
Locally Linear Landmarks
for Large-Scale Manifold Learning

Max Vladymyrov and Miguel Á. Carreira-Perpiñán
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Abstract. Spectral methods for manifold learning and clustering typi-
cally construct a graph weighted with affinities from a dataset and com-
pute eigenvectors of a graph Laplacian. With large datasets, the eigen-
decomposition is too expensive, and is usually approximated by solving
for a smaller graph defined on a subset of the points (landmarks) and
then applying the Nyström formula to estimate the eigenvectors over
all points. This has the problem that the affinities between landmarks
do not benefit from the remaining points and may poorly represent the
data if using few landmarks. We introduce a modified spectral problem
that uses all data points by constraining the latent projection of each
point to be a local linear function of the landmarks’ latent projections.
This constructs a new affinity matrix between landmarks that preserves
manifold structure even with few landmarks, allows one to reduce the
eigenproblem size, and defines a fast, nonlinear out-of-sample mapping.
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1 Introduction

Manifold learning algorithms have long been used for exploratory analysis of a
high-dimensional dataset, to reveal structure such as clustering, or as a prepro-
cessing step to extract some low-dimensional features that are useful for classifi-
cation or other tasks. Here we focus on the well-known class of spectral manifold
learning algorithms [1]. The input to these algorithms is a symmetric positive
(semi)definite matrix AN×N (affinity matrix, graph Laplacian, etc.) that con-
tains information about the similarity between pairs of data points Y ∈ RD×N ,
and a symmetric positive definite matrix BN×N that usually sets the scale of
the solution. Given these two matrices, we seek a solution X ∈ Rd×N to the
following generalized spectral problem:

min
X

tr
(
XAXT

)
s.t. XBXT = I. (1)

Within this framework it is possible to represent manifold learning methods such
as Laplacian Eigenmaps (LE) [2], Kernel PCA [3], MDS [4], ISOMAP [5] and
LLE [6], as well as spectral clustering [7].

The solution of the spectral problem (1) is given by X = UT
d B

− 1
2 , where

Ud = (u1, . . . ,ud) are the d trailing eigenvectors of the matrix C = B− 1
2AB− 1

2 .



In large problems (large N), the computational cost means the matrices A, B
and C have to be sparse, and these eigenvectors are found with numerical linear
algebra techniques such as restarted Arnoldi iterations [8]. The resulting cost
is still large when N and d are large. The primary goal of this paper is to find
fast, approximate solutions to the spectral problem (1) (and thus to LE, spectral
clustering, etc.). We propose a method we call Locally Linear Landmarks (LLL),
based on the idea of selecting a subset of L � N landmarks ỸL×N from the
data, approximating the data manifold by a globally nonlinear but locally linear
manifold around these landmarks, and then constraining the solution X to follow
this locally linear structure. The locally linear mapping is given by a projection
matrix Z ∈ RL×N that satisfies

Y ≈ ỸZ (2)

in the high-dimensional space, and by enforcing it in the low-dimensional space,
we can re-express the problem (1) as a new spectral problem on a smaller number
of variables L. This reduces the cost of the eigendecomposition dramatically
and, as we will show, constructs affinity matrices that preserve much manifold
information because the problem still involves the entire dataset. Note that LLL
is not a new manifold learning method, but a fast, approximate way to solve an
existing method of the form (1).

The LLL algorithm can be used for purposes beyond fast solutions of spec-
tral problems. First, it is particularly useful for model selection. The similarity
matrices A and B are usually constructed using some meta-parameters, such
as a bandwidth σ of Gaussian affinities and a sparsity level KW (number of
neighbors). In practice, a user has to tune these parameters to the dataset by
hand by solving the spectral problem for each parameter value. This is extremely
costly with large datasets. As we will show, we can run LLL with very few land-
marks so that the shape of the model selection curve (especially its minimum)
is preserved well. This way we can identify the optimal meta-parameters much
faster and then solve the spectral problem (possibly using more landmarks). Sec-
ond, LLL solves the out-of-sample problem for the spectral problem (1) (which
projects only the training points) by providing a natural, explicit mapping to
project new points, which does not exist in the original spectral problem. Finally,
we observe that the gain of LLL is much bigger when the number of eigenvectors
d is large, which makes it very attractive as a preprocessing step for classification
to other machine learning tasks.

