
Incremental Local Evolutionary Outlier
Detection for Dynamic Social Networks

Tengfei Ji, Dongqing Yang, and Jun Gao

School of Electronics Engineering and Computer Science,
Peking University, Beijing, 100871 China

tfji@pku.edu.cn

Abstract. Numerous applications in dynamic social networks, rang-
ing from telecommunications to financial transactions, create evolving
datasets. Detecting outliers in such dynamic networks is inherently chal-
lenging, because the arbitrary linkage structure with massive information
is changing over time. Little research has been done on detecting out-
liers for dynamic social networks, even then, they represent networks as
un-weighted graphs and identify outliers from a relatively global perspec-
tive. Thus, existing approaches fail to identify the objects with abnormal
evolutionary behavior only with respect to their local neighborhood. We
define such objects as local evolutionary outliers, LEOutliers. This paper
proposes a novel incremental algorithm IcLEOD to detect LEOutliers
in weighted graphs. By focusing only on the time-varying components
(e.g., node, edge and edge weight), IcLEOD algorithm is highly efficient
in large and gradually evolving networks. Experimental results on both
real and synthetic datasets illustrate that our approach of finding local
evolutionary outliers can be practical.

Keywords: Outlier detection, Dynamic Social Networks, Weighted e-
volving graphs, Local information.

1 Introduction

Outlier detection is a task to uncover and report observations which appear to
be inconsistent with the remainder of that set of data [1]. Since outliers are
usually represented truly unexpected knowledge with underlying value, research
has been widely studied in this area, often applicable to static traditional strings
or attribute-value datasets [2].

Little work, however, has focused on outlier detection in dynamic graph-based
data. With the unprecedented development of social networks, various kinds of
records like credit, personnel, financial, medical, etc. all exist in a graph form,
where vertices represent objects, edges represent relationships among objects and
edge weights represent link strength [3]. Graph-based outlier detection problem
is specially challenging for three major reasons as follows:

Dynamic changes: Vertices, the relationships among them as well as the
weight of the relationships are all continuously evolving. For example, users join

2 Tengfei Ji, Dongqing Yang, and Jun Gao

friendship networks (e.g. Facebook), friendships are established, and communi-
cation becomes increasingly frequent. To capture outliers in evolving networks,
detecting approaches should obtain temporal information from a collection of s-
napshots instead of a particular instant. For example, snapshots of the Facebook
graph should be taken periodically, forming a sequence of snapshot graphs [4].

Massive information: Compared with average data sets, social networks are
significantly larger in size. The volume is even larger when the network is dy-
namic, massive information involved in a series of snapshots with millions of
nodes and billions of edges[5]. In this case, it is difficult for algorithms to obtain
full knowledge of the entire networks.

Deeply hidden outliers: Recent studies suggest that social networks usually
exhibit hierarchical organization, in which vertices are divided into groups that
can be further subdivided into groups of groups, and so forth over multiple scales
[21]. Therefore, outliers are more difficult to distinguish from normal ones if they
are hidden deeply among their neighbored but not globally.

However, outlier detection in social networks has not yet received as much
attention as some other topics, e.g. community discovery [9, 10]. Only a few stud-
ies have been conducted on graph-based outlier detection (e.g. [3], [6], [7], [8]).
While a more detailed discussion on these approaches will be provided in section
2, it suffices to point out here that most of these approaches identify outliers in
un-weighted graphs from a more global perspective. For example, community-
based algorithms [3, 6] identify objects whose evolving trends are different with
that of entire community. All such global outlier detection algorithms require the
entire structure of the graph be fully known, which is impractical when dealing
with large evolving networks. Furthermore, the local abnormality may be highly
covered by global evolution trend. Thus, existing global methods fail to identi-
fy the objects with abnormal evolutionary behavior only relative to their local
neighborhood. We define such objects as local evolutionary outliers, LEOutliers.
The following example is adopted to illustrate directly the feature of LEOutliers.

Example: Who Should be Liable for Examination Leakage

Figure 1 shows a communication network with two communities, teacher com-
munity C1 and student community C2. Different colors are used to distinguish
between members of two communities. Because of space constraints, links be-
tween nodes have been omitted. It is worthwhile to note that we use the over-
lapping area of two communities to denote the interactions between teachers
and students. The more they are connected, the larger the overlapping area
becomes.

