instance’s label from the labeler with
the best expertise. However, in an active learning scenario, it is very
difficult to accurately model labelers’ expertise, because the quantity of
instances labeled by all participating labelers is rather small. To solve this
problem, we propose a new probabilistic model that transfers knowledge
from a rich set of labeled instances in some auxiliary domains to help
model labelers’ expertise for active learning. Based on this model, we
present an active learning algorithm to simultaneously select the most
informative instance and its most reliable labeler to query. Experiments
demonstrate that transferring knowledge across related domains can help
select the labeler with the best expertise and thus significantly boost the
active learning performance.
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1 Introduction

Active learning is an effective tool for reducing the labeling costs by choosing
the most informative instance to label for supervised classification. Traditional
active learning research has primarily relied on a single omniscient labeler to
provide a correct label for each queried instance. This is particularly true for
applications involving a handful of well-trained professional labelers. Recent ad-
vances in Web 2.0 technology have fostered a new active learning paradigm [16,
21], which involves multiple (non-experts) labelers, aiming to label collections of
large-scale and complex data. For example, crowdsourcing services (i.e., Amazon
Mechanical Turk®) allow a large number of labelers around the world to collab-
orate on annotation tasks at low cost. In such settings, data can be accessed by
different labelers, who annotate the instances based on their own expertise and
knowledge. Given multiple (possibly noisy) labels, majority vote is a simple but
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popular approach widely used by crowdsourcing services to generate the most
reliable label for each instance.

In multi-labeler scenarios, labelers tend to have different but hidden compe-
tence for a given task, depending on their background knowledge and expertise.
Therefore, it is unlikely that all labelers are able to provide accurate labels for all
instances, and labels provided by less competent labelers might be more error-
prone. As a result, taking majority vote without considering the reliability of
different labelers would deteriorate the classification models. More importantly,
active learning starts with a small amount of labeled instances, with very few
annotations from each labeler. The limited number of labeled data gives very
little information to model labelers’ expertise, which may incur incorrect labels
and degrade classification accuracy. Therefore, accurately modeling labelers’ ex-
pertise using a limited number of data poses a main challenge for active learning.

While labeled data is either costly to obtain, or easy to be outdated in a
given domain, there often exists some labeled data from a different but related
domain. This is often the case when the labeled data is out-of-date, but new data
continuously arrives from fast evolving sources. For example, there may often
be very few Blog documents annotated for certain Blog types, but there may
be a lot of newsgroup documents labeled by numerous information sources. The
newsgroup and Blog documents are in two different domains, but share common
features (i.e. topics). Another example is text classification in online mainstream
news. The model trained from old news articles may easily become outdated,
and its classification accuracy would decrease dramatically over time. It would
be very time-consuming to obtain annotations for new documents. Therefore,
one important question is, how can we transfer useful knowledge from related
domains to accurately model labelers’ expertise in order to boost the active
learning performance?

In this paper, we propose a novel probabilistic model to address the multi-
labeler active learning problem. The proposed model can transfer knowledge
from a related domain to help model labelers’ expertise for active learning.
We use a multi-dimensional topic distribution to represent a labeler’s knowl-
edge, which determines the labeler’s reliability in labeling an instance. This ap-
proach provides a high-level abstraction of the labeled data in a low dimensional
space, which reveals the labelers’ hidden areas of expertise. More importantly,
our model opens opportunity to find “good” latent topics shared by two re-
lated domains and further transfer such knowledge for improving the estimation
of the labelers’ expertise in a unified probabilistic framework. Based on this
probabilistic model, we present a new active learning algorithm that simultane-
ously decides which instance should be labeled next and which labeler should be
queried to maximally benefit the active learning performance. Compared with
existing multi-labeler active learning methods, the advantage of our proposed
method is that it can accurately model the labelers’ expertise via transferring
knowledge from related domains, and can thus select the labeler with the best
expertise to label a queried instance. This advantage eventually leads to a higher
classification accuracy for active learning.



2 Related Work

According to the query strategies, existing active learning techniques can be
roughly categorized into three categories: 1) uncertainty sampling [8, 18], which
focuses on selecting the instances that the current classifier is most uncertain
about; 2) query by committee [6,9], which considers the most informative in-
stance to be the one that a committee of classifiers disagree most; 3) expected
error reduction [13], which aims to query instances which can maximally reduce
the model loss reduction of the current classifier once labeled. Most of existing
works have mainly focused on a single domain and assumed that an omniscient
oracle exists to provide an accurate label for each query.