Related Work The most widespread method to find an approximate, fast so-
lution of the spectral problem is the Nyström method [9–12]. It approximates
the eigendecomposition of a large positive semidefinite matrix using the eigen-
decomposition of a much smaller matrix of landmarks. It can be seen as an
out-of-sample extension where we first solve for the landmarks separately from
the non-landmark points, and then use it to project the non-landmark points.
Since, during the projection of the landmarks, the Nyström method does not use



the data from the non-landmark points, which is available from the beginning,
it can result in large approximation errors if the number of landmarks is low.

It is possible to redefine the affinities between landmarks so that they use
information from all points, for example by using a commute distance (the ex-
pected time it takes a random walk to travel from the first to the second node
and back). Besides the fact that this solves a different spectral problem, comput-
ing these distances is costly, it provides no out-of-sample mapping, and commute
distances have been shown to be problematic with large datasets in high dimen-
sions [13]. As we will show, in LLL the affinities between landmarks use naturally
the information in non-landmarks without us having to define new affinities.

Other landmark-based methods can be seen as forms of a Nyström approach.
De Silva and Tenenbaum [14] suggested to run the metric MDS algorithm on
a subset of the data, while the rest of the points can be located through a
distance-based triangulation process. The same idea can be applied to a graph
of geodesic distances (instead of Euclidean ones) which leads to the Landmark
Isomap algorithm [15]. This algorithm is able to give better results due to its
ability to deal with nonlinear manifolds. These approaches have been shown [10,
16] to be a Nyström approximation combined with classical MDS or Isomap.

The idea of representing points by linear coding as in eq. (2) has been used in
many different domains of machine learning, such as image classification [17, 18],
manifold learning [19–21], supervised [22] and semi-superwised [23] learning. In
addition to linearity, many of above algorithms try to find local, sparse represen-
tations of the data, so that points are reconstructed using only nearby landmarks.
An early work is the LLE method for manifold learning [19], which computes
the matrix Z that best reconstructs each data point from a set of nearby points.
Variations exist, such as using multiple local weight vectors in constructing Z
in the MLLE algorithm [24]. However, these works use local linear mappings to
define a new spectral problem, while LLL uses them to approximate an existing
spectral problem. The AnchorGraph algorithm [23] uses local coding in the graph
Laplacian regularization term of a semi-supervised learning problem. The prob-
lem it solves is different from (1), and does not generalize beyond the Laplacian
regularizer, compared to the more general approach that we propose here. Chen
and Cai [25] propose a landmarks-based approximation for spectral clustering.
However, the affinities they construct entirely ignore the original affinity matrix
and thus cannot be seen as approximating the target problem. Landmark SDE
[20] proposes to reconstruct kernel matrix using much smaller matrix of inner
products between the landmarks only. This problem is also different to ours.

Two approaches exist to construct out-of-sample mappings for spectral prob-
lems such as Laplacian eigenmaps: Bengio el al. [26] apply the Nyström formula
using the affinity kernel that defined the problem. Carreira-Perpiñán and Lu
[27] augment the spectral problem with the test point and solve it subject to
not changing the points already embedded, which results in a kernel regression
mapping. In LLL, the out-of-sample mapping is a natural subproduct of assum-
ing each low-dimensional point to be a local linear mapping of the landmark
projections associated with it.
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Fig. 1. Affinity matrices for landmarks in a spiral dataset. From left to right : 100 points
along the spiral (in red) with 20 landmarks selected uniformly (in blue); the affinity
matrix W used by LE constructed using all the points; the affinity matrix W built
using just landmarks; the learned affinity matrix C of LLL using the whole dataset.

2 Solving Spectral Problems with Locally Linear
Landmarks

The fundamental assumption in LLL is that the local dependence of points on
landmarks that occurs in high-dimensional space, eq. (2), is preserved in the
low-dimensional space:

X ≈ X̃Z. (3)

Substituting this into the spectral problem (1) gives the following reduced spectral
problem (on dL parameters):

min
X̃

tr (X̃ÃX̃T ) s.t. X̃B̃X̃T = I, (4)

where the matrices
Ã = ZAZT , B̃ = ZBZT . (5)

are of L × L. The solution for the reduced problem is given by X̃ = ŨT
d B̃

− 1
2 ,

where Ũd are d trailing eigenvectors of the matrix C̃ = B̃− 1
2 ÃB̃− 1

2 . After the
solution for the landmarks is found, the values of X can be recovered by applying
the formula (3) once again.