Figure 1(a) contains two snapshots at time T-1 and T and we suppose that
the Entrance Examination time is near at T. It is obvious that, from T-1 to T, the
evolution trend of entire teacher community is communicating more frequently
with student community, which is reasonable since more guidance is needed
before examination. According to the global-view algorithms, objects that follow
the entire community evolution trend are regarded as normal ones. Interestingly,
once local neighborhood is taken into account, as illustrated in Figure 1(b),
the black node v is an example of local evolutionary outlier. We suppose v

3

and its neighbors at time T-1 (blue triangles) are a special kind of teachers,
paper setters. The blue triangles avoid communicating with students as the
examination approaches for confidential reasons. On the contrary, node v is
behaving abnormally as he frequently interacts with students at T, which is
a violation of principle. Therefore, although node v evolving consistently with
entire community, he is the most likely suspect in examination leakage.

Fig. 1. Example of LEOutlier

The above example shows that the global-view algorithm is adequate under
certain conditions, but not satisfactory for the case when evolutionary outliers
are hidden deeply among their neighborhood. In this paper, we propose a novel
method named IcLEOD to effectively detect LEOutlier in weighted graphs from
a local perspective. The technical contributions of our work can be summarized
as follows:

– Besides descriptive concept, we put forward a novel measurable definition
of local evolutionary outlier. To the best of our knowledge, this is the first
straightforward concept of a local evolutionary outlier which quantifies how
outlying an object’s evolving behavior is from a local perspective.

– We propose an incremental local evolutionary outlier detection algorithm
(IcLEOD), which fully considers the varying temporal information and the

4 Tengfei Ji, Dongqing Yang, and Jun Gao

complex topology structure of social networks. Our algorithm consists of two
stages: In stage I, a local substructure named Corenet(v) is constructed for
every object v according to structure information and edge weights; In stage
II, we detect local evolutionary outliers by carefully analyzing and comparing
the Corenet(v) at different snapshots.

– Our algorithm greatly increases the efficiency by incrementally analyzing
the dynamic components (e.g., node, edge and edge weight) and the limited
number of nodes affected by them. This technique is more favorable than
algorithms that require global knowledge of the entire network, especially in
the case that the snapshot graphs are gradually evolving.

– Finally, the extensive experiments on both real and synthetic datasets con-
firm the capability and the performance of our algorithm. We conclude that
finding local evolutionary outliers using IcLEOD is meaningful and practical.

The rest part of this work is organized as follows: Section 2 discusses the
recent related work; Section 3 proposes our incremental local evolutionary outlier
detection algorithm, IcLEOD; Section 4 gives experiments for our approach on
both real and synthetic data sets, and shows the achieved results. Section 5
makes a conclusion about the whole work.

2 Related Work

To focus on the theme, the traditional non-graph based outlier detection al-
gorithms will no more be introduced in this paper (e.g., distance-based [17],
distribution-based [1] and density-based methods [15, 16]). We are eager to dis-
cuss some state-of-the-art algorithms that conduct on graphs. Graph-based out-
lier detection has been studied from two major perspectives: global versus local.
We will introduce some typical methods in both categories respectively.

Graph-based global outlier detection methods: Most recent work on
graph-based outlier detection has focused on unweigted graphs from a more
global perspective (i.e. entire graph, community). For example, a stream-based
outlier detection algorithm [14] takes a global view of entire graph to identify
graph objects which contain unusual bridging edges. Community-based outlier
detection methods [7, 13] detect outliers within the context of communities such
that the identified outliers deviate significantly from the rest of the community
members. Some methods [3, 6] capture the dynamic anomalous objects whose
evolution behaviors are quite different from that of their respective communities.
All global outlier detection algorithms require that the entire graph should be
obtained, which may be impractical if networks are too large or too dynamic.