Recently, learning from crowds has drawn a lot of research attention in the
presence of multiple labelers [12]. Different from conventional supervised learning
in which the annotations for data instances are provided by a single omniscient
labeler, a given learning task seeks to collect labels from multiple labelers via
crowdsourcing services at low cost, e.g., Amazon Mechanical Turk. Since la-
belers have different knowledge or expertise, the resultant labels are inherently
subjective (possibly noisy) with substantial variations among different annota-
tors. Majority vote is one simple but popular way for integrating multiple noisy
labels from crowdsourcing systems. Some research works have attempted to im-
prove the overall quality of labeling from noisy labels. Sheng et al. [16] proposed
to use repeated labeling strategies to improve the label quality inferred via ma-
jority vote. Donmez and Carbonell [4] introduced different costs to the labelers
and solved a utility optimization problem to select an optimal labeler-instance
pair subject to a budget constraint, in which expensive labelers are assumed to
provide high-quality labels. Wallace et al. [19] furthered this work and proposed
instance allocation strategies to better balance the workload between novice and
stronger experts. These works have assumed that the labelers’ levels of exper-
tise are known through available domain information such as associated costs
or expert salaries. However, the challenge of explicitly estimating each labeler’s
reliability has not been properly addressed.

In multi-labeler settings, active learning has focused on intelligently selecting
the most reliable labelers to reduce the labeling costs. One line of research has
tried to build a classifier for each labeler and approximate the labelers’ expertise
using confidence scores [2, 11]. Other works have proposed to estimate the relia-
bility of labelers based on a small sample of instances labeled by all participating
experts. Yan et al. [22] directly used raw features of instances to represent the
labelers’ expertise. Fang et al. [5] modeled the reliability of the labelers via a
Gaussian mixture model with respect to some concepts. However, these methods
have relied on a small set of labeled data to estimate the dependency between
labelers’ reliability and original instances. Instead, in our work, we model the
expertise of a labeler by using a multi-dimensional topic distribution, which, at
an abstract level, better represents the labeler’s expertise, thus enabling each
queried instance to be labeled by a labeler with the best knowledge.

Transfer learning is another learning paradigm designed to save the labeling
cost for supervised classification. Given an oracle and a lot of labeled data from



a source domain, some researchers have proposed to combine transfer learning
and active learning to train an accurate classifier for a target domain. Saha
et al. [15] proposed to use the source domain classifier as one free oracle, which
answers the target domain queries that appear similar to the source domain data.
Similarly, Shi et al. [17] used the classifier from the source domain to answer the
queries as often as possible, and the target-domain labelers are queried only when
necessary. These methods assume that the target and source domains have the
exactly same labeling problem, that is, the oracle/classifier in the source domain
shares a same set of labels with the target domain. Different from these works,
we do not require the labeling problems in the two domains to be the same,
and there is also no need to involve the source domain oracles/labelers in the
active learning process. More importantly, we consider multiple labelers in the
target domain and focus on transferring knowledge from the labeled source data
to help estimate the expertise of labelers. To the best of our knowledge, our
work is the first to leverage transfer learning to help model labelers’ expertise
for multi-labeler active learning problem.

3 Problem Definition & Framework

We consider active learning in a multiple labeler setting with a target data set
X = {x1,---,xn} and a source data set Xs = {Xs,, -, Xsy_}. In the target
domain, there are a total of M labelers (I1,---,ly) to provide labeling informa-
tion for instances X. For any selected instance x;, we denote the label provided
by labeler [; as y; ;, and its ground truth (unknown) label as z. In the source
domain, each instance x;, is annotated with a label ¢; € {c1,...,cp} by one
or multiple labelers. In this paper, we assume that the labeling problems in the
source and target domain can be different. Once the data in the source domain
are all labeled, there is no need to involve source domain labelers in the active
learning process.

To characterize a labeler’s labeling capability, we assume that each labeler’s
reliability of labeling an instance x; is determined by whether the labeler has
the expertise with respect to the latent topics, which the instance x; belongs to.
Formally, we give specific definitions as follows.