We can see the reduced problem (4) as a spectral problem for just the land-
mark points using a similarity matrix Ã that incorporates information from the
whole dataset. For example, in Laplacian Eigenmaps (see Section 4) the matrix
A is given by the graph Laplacian of a matrix W of affinities (typically Gaus-
sian). Using LLL we can dramatically improve the quality of W over that of
constructing W using only the landmarks, by including additional information
from the whole dataset. Fig. 1 shows the affinity matrix constructed in the usual
way for a spiral dataset in the full case (using all 100 points) and using 20 land-
mark points versus the affinity matrix learned using LLL. The latter one (right
plot) is almost perfectly banded with uniform entries. This means the connectiv-
ity pattern proceeds along the spiral, respecting its geometry, rather than across
it. However, when affinities are constructed directly on landmarks that are quite
distant from each other, undesirable interactions across the spiral occur.



Out-of-sample Extension. Given a new point y0 ∈ RD that is not a part of
the original dataset, we find its projection on the low-dimensional space by
computing a new projection vector z0 for that point using KZ landmarks around
y0. The embedding of y0 is found from a linear combination of the landmark
projections x0 = X̃z0. The cost of the out-of-sample is O(DK2

Z + Ld), which is
linear for all the parameters except for KZ , which is usually low.

Construction of the Projection Matrix Z. Let us define the landmarks as a set
Ỹ = (ỹ1, . . . , ỹL) ∈ RD×L of L points in the same space as the high-dimensional
input Y. Now each datapoint yn can be expressed as a linear combination
of nearby landmark points: yn =

∑L
k=1 ỹkznk where zn is a local projection

vector for the point yn. There are multiple ways to make this projection lo-
cal. One can consider choosing KZ landmarks closest to yn or ε-balls centered
around yn. Moreover, the choice of landmarks can be different for every n. In
our experiments, we keep only the KZ landmarks that are closest to yn and
use the same value of KZ for all the points. Therefore, the projection matrix
Z = (z1, . . . , zN ) ∈ RL×N has only KZ nonzero elements for every column.
This matrix intuitively corresponds to the proximity of the points in the dataset
to the nearby landmarks and it should be invariant to rotation, rescaling and
translation. The invariance to rotation and rescaling is given by the linearity of
the reconstructing matrix ỸZ with respect to Ỹ, whereas translation invariance
must be enforced by constraining columns of Z to sum to one. This leads to the
following optimization problem:

min
Z
‖Y − ỸZ‖2 s.t. 1TZ = 1T . (6)

Following the approach proposed in the LLE algorithm [19] we introduce a point-
wise Gram matrix G ∈ RL×L with elements

gij = (yn − ỹi)
T (yn − ỹj) (7)

for every n = 1, . . . , N . Now, the solution to problem (6) is found by solving a

linear system
∑L

k=1 gjkznk = 1 and rescaling the weights so they sum to one.

Computational Complexity. This algorithm reduces the number of computations
for the eigendecomposition in the solution to the problem (1). However, we also
need to perform extra computations to evaluate Z, compute auxiliary matri-
ces (5) and perform the final multiplication (3) to recover the full embedding.

The computation of Z consists of computing the pointwise Gram matrix G
and solving the linear system. G is sparse and has only KZ nonzero elements in
each row, so it takes O(NDK2

Z) to compute it. The linear system also should be
solved just for KZ unknowns, so it takes O(NK3

Z). Among the two, the compu-
tation of G matrix dominates because KZ < D, as we will show below. Note this
step is independent of the number of landmarks L. The cost of computing Ã and
B̃ is O(KZN

2) with dense matrices and O(KZNc) with sparse matrices, where
c is some constant that depends on the sparsity of the matrices A and B and on



the particular location of the nonzero elements in Z. Computing C̃ and perform-
ing the eigendecomposition both take O(L3), and recovering the final embedding
takesO(NLd). Overall, the complexity of LLL isO

(
KZN

2+N(Ld+DK2
Z)+L3)

)
with dense inputs and O

(
N(KZc+Ld+DK2

Z)+L3)
)

with sparse inputs, which
is asymptotically much faster than the cost of the eigendecomposition if L� N .