Graph-based local outlier detection methods: Saligrama [11] proposes
a statistical method based on local K-nearest neighbor distances to identify
anomalies localized to a small spatial region, which is used mainly to deal with
spatial data and cannot be easily generalized to non-spatial networks. OddBall
algorithm [12] takes a egocentric view to search weighted graphs based upon a
set of power laws, and determines four types of anomalous subgraphs centered on
individual nodes: near-cliques, near-stars, heavy vicinities and dominant heavy

5

links. Los Alamos National Laboratory [20] explores local areas and paths in the
network which are least likely to occur under normal conditions by combining
anomaly scores from edges in a neighborhood. Most methods in this category
utilize only single snapshot data to find unexpected nodes/edges/sub-structures
and hence they cannot detect temporal changes.

In summary, most of existing methods represent social networks (static and
dynamic) as unweighted graphs, and find outliers from a global point of view.
Thus the outliers detected by previous algorithms are not local evolutionary
outliers as proposed in this paper.

3 IcLEOD Algorithm

Consider a dynamic social network as a sequence of snapshots G1, G2, ...,GT ,
each snapshot is represented by weighted graphs G = (V, E), where V is the
set of objects (nodes) and E is the set of weighted edges. The weight of an edge
denotes the link strength (connecting times). In this paper, we focus on the
problem of detecting local evolutionary outliers from any of the two snapshots
Gi and Gj . Local evolutionary outliers across multiple snapshots can be obtained
by simple post-processing. More specifically, input for our problem thus consists
two snapshots of a weighted evolving network, and meaningful LEOutliers are
output.

Our LEOD algorithm involves two major phases. In the first phase, Corenet
for individual object is formed according to local topology structure and edge
weights information. In the second phase, local evolutionary outliers are identi-
fied by comparing individual’s Corenets of different snapshots. We will present
two phases in Subsection 3.1 and 3.2 respectively.

3.1 Phase I: Discovering Corenet for individual object

As noted above, the evolutionary behavior of a LEOutlier is extremely different
from that of its ”closest” neighbors. Thus, the primary goal in phase I is to
reasonably measure the closeness between objects, so as to determine which
nodes could be regarded as the closest ones. There are two basic concepts usually
used to group local nodes in un-weighted graph [19]. We will briefly introduce
them before providing the notion of Corenet.

DEFINITION 1 (Egonet) Given a node(ego) vi ∈ V, the egonet of vi is
defined as egonet(vi)={vi} ∪ {vj | vj ∈ V, eij ∈ E}

Where eij is the edge between vi and vj .

DEFINITION 2 (Super-egonet) Given a node(ego) vi ∈ V, the super-
egonet of vi is defined as super-egonet(vi)={ego(vi)}∪{ego(vj) | vj ∈ V, eij ∈ E}

Obviously, these two concepts are very simple in obtaining the local substruc-
ture: they just regard 1-hop neighbors(egonet) or neighbors within 2-hop(super-
egonet) as the ego’s closest neighbors. However, they will encounter problems
when dealing with weighted graphs. As in the case of a friendship network with

6 Tengfei Ji, Dongqing Yang, and Jun Gao

edge-weights representing interactions between friends, one is likely to be closer
to his intimate friend’s intimate friend instead of his nodding acquaintances.
Consider the situation in Figure 2, where node X is the ego, Y1, Y2,Y3 are 1-hop
neighbors of X, Z1 is its 2-hop neighbor. By following the definition of egonet,
as Figure 2(b) shows, Y1, Y2 and Y3 are the 3-closest neighbors of X. The con-
cept of egonet focuses only on structural connection but ignores the power of
closeness transmission. Therefore, it requires a forceful measurement considering
both connectivity and closeness.

First, we propose the following two notions to assess the closeness between
ego and its neighbors. We call the node of interest core to differentiate it from
egonet.