Definition 1 Topic: A topic t represents the semantic categorization of a set of
instances. Each instance is then modeled as an infinite mixture over a set of
latent topics. For example, sports is a common topic of a set of documents (i.e.
instances) related to sports. A document contains words, such as “win”, “games”,
“stars”, which may belong to multiple topics, such as sports and music.

Definition 2 Expertise: The expertise of a labeler /;, denoted by e}, is represented
as a multinomial distribution over a set of topics 7. For example, a labeler may
have expertise on two topics {t; = sports,ts = music}, with probabilities 0.8
and 0.6, respectively.

Given M labelers in the target domain, and a set of labeled data X, from the



source domain, the aim of active learning is to select the most informative
instance from the target data pool X', and to query the most reliable labeler to
label the selected instance, such that the classifier trained from labeled instances
has the highest classification accuracy in the target domain.
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Fig. 1. An overview of the proposed framework. “Knowledge transfer module” uses
source data to help model each labeler’s expertise in the target domain. During active
learning process, the most information instance is selected to be labeled by a labeler
with the best expertise.

Proposed Framework The overview of the proposed framework is shown in
Figure 1. Our goal is to select the most informative instances and find the labelers
with the best expertise to label the instances. Because labeled instances are
rather limited and insufficient to characterize the labelers, we leverage the data
from some source domains to strengthen the active learning process. In the
following, we first describe the modeling of multiple labelers by using knowledge
transfer in Section 4, and then detail the active learning algorithm in Section 5.

4 Modeling Expertise of Multiple Labelers

This section details our proposed model for modeling multiple labelers and de-
scribes transfer learning techniques used to estimate labelers’ expertise.

4.1 Probabilistic Model

The main aim of modeling multiple labelers is to enable the selection of a labeler
with the best expertise to label a queried instance. Given an instance x selected
for labeling and a number of labelers, each having his/her own expertise, we
assume that the label y provided by each labeler to instance x is subject to



labeler’s expertise with respect to some latent topics and the ground truth label z
of x. Therefore, we propose a probabilistic graphical model, as shown in Figure 2.
The two variables X, where x; € X, represents an instance, and Y, where y; ;
denotes the label provided by labeler /; to instance x;, are directly observable.
All other variables — the topic distribution t; of an instance x;, the ground truth
label z;, and a labeler’s expertise e; — are hidden, so their values must be inferred
from observed variables.

S

N

Fig. 2. Probabilistic graphical model for modeling multiple labelers with different ex-
pertise. The gray nodes X and Y are two observable random variables denoting in-
stances and their labels, respectively. All other nodes are unobservable. For instances
X, the latent topics T of instances and the expertise E of the labelers determine X's
labels Y provided by the labelers, which are assumed to be an offset, subject to a
Gaussian distribution, with respect to X’s genuine labels Z.

This probabilistic graphical model can be represented using the joint proba-
bility distribution as follows

N M
p= HP(Zz' |x;)p(ti]x;) Hp(em‘ t)p(yijl2is €1,5)- (1)

In our model, we allow different labelers to have varying levels of expertise.
That is, the expertise of a labeler depends on the topic distribution t; of the
instance x;. Because an instance can belong to one or multiple latent topics,
we use p(tr|x;) to represent x;’s membership probability of belonging to topic
t. Given an instance’s topic distribution t; = {p(¢1|x;), -, p(tx|x:)}, we use
logistic regression to define the expertise of labeler [; with respect to t; as a
probability distribution given by

K
pleijlt:) = (1+exp(= Y ebp(trlxi) — v;)~". )
k=1

Our model assumes that the ground truth label z; of instance x; is solely
dependent on the instance itself. To capture the relationships between x; and z;,
any probabilistic model can be used. For simplicity, we use a logistic regression
model to compute the conditional probability p(z;|x;) as

plailxi) = (1+exp(—7"x; = X))~ 3)



For an instance x;, the actual label y; ; provided by the labeler I; is assumed
to depend on both the labeler’s expertise e; ; and the ground truth label z; of
x;. We model the offset between the actual label y; ; provided by the labeler and
the instance’s genuine label z as a Gaussian distribution

p(Yijleig, zi) = N(zi, ;). (4)