The computational cost of the out-of-sample mapping is O(DK2
Z) to find a

projection vector z0 and O(Ld) for a reprojection in the low-dimensional space,
hence O(DK2

Z + Ld) overall.

3 Choice of Parameters

Number of Landmarks L. One should use as many landmarks as one can afford
computationally, because the more landmarks the better the approximation. As
L increases, the results look more and more similar to the solution of the original
spectral problem, which is recovered when L = N .

Number of Landmarks KZ around Each Point. Each point should be a local
linear reconstruction of nearby landmarks. Thus it is important that there are
enough landmarks around each point so that its nearest landmarks are chosen
along the manifold. These landmarks will have nonzero weights in the recon-
struction, thus achieving locally and linearity. Non-local weights may not work
unless the manifold is globally linear.

Using weights that are nonzero only for the nearest KZ landmarks implies
that the low-dimensional space is partitioned into regions where X is piece-
wise linear as a function of the corresponding subset of landmarks. If the KZ

landmarks are in general position, they span a linear manifold of dimension
KZ −1. Therefore, we need no more than D+1 landmarks, since KZ = D+1 of
them reconstruct any point in D dimensions perfectly. On the other hand, using
KZ > D+ 1 makes the weights non-unique and we need to add a regularization
term to (7) to penalize the weight norm by adding a small positive amount to
the diagonal of the linear system. However, the manifold learning assumption
implies that the intrinsic dimensionality of the manifold is lower than D. For ex-
ample, if the manifold is linear with dimension d̂ then the number of landmarks
needed to reconstruct any point is KZ = d̂+ 1 by the same argument as above.
However, if the manifold is nonlinear with local dimension d̂, then KZ = d̂ + 1
landmarks reconstruct the point approximately (near its projection on the tan-
gent plane). Thus, overall the number of landmarks around each point should be

between d̂+1 (which may have a certain reconstruction error, particularly if the
landmarks are not in general position) and D+ 1 (which achieves perfect recon-
struction). If the reconstruction is imperfect, we introduce an additional error
on the embedding, by implicitly replacing each original data point with its pro-
jection on landmarks. Thus, KZ is a user parameter with values in [d̂+1, D+1]:
the larger KZ the smaller the error and the larger the computational cost. In
practice, KZ can be estimated so a desired reconstruction error ‖Y − ỸZ‖ is

achieved, but it should not be much bigger than d̂+ 1. Note d̂ in this context is



an intrinsic local dimensionality of the manifold and not the dimensionality of
the low-dimensional output d, which may or many not match d̂.

The Location of Landmarks. Kumar et al. [28] provide a formal analysis of dif-
ferent types of sampling and show that, at least for the Nyström approximation,
uniform sampling works best. Our experiments confirm this as well. However, we
should not spend much computation on selecting landmarks, so as to introduce
as little computational overhead as possible. Based on this, we investigated three
general methods on how to compute the location of the landmarks.

First, we can always choose the landmarks at random from a set of existing
points. This method requires almost no computational resources. However, the
result can vary dramatically, especially when only a small number of landmarks
is available. We can apply an additional heuristic to make the landmark location
as close to uniform as possible: we select K +M landmarks at random, find M
pairs of closest landmarks and then discard one landmark from each pair. This
heuristic is also useful because the distances are already given to us from the
adjacency matrix. Even when the adjacency matrix is sparse, it is usually the
largest distances that are missing. Thus, we can always identify closest landmarks
to each other.

Second, we can select the landmarks by running a clustering algorithm with
L clusters and choose each landmark in the middle of the clusters. For instance,
one can run k-means and set the landmarks to the points that are closest to the
centroids of the clusters. One problem with this approach is that the clustering
is usually quite expensive. Another is that, for data with a nonconvex manifold
structure, the landmarks can end up in between branches of the manifold (al-
though this could be avoided with a k-modes algorithm that places landmarks
in high-density regions of the data [29]). In our experiments we avoid dealing
with landmarks that are not part of the dataset.

Finally, the landmarks can be also selected using other heuristics so they
span the manifold as uniformly as possible. It has been proposed [14] to use
a MinMax algorithm which chooses landmarks one by one by maximizing the
mutual distance between the new landmark and the existing set of landmarks.
However, this requires having the mutual distances between all the points, which
in case of a large number of points N is unavailable.