Fig. 2. Comparison of Egonet and Corenet

DEFINITION 3 (Closeness related to the core) Let node v0 be core,
v0∈V. For ∀vl ∈ V , we assume that there are d paths connecting v0 and vl. The
j th path (l in length) passes through nodes {v0, v1, v2, ..., vl} in sequence, where
1 6 j 6d . Then the closeness between v0 and vl is defined as:

Closeness(v0, vl) = max
1≤j≤d

l−1∏
i=0

wvivi+1

wvi
(1)

Where wvivi+1 is the weight of the edge between vi and vi+1, and wvi is the
sum of the weights of the edges connected to node vi. Obviously, ∀vl ∈ V ,
Closeness(v0, vl) ∈ [0, 1]. The higher the value, the more intimate the relation
is. It is possible that a node directly connected with the core owns a small-
er closeness. For example, in Figure 2, Closeness(X,Y1) = 2

2+4+12 = 1
9 and

Closeness(X,Z1) = 12
2+4+12 ×

8
12+8 = 4

15 .

In the case that two (or more) identical values of closeness are obtained from
two (or more) different paths, to avoid closeness drift, we prefer the path that
includes the edge directly connecting the core with maximum weight.

7

DEFINITION 4 (k-closeness of the core) Let node v0 be core, v0∈V.
For ∀ k>0, the k-closeness of the core, denoted as k-closeness(v0), is defined as :

(i) For at least k nodes vp∈ V\{v0}, it holds that Closeness(v0,vp)≥ k-
closeness(v0), and

(ii) For at most k-1 nodes vp∈ V\{v0}, it holds that Closeness(v0,vp)> k-
closeness(v0).

Different with the concepts of Egonet and Super-egonet, the definition 4 con-
siders the top-k ”closest” neighbors of the core only based on closeness transmis-
sion, instead of linking relationships. In this definition, the ”closest” neighbors
are those nodes with larger value of closeness, rather than directly connecting
with the core.

DEFINITION 5 (k-closeness neighborhood of the core) Given the
k-closeness of core v0, the k-closeness neighborhood of v0 contains every node
whose closeness related to v0 is not smaller than the k-closeness(v0). Formally,
Nk(v0)= {vp ∈ V\{v0} | Closeness(v0,vp) ≥ k-closeness(v0)}.

As mentioned above, egonet concerns only the nodes directly connected with
the node of interest, while the closeness measurement (Def. 3-5) mainly consider
closeness transmission. The former completely ignores the edge-weight informa-
tion, similarly, the latter ignores the risk that the reliability may reduce after
successive transmissions. Thus, for the purpose of discovering the local context
for the core, we propose a notion named Corenet that balances the topology
structure and the closeness transmission.

DEFINITION 6 (Corenet) Given the k-closeness of core, k-closeness(v0),
the Corenet of v0 contains nodes that satisfy the conditions: (i) the closeness
related to v0 is not smaller than the k-closeness(v0), and (ii) they are in the
super-egonet of v0. Formally, vp∈ super-egonet(v0)\{v0}, Corenet(v0) is defined
as:

Corenet(v0) =

{
super−egonet(v0), if min

vp

Closeness(v0, vp) ≥ k−closeness(v0)

Nk(v0), others

So far, we have defined corenet as the local context of the core, which ful-
ly takes closeness transmission into account and avoids meaningless excessive
transmissions by imposing a structural restriction. It is obvious that only the
nodes in super-egonet(v0) need to be calculated closeness related to the core and
the maximum size of corenet is the number of the core’s neighbors within 2-hop.

3.2 Phase II: Measuring Outlying Score

In this subsection, we will discuss how to detect LEOutliers by comparing
Corenets at different snapshots. Since most real social networks are gradual-
ly evolving, which means successive snapshots are likely similar to each other
(sharing more than 99% of their edges [4]). We utilize this property to exploit

8 Tengfei Ji, Dongqing Yang, and Jun Gao

redundancies among similar snapshots and focus only on the components chang-
ing over time. The time-varying components and their notations are listed in
Table 1. The changes of these components will affect their neighbors in a certain
range. For example, if Z1 is deleted from Figure 2(c), it will affect the Corenet
of X. Thus, the Corenet of X need to be redetermined and X has to be exam-
ined for any anomalous evolving behavior. The following definition describes the
influence of the time-vary components.