Intuitively, if a labeler has a higher reliability e; ; of labeling instance x;, the
variance e;j.l of the Gaussian distribution would be smaller. That is, the actual
label y; ; provided by the labeler would be closer to x’s ground truth label z;.
So far, we have discussed the calculation of probabilities p(z;|x;), p(e; ;|ti),
and p(yi, ;|2 €; ;) in Eq.(1). We now focus on estimating the distribution of latent
topics of the instances, i.e., p(t|x). Given a set of instances X, the information
about the latent topics is usually unavailable. A simple approach would be con-
ducting latent semantic analysis on an initial set of labeled data. However, since
the number of initially labeled data for active learning is very small, the accu-
racy of the induced model is largely limited. Therefore, we resort to leveraging
labeled data from a related domain, which is detailed in the next subsection.

4.2 Transferring Knowledge

Given labeled data from a related domain, the basic idea is to exploit transfer
learning to help discover latent topics of the instances in the target domain. That
is, we aim to find common “good” latent topics to minimize the divergence of the
two domains, through which we can estimate a more accurate topic distribution
p(t]x), thus improving the accuracy in estimating labelers’ expertise, as defined
in Eq. (2). Formally, given a source data X,, where each instance x, is annotated
with a corresponding label ¢ € {¢1,...,cp}, our objective is to estimate a topic
distribution p(t|x) for the target data X.

For this task, we employ probabilistic latent semantic analysis (PLSA) to
model the instances (i.e. documents) in the two domains [7]. PLSA aims to
map the high-dimensional feature vectors of documents into a low dimensional
representation in a latent semantic space. This abstraction offers an ideal way
to represent labelers’ expertise with respect to latent topics. Following the as-
sumption that two related domains share similar topics from the terms in [20],
we bridge the two domains through common latent topics, denoted by random
variable T’ as illustrated in Figure 3.

Specifically, we perform PLSA on the two domains. Thus, we have

p(xsw) =D p(xs[t)p(tw), ()

for the source data set, and

p(xw) = p(x|t)p(t|w), (6)

t
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Fig. 3. PLSA model for bridging two related domains. The target data X and source
data X; are linked through latent variables T (topics) and W (terms). By transferring
knowledge from the source data, a more accurate topic distribution can be obtained,
which further improves the estimation of the labelers’ expertise.

for the target data set. In the above equations, both decompositions share the
same term-specific mixing part p(¢|w) and relate the conditional probabilities for
the two domains; each topic has a different probability of generating a document,
p(Xs|t), in the source domain, and p(x|t), in the target domain, respectively.

To fully make use of the label information in the source domain, we also
enforce must-link constrains and cannot-link constrains used in semi-supervised
clustering [1]. For two instances having the same label, we define the must-link
constraint as

same(Xs,, X,,) = log Y p(xa,[t)p(xs, [t), (7)

and for any two instances having different labels, we define the cannot-link con-
straint as
diff (xs, %) = log Y plxs, [ti)p(xs, |t5) (8)
tiFt;

Therefore, we define our objective function to maximize the log-likelihood of the
data with two penalty terms:

L= {> 108> plxit)p(tw)
+3 10 " pxaltp(th)

+p1diff (xs,, X5, ) + fosame(Xs,, X, ), 9)

where 81 and 32 are two hyper-parameters that control the weights of the must-
link and cannot-link constrains and the question of how they would affected the
accuracy of active learning will be empirically investigated.

To solve this optimization problem, we adopt a standard EM algorithm de-
tailed as follows.

— E-step:
p(xs[t)p(tw)

p(xsf0) (10)

p(t|X5, ’U}) =



p(x[t) P(t|w)
p(x|w)

p(t[x, w) =

— M-step:

p(x|t) Zn p(t|x, w) (12)

p(xst) o Zn(w,xs)p(t\xmw)

Zztl

Xoomc; p(xs, [t)p(xs,[t)
P(Xs, [1)p(xs, |15)

+52 (13)
%5 it th#p(xs,-ﬁ)p(xs,-ﬁj)
p(tjw) o Zn(w,xS (t|xs,w) + Z n(w, x)p(t|x, w) (14)

Finally, for the target domain, we can calculate the latent topic distribution
p(t|x) using Eq. (11).