4 Locally Linear Landmarks for Laplacian Eigenmaps

A particular case of the spectral method for which we can apply LLL is the
Laplacian Eigenmaps (LE) algorithm [2]. The general embedding formulation
is recovered using A as a graph Laplacian matrix L = D −W defined on a
symmetric affinity matrix W with degree matrix D = diag (

∑N
m=1 wnm) and

B = D. The objective function is thus

min
X

tr
(
XLXT

)
s.t. XDXT = I,XD1 = 0. (8)



Note that adding the second constraint does not alter the general formulation
of the spectral solution, but just removes the first eigenvector, which is constant
and equal to D− 1

21 with eigenvalue 1.
The matrices in the reduced spectral problem (4) are then:

Ã = ZLZT , B̃ = ZDZT . (9)

Similarly to the case of the original LE, the second constraint is satisfied by
discarding the first eigenvector. We can see this by noticing that Ã1 = 0 and
looking at the eigendecomposition of C̃:

B̃− 1
2 ÃB̃− 1

2 ũ1 = B̃− 1
2 Ãx̃T = λ1ũ1.

Therefore, the solution corresponding to the eigenvalue λ1 = 0 is trivial.
The affinity matrix W for LE is usually computed using a Gaussian kernel

with a bandwidth parameter σ (or a separate bandwidth per point [30])). The
affinities are also sparsified by retaining only the KW biggest values for every
row. The performance of LE depends crucially on the choice of those parameters
and they have to be tuned quite carefully in order to achieve good results. Unfor-
tunately, in most cases there is no procedure to check the quality of the affinity
matrix without running LE itself. However, instead of solving multiple, expen-
sive LE problems, we can tune those parameters by running LLL. This gives a
much cheaper runtime, especially considering that the matrix Z is independent
of the choice of σ and KW and, thus, is computed only once.

5 Experimental Evaluation

We compared LLL for LE to three natural baselines. (1) “Exact LE” runs LE on
the full dataset and gives the optimal embedding by definition, but the runtime
is large. (2) “LE (Z)” runs LE only on a set of landmark points and then projects
non-landmark points using the projection matrix Z, which gives a locally linear
(but globally nonlinear) out-of-sample mapping. (3) “LE (Nys.)” runs LE only
on a set of landmark points and uses the Nyström out-of-sample formula. The
latter two Landmark LE baselines give faster performance, but the embedding
quality can be worse because non-landmark points are completely ignored in
solving the spectral problem. For all our experiments we used Matlab’s eigs

function to compute the partial eigendecomposition of a sparse matrix.

Role of the Number of Landmarks. We used 60 000 MNIST digits with sparsity
KW = 200 and bandwidth σ = 200 to build the affinity matrix and reduced the
dimensionality to d = 50. For LLL, we set KZ = 50 and increased the number
of landmarks logarithmically from 50 to 60 000. We chose landmarks at random
and repeated the experiment 5 times for different random initialization to see
the sensibility of the results to the random choice of the landmarks. To quantify
the error with respect to Exact LE we first used Procrustes alignment [4, ch. 5]
to align the embeddings of the methods and then computed the relative error
between the aligned embeddings.
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Fig. 2. Performance of LLL (green), Landmark LE with Z as an out-of-sample (blue)
and Landmark LE with Nyström as an out-of-sample (cyan). Left : runtime as the
number of landmarks changes. The green and blue dashed lines correspond to the
runtime that gives 10% error with respect to Exact LE for LLL and Landmark LE
using Z, respectively. Right : error with respect to Exact LE. The black line corresponds
to 10% error. Note the log scale in most of the axes.