Table 1. Time-varying Components and their Notations

Time-varying Component Event at time t+1 Symbol

Node
insertion of a new object v+

deletion of an old object v−

Edge
generation of a new edge e+ with endpoints ve+

deletion of an old edge e− with endpoints ve−

Edge-weight
increase weight of an edge w+ with endpoints vw+

decrease weight of an edge w− with endpoints vw−

DEFINITION 7 (Incremental nodes collection: IC) Given two snap-
shots GT−1 and GT , the differences between them are time-vary components, as
illustrated in Table 1. The range of nodes that could be affected by time-varying
components is defined as:

IC = superegonetT (v+) ∪ superegonetT−1(v−)

∪ egonetT (ve+) ∪ egonetT−1(ve−)

∪ egonetT (vw+) ∪ egonetT−1(vw−)
Where superegonetT (v+) is the super-egonet of time-varying node v+ in graph
GT , and other five are similar.

From definition 7, the time-vary components influence only limited number
of their neighbors, namely nodes in IC. Thus our algorithm only need to examine
the nodes in IC instead of the total number of nodes in the social network.

Before we present the particular measuring function, we first analyze the
signs that a node is evolving abnormally. Consider we have two snapshots GT−1
and GT , and the node of interest is v, there are two major signs to show that v
is likely to be a LEOutlier:

(1) The members of Corenet(v) in GT−1 no longer belong to Corenet(v) or
their closeness related to v is getting weaker from GT−1 to GT ;

(2) The new members added to Corenet(v) at time T have clear distinc-
tion with the former members, moreover, their closeness related to v can be
unexpected high.

These two anomalous indication can be measured by Score 1 and Score 2
respectively, and the outlying score is the sum.

9

DEFINITION 8 (Outlying Score) Given two snapshots GT−1 and GT ,
CorenetT−1(v) and CorenetT (v) represent the Corenets of node v in GT−1 and
GT respectively. We denote the intersection of CorenetT−1(v) and CorenetT (v)
except v as Cold, which is the set of old neighbors of node v. The elements
of CorenetT−1(v)\Cold are the neighbors removed from Corenet(v) at time T,
denoted as Cremoved. The elements of CorenetT (v)\Cold are new neighbors of v,
denoted as Cnew. The outlying score of node v is defined as:

OutlyingScore(v) =
∑

vi∈Cold

[closenessT−1(vi, v)− closenessT (vi, v)]

+
∑

vr∈Cremoved

closenessT−1(vr, v)

+
∑

vj∈Cnew

vi∈Cold

[(1−
wvivj
wvj

)× closenessT (vj , v)]

(2)

Where wvivj is the weight of edge between vi and vj , wvj is the sum of the
weights of the edges connected to vj .

The sum of former summation terms is Score 1, which measures outlying
degree caused by situation (1). Similarly, the third summation term represents
Score 2, which measures outlying degree caused by new neighbors in situation
(2).

Algorithm: IcLEOD Algorithm (High level definition)

Input: Snapshots GT−1 and GT , the number of closet neighbors related to the
core k, the number of LEOutliers n;
Output: n LEOutliers

Step 1: Identify the time-varying components by comparing GT−1 and GT ;
Step 2: Determine incremental nodes collection IC based on time-varying com-
ponents;
Step 3: For each node v in IC, compute CorenetT−1(v) and CorenetT (v);
Step 4: Compute outlying score for each object according to Eq.2;
Step 5: Select and output the objects with the first n-largest Outlying Score;

4 Experiments

In this section, we illustrate the general behavior of the proposed IcLEOD algo-
rithm. Since there is no ground truth for outlier detection, we test the accuracy
of our approach on multiple synthetic datasets with injected outliers. We also
compare scalability performance of our approach with several baseline methods
on synthetic datasets, and we present some meaningful cases obtained by our
approach on real data set DBLP.

10 Tengfei Ji, Dongqing Yang, and Jun Gao

4.1 Baselines

We compare the proposed algorithm with the following three baseline methods:

– CEOD : This baseline is a community-based outlier detection method [3, 6],
which takes three necessary procedures to detect outliers evolving differently
with their communities, including community discovery, community match-
ing and outlier detection.

– EGO : In this approach, we regard the nodes in egonet are the closest neigh-
bors of ego (node of interest), and we detect outliers by comparing the e-
gonets at different timestamps.

– SuperEGO : This method is similar to EGO except that it considers neighbors
within 2-hop as the ego’s closest neighbors.