4.3 Parameter Estimation

Now we discuss the learning process to estimate the parameters of our proposed
graphical model. Given observed variables — instances, their labels provided by
labelers, and topic distribution of instances estimated via transfer learning (de-
scribed in Section 4.2), we would like to infer two groups of hidden variables

= {6,9}, where © = {v,A}, & = {e;,v;}}L,. This learning task can be
solved by using a Bayesian style of EM algorithm [3].

E-step: We compute the expectation of the data log likelihood with respect
to the distribution of the hidden variables derived from the current estimates of
model parameters. Given current parameter estimates, we compute the posterior
on the estimated ground truth:

P(2i) = p(2ilxi, ti, €, y:) o< p(2i, b4, €4, yilXi), (15)
where

M
p(zi, bis ei, yilxi) = p(zi|xi)p(tilxi) Hp(ei,j
J

Xi)p(yi,j|ziaei,j)' (16)

M-step: To estimate the model parameters, we maximize the expectation of
the logarithm of the posterior on z with respect to p(z;) from E-step:

2% = argmaz Q(12, 2), (17)
2
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where £2 is the estimate from the previous iteration, and
Q(02,02) = Ep. Zlogp(xi,ti7yi\ 2)
i

= By, llogplei;xi) +logp(yi jlzi, eis)
i
+ log p(zi|x;) + log p(ti|x;)]. (18)

To solve the above optimization problem, we compute the updated parameters
by using the L-BFGS quasi-Newton method [10].

5 Knowledge Transfer for Active Learning

Based on our probabilistic model, multi-labeler active learning seeks to select
the most informative instance and the most appropriate labeler, with respect to
the selected instance, to query for its label.

Instance Selection The goal of active learning is to learn the most accurate
classifier with the least number of labeled instances. We thus employ a commonly
used uncertainty sampling strategy, by using the posteriori probability p(z|x)
from our graphical model, to select the most informative instance:

x* = argmax H(z;|x;), (19)
X; EX
where
H(zi[x;) = — Zp(2i|xz‘) log (zix;). (20)

z
Since the calculation of the posteriori probability p(z|x) takes multiple label-
ers and their expertise into consideration, the instance selected using Eq.(19)
represents the most informative instance from all labelers’ perspectives.

Labeler Selection Given an instance selected using Eq.(19), labeler selection
aims to identify the labeler who can provide the most accurate label for the
queried instance. For each selected instance x;, we first calculate the latent topic
distribution p(t;|x;) using Eq. (11), and then compute the confidence of each
labeler as follows:

K
eij(xi) = efptelxi) +v;. (21)
k=1

Accordingly, we rank the confidence values from Eq.(21) and select the labeler
with the highest confidence score to label the selected instance

J* = argmaxe; ;(x;). (22)
JjeM
After selecting the best instance and labeler, we make a query to the labeler
for the instance. The active learning algorithm is summarized in Algorithm 1.
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Algorithm 1 Knowledge Transfer for Active Learning

Input: (1) Target data set X’; (2) Multiple labelers l1, - - -, lar; (3) Source data set X;
and (4) Labeling budget: budget
Output: Labeled instance set £, Parameters (2
1: Train an initial model with the labeled target data £ and source data Xs;
2: Perform transfer learning from X, to calculate topic distribution p(t|x) for each
instance x (Eq.(11));
numQueries < 0;
while numQueries < budget do
x* < the most informative instance from pool X (Eq.(19));
j* < the most reliable labeler for instance x* (Eq.(22));
(X", yx*,j+) < query instance x*’s label from labeler ;+;
L+ LU (X*, yxx jx);
{2 + retrain the model using the updated labeled data;
numQueries < numQueries + 1.
: end while

—

—_

6 Experiments

To validate the effectiveness of our proposed algorithm, we conduct experiments
on both synthetic data and real-world data. Our proposed algorithm is referred
to as AL+kTrM. For comparison, we use five other algorithms as baselines:

— RD-+MYV is a baseline method that randomly selects an instance to query.
It collects all labels provided by multiple labelers and then uses majority
vote to generate the label for the queried instance.

AL+MYV uses the same strategy as our proposed AL+kTrM algorithm to

select an instance but it relies on majority vote to generate the label for the

queried instance.