Fig. 2 shows the error as well as the overall runtime for different algorithms
as the number of landmarks increases. Our first indicator of performance is to see
which algorithm can attain an error of 10% faster. LLL needed 451 landmarks
and 5.5 seconds (shown by a dashed green line in the left plot). This is 14 times
faster compared to Exact LE, which takes 80 seconds. Landmark LE with Z
as out-of-sample mapping attains the same error with 23 636 landmarks and
the runtime of 69 seconds (1.15 speedup, blue dashed line in the right plot).
Landmark LE with Nyström is not able to attain an error smaller than 50%
with any number of landmarks. Note the deviation from the mean for 5 runs of
randomly chosen landmarks is rather small, suggesting the algorithm is robust
to different locations of landmarks. Fig. 3 shows the embedding of Exact LE and
the embedding of LLL with 451 randomly selected landmarks. The embedding
of LLL is very similar to the one of Exact LE, but the runtime is 15 times faster
(5.5 seconds compared to 80 seconds). Using more landmarks only decreases the
error further and for 3 000 landmarks, where the runtime of LLL matches the
runtime of Exact LE, the mean error among 5 runs drops to 3%. Landmark
LE with Z as an out-of-sample attained the same error only by using 23 636
landmarks and a runtime of 69 seconds (1.15 speedup, blue dashed line in the
right plot). Landmark LE with Nyström is not able to attain an error smaller
than 50% for any number of landmarks. Note the deviation from the mean for
5 runs of randomly chosen landmarks is rather small, suggesting the algorithm
is relatively robust to different locations of landmarks.

Model Selection. We evaluated the use of LLL to select the parameters of the
affinity matrix. We used 4 000 points from the Swissroll dataset and ran the meth-
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LE (Z) LE (Nyström)

Fig. 3. Embedding 60 000 MNIST digits using the first two dimensions. Left to right :
Exact LE (t = 80 s), LLL (t = 5.5 s, 451 landmarks), Landmark LE with Z as out-of-
sample mapping (t = 5.5 s, 1 144 landmarks), and LE with Nyström as out-of-sample
mapping (t = 5.5 s, 88 landmarks).

ods varying different parameters of the algorithm. We ran LLL and Landmark
LE 5 times using different random initializations to show the general behavior of
the algorithm. Experimentally we discovered that the best results are obtained
with a bandwidth σ = 1.6, a number of landmarks L no less than 300 and a
sparsity level KW around 150. We then fixed two out of these three parameters
and changed the third one to see how the error curve changes. Fig. 4 shows the
results. First, for different σ values the error curve of Exact LE is much more
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Fig. 4. Quality of the embedding with respect to the ground truth for different values of
the bandwidth σ, number of landmarks L, and sparsity level KW . The dataset contains
4 000 points from a Swissroll. From left to right: vary σ for fixed L = 300, KW = 150;
vary L for fixed σ = 1.6, KW = 150; vary KW for fixed L = 300, σ = 1.6. Top row :
runtime for different values of the parameters. Bottom row : error.

similar to the one from LLL, but LLL is able to achieve it about 18× faster
(top plot). Compared to that, Landmark LE definitely needs more landmarks in
order to show a similar behavior. Second, the number of landmarks needed to
achieve the same error as Exact LE is much lower for LLL than for Landmark
LE. Using 300 landmarks the error of LLL is about 3% and it is also 18 times
faster than Exact LE. Landmark LE is never able to achieve a 10% error for
any set of landmarks up to 1 000. Third, changing the sparsity level parameter
KW , the error curve is again very similar between Exact LE and LLL, but very
different between Exact LE and Landmark LE. The speedup of LLL compared
to Exact LE varies between 2 for small values of KW to 40 for large KW . Note
that, although LLL is not able to reproduce an error curve identical to that
of Exact LE, it does match the minima of these curves (for σ and KW ), and of
course the minima correspond to the parameter values we are interested in. That
is, LLL can be used as a fast way to find good parameter values for Exact LE.
This suggests a practical procedure to set the parameters of Exact LE: we run
LLL to obtain the values of σ and KW that give the (approximately) minimum
error and then run Exact LE using those values.

Classification. Here our goal was to find a good set of parameters to achieve a low
1-nearest neighbor classification error for the full 70 000 MNIST digits dataset.
We first split the dataset into three independent sets: 50 000 digits as a training
set, 10 000 digits as a test set and 10 000 digits for out-of-sample mapping. We
then projected training and test sets (overall 60 000 points) to 500 dimensions
using LLL with 1 000 landmarks selected using k-means with KZ = 50. We did
this a number of times for different values of KW from 1 to 200 and σ from 4.6 to
1000. Note the Z matrix is independent from the affinities and depends only on
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Fig. 5. 1-nearest neighbor classification error of MNIST digits after applying LLL, for
different values of σ and KW . See the main text for details. Gray areas corresponds
to Matlab’s eigs routine not converging. Top two plots: runtime for Exact LE and
LLL. The color corresponds to the runtime in seconds. Bottom three plots: error of
Exact LE, LLL and out-of-sample set, respectively. The color corresponds to percent
classification error. The out-of-sample runtime is constant and equal to 30 seconds
for all values of KW and σ. Top right plot : 1-nearest neighbor classification error for
different dimensions for the test subset with σ = 10 and KW = 1.