4.2 Data Description and Evaluation Measure

Synthetic Data Sets: We generate a variety of synthetic datasets, each of which
consists of two snapshots.

First, we use the Butterfly generator [18] in order to generate datasets with
normal nodes. The synthetic weighted graph follows WPL(weight power law)
and SPL(snapshot power law), i.e., W (t) = E(t)α and Wn ∝ dβn. E(t), W(t) are
the number of edges and total weight of a graph respectively at time t, Wn is
the total weight of the edges attached to each node and dn is the degree of the
node. We set α and β to be 1.3 and 1.1 respectively.

Next, for each dataset, we inject outliers. We first set the percentage of
outliers η, and inject |V|snapshot1×η outliers into datasets. |V|snapshot1 is the
number of vertices in Snapshot1. Then we choose a random couple of objects e.g.
v1 and v2, which exist in both Snapshot1 and Snapshot2. If v1 and v2 are far apart
with common acquaintances few enough, we swap v1 and v2 in Snapshot2. Thus,
we inject two outliers in the dataset. More detail information about synthetic
datasets is shown in Table 2. Change ratio is the percentage of time-varying
components.

Table 2. Summary of Synthetic Datesets

Dataset |V|snapshot1 |E|snapshot1 |V|snapshot2 |E|snapshot2 Change Ratio

SYN1 1,000 6,520 1,054 7,093 9.42%

SYN2 5,000 19,762 5,109 20,251 3.56%

SYN2 10,000 29,415 10,184 30,019 2.01%

DBLP: We adopt DBLP as the real dataset (dblp.uni-trier.de/), which con-
tains computer science scientific publications. In our representation, we consider
a undirected co-authorship network. The weighted graph W is constructed by
extracting author-paper information: each author is denoted as a node in W;
journal and conference papers are represented as links that connect the authors

11

together; the edge weight is the number of joint publications by these two au-
thors. We first removed the nodes with too low degree, than we extracted two
co-authorship snapshots corresponding to the years 2001-2004 (13,511 authors)
and 2005-2008 (14,270 authors).

We measured the performance of different algorithms using well-known met-
ric F1 measure, which is defined as follows.

F1 =
2×Recall × Precision
Recall + Precision

Where recall is ratio of the number of relevant records retrieved to the total
number of relevant records in the dataset; precision is ratio of the number of
relevant records retrieved to the total number of irrelevant and relevant records
retrieved.

4.3 The Accuracy of IcLEOD Algorithm

We evaluate the accuracy of the proposed algorithms on the simulated datasets.
The accuracy of the algorithms is measured by detecting the injected outliers as
that of the groundtruths. We set the number of closet neighbors k to 30, 15, 10 for
SYN1, SYN2 and SYN3, respectively. We vary the percentage of injected outliers
η as 1%, 2% and 5%. In fairness to all algorithms, we perform 50 experiments
for each parameter setting and report the average F1 of all algorithms. Table 3
illustrates the comparison results.

Table 3. The Accuracy Comparison on the Synthetic Datasets

Dataset Outlier η CEOD EGO SuperEGO IcLEOD

SYN1

1% 0.1554 0.2012 0.2965 0.8940

2% 0.2018 0.1912 0.2244 0.7836

5% 0.1614 0.2845 0.3122 0.9065

SYN2

1% 0.0867 0.2150 0.4016 0.7926

2% 0.1945 0.2631 0.4936 0.8012

5% 0.2124 0.1983 0.6288 0.9174

SYN3

1% 0.2182 0.2064 0.5462 0.7329

2% 0.3796 0.2042 0.4986 0.7074

5% 0.1862 0.3216 0.6032 0.8922

As it can be observed from Table 3, the proposed algorithm (IcLEOD) out-
performs the others in indicating outliers precisely for all the settings. It is clear
that CEOD and EGO fail to find local evolutionary outliers. This is because
the former identifies outliers form the view of entire community instead of the
local neighborhood substructure, and the latter only consider the neighbors with

12 Tengfei Ji, Dongqing Yang, and Jun Gao

direct connectivity. The overall performance of SuperEGO is better than other
baselines, but it significantly underperforms when the individual object’s edge-
weight distribution is clearly not uniform, like SYN1. This is due to SuperEGO
ignores the edge-weight information. In contrast, the proposed algorithm de-
tects outliers by considering both the local topology structure and the closeness
transmission.