— AL+rM is a state-of-the-art multi-labeler active learning method [21]. It
uses raw features of the instances to calculate the reliability of labelers.

— AL+gM models a labeler’s reliability using a Gaussian mixture model
(GMM) with respect to some concepts, as proposed by [5].

— AL+KM uses the same probabilistic model as our proposed AL-+kTrM al-
gorithm, but does not utilize transfer learning to improve the estimation of
labelers’ expertise. By comparing with this baseline, we can validate whether
the transfer learning module in our AL+kTrM algorithm can help improve
active learning to achieve a higher accuracy.

In our experiments, all results are based on 10-fold cross-validation. In each
round, we initially started with a small labeled data set (3% of train data), and
then made queries by using different active learning strategies. The reported
results are averaged over 10 rounds. We used logistic regression as the base clas-
sifier for classification, and evaluated algorithms by comparing their accuracies
on the same test data. For our proposed AL+kTrM algorithm, the two parame-
ters in Eq.(9) were set as 81 = 60, 82 = 40, and their impact on the classification
accuracy will be empirically studied in Section 6.3.
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6.1 Results on Real-World Data

We carried out experiments on a real-world data set, which is a publicly avail-
able corpus of scientific texts annotated by multiple annotators [14]. The in-
consistency between multiple labelers makes this data set an ideal test-bed for
evaluating the proposed algorithm. This corpus consists of two parts; we used
the first part of 1,000 sentences annotated by five labelers as the target data, and
the second part of 10,000 sentences annotated by eight labelers as source data
for transfer learning. During the original labeling process, each expert broke a
sentence into a number of fragments and provided a label to each fragment.

For the target data, we used the focus, evidence, polarity labels and consid-
ered a binary classification problem for each label. We set the fragments as the
instances and their annotations were treated as labels. We removed the frag-
ments whose number of characters is less than 10 and only kept the fragments
segmented by all five labelers in the same way. The fragments were pre-processed
by removing stopwords. As a result, we had 504 instances containing 3828 fea-
tures (words) in the target data set. In the source data, the labels, including
generic, methodology, and science were used to form the constraints in Eq.(9).

Figure 4 compares the classification accuracy of different algorithms with
respect to the number of queries. Figure 4(a)-4(c) clearly show that AL+kTrM
outperforms other baselines and achieves the highest accuracy. Particularly, at
the beginning of querying, its accuracy is much higher than others. This indicates
that, when there is a limited number of labeled data, transferring knowledge from
a related domain boosts the accuracy of active learning. AL+kM and AL+gM
perform slightly better than AL+rM, although their performance is close to
each other in Figure 4(b). AL+MV and RD+MYV perform worst, because they
use majority vote to aggregate the labels but do not consider the expertise and
reliability of different labelers. AL+MYV performs better than RD+MYV because
it selects the most informative instance to query. Overall, AL+kTrM achieves
the highest classification accuracy during the active learning process.

6.2 Results on Synthetic Data

Since real-world data does not have the ground truth information about labelers’
expertise, we also evaluated the effectiveness of our algorithm using synthetic
data in which we can construct different expertise domains for labelers and
explicitly evaluate the accuracy of labeler selection. The synthetic data we used
is based on the 20 Newsgroups*. This data set contains 16,242 postings that
are tagged by four high-level domains: comp, rec, sci and talk. To simulate the
labelers, we assume that each labeler knows the ground truth labels of two
tagged sub data sets, and gives a random guess for the rest of the data. In this
way, we constructed five labelers of different expertise and formulated a binary
classification problem. For each domain, we selected 150 instances as the target
data, and used the rest as the source data for transfer learning. We started

4 http://kdd.ics.uci.edu/databases/20newsgroups/20newsgroups . html
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Fig. 4. Accuracy comparison of different algorithms on scientific text data for the
polarity, focus and evidence labels.

all active learning algorithms with an initially labeled set and made queries to
improve the classification accuracy.