the choice of landmark points, so we can save 30 seconds’ runtime for each point
by precomputing that matrix and using it for all variations of the parameters.
Given the location of the embedding points X̃, we also computed the out-of-
sample projection matrix Zoos to find the embedding of the out-of-sample set
as well. We computed the 1-nearest neighbor classification for different number
of dimensions separately and reported the smallest error, for both the test and
the out-of-sample sets. Fig. 5 shows the results. The smallest error is achieved
for very small values of KW . There is also little discrepancy between the error
for test and out-of-sample sets, which indicate our out-of-sample mapping is
accurate. The top right corner shows the variation of the error as we change the
dimensionality. The results are shown for σ = 10 and KW = 1, but the curve is
very similar for other sets of parameters as well. Note the runtime of LLL is less
than two minutes for the embedding of as many as 60 000 MNIST points.

We also tried to repeat the same experiment for Exact LE to compare the
results with LLL, but we found many complications. First of all, it turns out that
for small values of KW the graph Laplacian is not connected and Matlab’s eigs
routine does not converge (at least not all 500 requested eigenvalues). For larger
values of KW eigs converges, but takes many iterations, which increase the
runtime dramatically to almost 4 000 seconds. Note it is exactly for those values
that both Exact LE and LLL give the smallest error (in fact the smallest error



for LLL is achieved for KW = 1, for which Exact LE did not even converge).
IncreasingKW improves the connectivity of the graph Laplacian, but the runtime
of eigs did not decrease much below 1 000 seconds, which means LLL is 15–40×
faster depending on the particular set of parameters. Finally, the general pattern
of variation and values of the error is almost the same for Exact LE, LLL and
the out-of-sample set. The error gradually increases from the lower left corner
to the upper right in all three cases.

Large-Scale Experiment. We used the infinite MNIST dataset [31], where we
generated 1 020 000 handwritten digits using elastic deformations of the original
MNIST dataset (see examples of the deformations in Fig. 6). We reduce the
dimensionality to two with 10 000 randomly selected landmarks and KZ = 5
nearest landmarks. LLL took 4.2 minutes to compute the projection matrix Z
and 14 minutes to compute the embedding. We also run LE (Z) on the same
10 000 landmarks. Fig. 7 shows the resulting embeddings. In the embedding of
LLL, zeros, sixes and ones are separated from the rest of the digits, and nines,
fours and sevens form their own group (all those digits contain in them a straight
vertical line). The embedding for For LE (Z) shows far ess structure. Only ones
and a group containing sevens and nines can be separated. The rest of the points
are trapped in the center of the figure.

6 Conclusion

Spectral methods for manifold learning and clustering often give good solu-
tions to problems involving nonlinear manifolds or complex clusters, and are in
widespread use. However, scaling them up to large datasets (large N) and non-
trivial numbers of eigenvectors (d) requires approximations. The Locally Linear
Landmarks (LLL) method proposes a reduced formulation of the original spec-
tral problem that optimizes only over a small set of landmarks, while retaining
structure of the whole data. The algorithm is well defined theoretically and has
better performance than the Nyström method, allowing users to scale up appli-
cations to larger dataset sizes. LLL also defines a natural out-of-sample extension
that is cheaper and better than the Nyström method. This paper has focused
on the case of Laplacian eigenmaps, where LLL was able to achieve 10×–20×
speedups with small approximation error.

The basic framework of LLL, where we replace the low-dimensional projec-
tions by a fixed linear function of only a few of the projections, is applicable to
any spectral method. However, the best choice of the linear function is an in-
teresting topic of future research. In particular for spectral clustering, the input
data need not have manifold structure, but the cluster label of a point may be
well approximated by a function of some of its neighboring landmarks.
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Fig. 6. Example of the elastic deformation of MNIST digits in the infinite MNIST
dataset. Top: original. Bottom: one of the 16 deformations we applied to each digit.
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Fig. 7. Embedding of 1 020 000 points from the infinite MNIST dataset using 10 000
landmarks. Top: LLL, bottom: LE (Z). Left : full dataset X, right : landmarks X̃ only.
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