Fig. 3. Sensitivity

Figure 3 shows the sensitivity of the IcLEOD algorithm on parameter k. Two
black lines represent the performance of baseline methods EGO and SuperEGO,
respectively. We vary k from 10 to 20 for IcLEOD algorithm, as illustrated using
the red line. The three algorithms are applied on the same data set, SYN2 and
5% outliers. Obviously, the proposed method is superior to two baseline methods,
in spite of some changes caused by parameter variation.

4.4 The Scalability of IcLEOD Algorithm

To evaluate the scalability of IcLEOD, we conduct experiments on generated
datasets as they vary the number of nodes. In Figure 4, the X-axis represents
the number of nodes, whereas the Y-axis illustrates the computation time. We
noticed that the processing time of the proposed approach is obviously lower
than CEOD method. This is because the proposed approach only needs to cal-
culate Corenets for nodes in IC (Def. 7), whereas CEOD method has to discover
communities for entire network at each snapshot, even when there is no appar-
ent change between two snapshots. Despite the EGO and SuperEGO approaches
need less computation time, they have no specific procedure to determine the
closeness neighborhood, which is likely to cause unfavorable results. The exper-
iments demonstrate that there is a linear dependency of IcLEOD’s processing
time on the number of time-varying components in networks. Moreover, we can

13

Fig. 4. Scalability Test of algorithms

see that for the 104 network, the computation time is less than 20 seconds. This
property means that the algorithm is practical in real applications.

4.5 Case Studies for Real Data Set

We will discuss an interesting outlier discovered by our algorithm on DBLP
data set, which provides an intuitive perception about the effectiveness of our
approach.

LEOutlier Case: [DBLP] Alexander Tuzhilin
We notice that Alexander Tuzhilin is a LEOutlier corresponding to DBLP

2001-2004 and DBLP 2005-2008. In DBLP 2001-2004 he was interested in As-
sociation Rules Analysis, and he shifted the focus of his research to Recommen-
dation System in DBLP 2005-2008. We further noticed that his coauthors and
the number of joint publications with these coauthors in two snapshots are very
different. The principal members of his Corenets in two snapshots are listed as
follows:

– Snapshot DBLP 2001-2004, Corenet1(Alexander Tuzhilin): Tianyi Jiang,
Hong Zhang, Balaji Padmanabhan, Gediminas Adomavicius etc.

– Snapshot DBLP 2005-2008, Corenet2(Alexander Tuzhilin): Ada wai chee
Fu, Cosimo Palmisano, Michele Gorgoglione, David jensen, Tianyi Jiang,
Christos Faloutsos, Gueorgi Kossinets etc.

As the number of his publications increased, he established partnership with new
researchers in recommendation system domain in the years 2005-2008 instead
of keeping or strengthening relationships with his coauthors in 2001-2004. The

14 Tengfei Ji, Dongqing Yang, and Jun Gao

research field of most his former coauthors was still association rules analysis,
still others turned research direction to other domains except recommendation
system.

5 Conclusions

Since dynamic social networking applications are becoming increasingly popu-
lar, it is very important to detect anomalies in the form of unusual evolution-
ary behaviors. In this paper, we focus on outlier detection in evolving weighted
graphs from a local perspective. We propose a novel outlier detection algorithm
IcLEOD, to identify objects with anomalous evolutionary behavior particularly
relative to their local neighborhoods. IcLEOD is an effective two-stage algo-
rithm. In the first phase, we carefully design the local neighborhood subgraph
named Corenet for individual object, which contains the node of interest and its
closest neighbors in terms of associated structure and edge-weight information.
To quantify how outlying an object is, we put forward a measurement in the
second phase by analyzing and comparing the Corenets at different snapshots.
IcLEOD algorithm is significant efficient for LEOutlier detection in gradually
evolving networks, because it could avoid repeated calculations by incremental-
ly analyzing the dynamic components. The experimental results on both real
datasets and synthetic datasets clearly ascertain that the proposed algorithm is
capable of identifying local evolutionary outliers accurately and effectively.