Figure 5(a) compares the accuracy of different algorithms with respect to the
number of queries. We can see that, AL+kTrM is superior to other baselines, and
RD+MYV performs worst. RD+MYV randomly selects the instances thus leading
to the worst performance. AL+MYV improves RD+MV because it selects the
most informative instance to label. However, the two methods, RD+MV and
AL+MYV, rely on majority vote to aggregate the labels for instances without
considering the reliability of labelers. AL+gM and AL+kM achieve higher accu-
racy than AL+rM, while AL+kM performs slightly better than AL+gM. This is
because, both AL+gM and AL+kM model the expertise of labelers in terms of
some topics at an abstract level, which better reveals the labelers’ areas of knowl-
edge. However, since AL+gM has a strong assumption that the expertise model
follows a GMM distribution, its performance is limited in complex text data.
Furthermore, by utilizing labeled data from a related domain, our AL+kTrM al-
gorithm yields the highest classification accuracy in the active learning process.

In order to better understand how AL-+kTrM models the expertise of labelers,
Table 1 shows the correlation between the top two latent topics discovered by our
algorithm and the domain of expertise of two labelers we constructed: Labeler 1
which is simulated to have expertise in comp and rec domain, and Labeler 2 to
have expertise in sci and talk domain. The results clearly show that for Labeler
1, Topic 2 is related to rec.sport domain, and Topic 4 is related to comp.sys
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Fig. 5. Performance comparison of different algorithms

Table 1. Correlation between the labelers’ expertise and the latent topics discovered
by our AL+kTrM algorithm

Latent topic Top correlated words

Labeler 1 (comp, rec)

Topic 2 win,team,games,players,baseball,season
Topic 4 drive,data,card,technology,video,driver

Labeler 2 (sci, talk)

Topic 1 world,law,children,jews,religion,fact,war
Topic 10 question,state,research,earth,space,orbit

domain; for Labeler 2, Topic 1 and Topic 10 are correlated to talk.religion and
sci.space domain, respectively. This well explains our motivation that discovering
latent topics can better reveal labelers’ areas of expertise.

To further demonstrate the advantage of our AL+kTrM algorithm, we ex-
plicitly compared different algorithms with respect to their abilities to select the
best labelers to label the queried instances. Figure 5(b) reports the accuracy
of labeler selection in terms of different numbers of queries. We can observe
that, AL+MV and RD+MYV performs much worse than other methods. This is
because they use majority vote to aggregate labels without considering the reli-
ability of labelers. In contrast, by modeling the labelers’ expertise, multi-labeler
active learning methods significantly improve majority vote. Among them, our
AL+kTrM algorithm can be observed to yield the highest accuracy for selecting
the best labelers to label the queried instances.

6.3 Study on the Impact of 3; and 32

Now we study the impact of the two parameters $; and (2 in our AL+kTrM
algorithm on classification accuracy. Parameters 5, and (s are two coefficients
in the knowledge transfer module that controls the contribution of the must-
link and cannot-link constrains, as defined in Eq.(9). Specifically, we fixed the
value of one parameter at 50, and studied the impact of the other parameter by
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varying its value from 0 to 100. We analyzed the impact of #; and B2 on both
synthetic data and real data. Due to the space limit, we used the synthetic data
as a case study, because similar observations are obtained for real data.
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Fig. 6. Classification accuracy with different 81 and B2 values

Figure 6 shows the classification accuracy by varying the values of 8, and
B2, respectively. From Figure 6(a), we can see that, as the value of 3 increases,
AL+kTrM gradually achieves higher accuracy. When (3 reaches the value of 60,
the accuracy becomes relatively saturated. From Figure 6(b), we can observe
that, the accuracy is not very sensitive to different values of f5. Overall, the
impact of the must-link constraint (controlled by (1) seems to be larger than
that of the cannot-link constraint (controlled by f2).

7 Conclusion

This paper proposed a new probabilistic model to address active learning in-
volving multiple labelers. We argued that when labelers have different levels of
expertise, it is important to properly characterize the knowledge of each labeler
to ensure the label quality. In active learning scenarios, the quantity of instances
labeled by all participating labelers is very small, which raises a challenge to
model each labeler’s strength and weakness. So we proposed to utilize data from
a related domain to help estimate labelers’ expertise. Using the proposed model,
our active learning algorithm can always select the most informative instance and
query its label using a single labeler with the best expertise with respect to the
queried instance. Experiments demonstrated that our method significantly out-
performs existing multi-labeler active learning methods, and transferring knowl-
edge from a related domain can indeed help improve active learning.
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