Future work could will concentrate on further refinement of IcLEOD algorith-
m for dealing with general evolving datasets with multiple snapshots efficiently.

Acknowledgment

This work was supported by the National High Technology Research and De-
velopment Program of China (Grant No. 2012AA011002), National Science and
Technology Major Program (Grant No. 2010ZX01042-002-002-02, 2010ZX01042-
001-003-05), National Science & Technology Pillar Program (Grant No. 2009BA
H44B03), Natural Science Foundation of China 61073018, the Cultivation Fund
of the Key Scientific and Technical Innovation Project, Ministry of Education
of China (Grant No. 708001) and the Shenzhen-Hong Kong Innovation Coop-
eration Project (No. JSE201007160004A). We would like to thank anonymous
reviewers for their helpful comments.

References

1. Barnett, V., Lewis, T.: Outliers in Statistical Data, 3rd edn. Wiley, New York.
(1994)

2. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: A survey. Technical
Report, University of Minnesota. (2007)

3. Gupta, M., Gao, J., Sun, Y., Han, J.: Integrating Community Matching and Outlier
Detection for Mining Evolutionary Community Outliers. In: KDD. (2012)

15

4. Chenghui Ren, Eric Lo, Ben Kao, Xinjie Zhu, Reynold Cheng: On Querying His-
torical Evolving Graph Sequences. In: VLDB.(2011)

5. Parthasarathy, S., Ruan, Y., Satuluri, V.: Community Discovery in Social Networks:
Applications, Methods and Emerging Trends. Social Network Data Analytics, pp.
79-113. Springer US. (2011)

6. Manish Gupta, Jing Gao, Yizhou Sun, Jiawei Han: Community Trend Outlier De-
tection using Soft Temporal Pattern Mining. In: PKDD. (2012)

7. Jing Gao, Feng Liang, Wei Fan, Chi Wang, Yizhou Sun, Jiawei Han: On Community
Outliers and their Efficient Detection in Information Networks. In: KDD. (2010)

8. C. C. Aggarwal, Y. Zhao, and P. S. Yu. Outlier Detection in Graph Streams. In
ICDE. (2011)

9. Flake, G., Lawrence, S., Giles,CL. In: SIGKDD. (2000)
10. Bagrow, JP., Bollt, EM. Phys. Rev. E. (2005)
11. Saligrama, V., Zhao M. Local anomaly detection. In: AISTATS. (2012)
12. Akoglu L., McGlohon M., Faloutsos C.: Oddball: Spotting Anomalies in Weighted

Graphs. In: PAKDD. (2010)
13. Tengfei Ji, Jun Gao, Dongqing Yang: A Scalable Algorithm for Detecting Commu-

nity Outliers in Social Networks. In: WAIM. (2012)
14. CC. Aggarwal, Y. Zhao, Philip S. Yu: Outlier Detection in Graph Streams. In:

ICDE. (2011)
15. M. M. Breunig, H.-P. Kriegel, R. T. Ng, J. Sander: LOF: Identifying Density-Based

Local Outliers. In: SIGMOD. (2000)
16. C.C. Aggarwal, Philip S. Yu: Outlier Detection with Uncertain Data. In: SDM.

(2008)
17. EM. Knorr, RT. Ng, V. Tucakov: Distance-Based Outliers: Algorithms and Appli-

cations. The VLDB Journal. 8, 237–253 (2000)
18. M. Mcglohon, L. Akoglu, C. Faloutsos. Weighted graphs and disconnected compo-

nents: patterns and a generator. In: KDD. (2008)
19. Wasserman, S., Faust, K.Social Network Analysis. Cambridge University Press.

(1994)
20. Joshua Charles Neil, Mike Fisk, Curtis Storlie, Alexander Brugh.: Graph-Based

Network Anomaly Detection. In: JSM. (2010)
21. Clauset, A., C. Moore, M. E. J. Newman.: Hierarchical structure and the prediction

of missing links in networks. Nature 453, 98–101. (2008)

