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Abstract. The problem of optimizing unknown costly-to-evaluate func-
tions has been studied extensively in the context of Bayesian optimiza-
tion. Algorithms in this field aim to find the optimizer of the function
by requesting only a few function evaluations at carefully selected lo-
cations. An ideal algorithm should maintain a perfect balance between
exploration (probing unexplored areas) and exploitation (focusing on
promising areas) within the given evaluation budget. In this paper, we
assume the unknown function is Lipschitz continuous. Leveraging the
Lipschitz property, we propose an algorithm with a distinct exploration
phase followed by an exploitation phase. The exploration phase aims to
select samples that shrink the search space as much as possible, while
the exploitation phase focuses on the reduced search space and selects
samples closest to the optimizer. We empirically show that the proposed
algorithm significantly outperforms the baseline algorithms.

Keywords: Bayesian Optimization, Exploration, Exploitation, Lipschitz
Continuity.

1 Introduction

In many applications, we would like to optimize an unknown function f(·) that
is costly to evaluate over a compact input space. Classic optimization methods,
such as gradient descent, cannot be applied to this type of problems since they
need to evaluate the function frequently. In contrast, Bayesian Optimization
(BO) [1, 2] algorithms try to solve this problem with a small number of function
evaluations. Bayesian optimization algorithms, generally, have two key compo-
nents: 1) A posterior model to predict the output value of the function at any
arbitrary input point, and 2) A selection criterion to determine which point to
be evaluated next.

The first step of a BO algorithm is to learn a posterior probabilistic model
over unobserved points of the function. Gaussian processes (GP) [3] have been
used in the literature of Bayesian optimization as the probabilistic posterior
model. GP models the function output for any unobserved point in the input
space as a normal random variable, whose mean and variance depend on the
location of the point in relation to a set of given observed samples. Based on
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the learned posterior model, a selection criterion is then used to choose the
next sample to be evaluated. A number of selection criteria have been proposed
in the literature of Bayesian optimization. They typically work by selecting an
example that optimizes some objective function designed to balance between
exploring unobserved area and exploiting areas that are promising based on
existing observations. Maximum probability of improvement [4, 5] and maximum
expected improvement (EI) [6] are two successful examples.

In this paper, we focus on the design of the selection criterion for Bayesian
optimization. In particular, we study BO in a sequential setting [1, 7], where
the samples are chosen sequentially and a selection is made only after the func-
tion evaluations of the previous samples are revealed. We make a mild assump-
tion that the unknown function is Lipschitz-continuous. Leveraging the Lipschitz
property, we design a selection algorithm that operates in two distinct phases:
the exploration phase and the exploitation phase. In general, in the context of
Bayesian optimization [1] and bandit problems [8], the exploration phase selects
sample from unexplored area while the exploitation focuses on promising area.
In this paper, we introduce a new interpretation of exploration and exploitation.

The exploration phase of the proposed algorithm, at each step, selects a
sample that eliminates the largest possible portion of the input space while
guaranteeing, with high probability, that the eliminated part does not include
the maximizer of the function. Hence, the exploration stage of the algorithm
tries to shrink the search space of the function as much as possible. In contrast,
the exploitation phase of our algorithm selects the point which is believed to be
the closest sample to the optimal point with high probability.

Experimental results over 8 real and synthetic benchmarks indicate that the
proposed approach is able to outperform the Expected Improvement (EI) cri-
terion, one of the current state-of-the-art BO selection methods. In particular,
we show that our algorithm is better than EI both in terms of the mean and
variance of the performance. We also investigate whether combining our explo-
ration stage with EI can boost the performance of EI. However, the results were
negative. Sometimes it helps and sometimes it hurts and on average we observe
little to no improvement to EI. This is possibly because our exploration method
actively aims to eliminate regions from the input space and the EI criterion does
not take that into consideration when selecting samples.

The remainder of the paper is organized as follows. In Section 2, we motivate
the use of exploration-exploitation Bayesian optimization by analyzing the be-
havior of EI. Section 3 introduces our algorithm and provides insights into both
theoretical and practical aspects of the algorithm. Experimental evaluation of
our algorithm is shown in Section 4. Finally, the paper is concluded in Section
5.

2 Motivating Observation

In this section, we motivate our approach by revealing a key observation about
the well known Expected Improvement (EI) algorithm [6]. The original EI is
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defined as
EI(x) = E

[
(f(x)− ymax) I{f(x)−ymax>0}

]
, (1)

where I{·} is the indicator function. Hence, it measures the expected improve-
ment of the choice of x over the current maximum function evaluations ymax

over observed samples.Using Gaussian Process (GP) [3] as the posterior model
of the unknown function, the EI objective can be represented by

EI(x|O) = (µx|O − ymax)Φ

(
µx|O − ymax

σx|O

)
+ σx|O φ

(
µx|O − ymax

σx|O

)
, (2)

where, µx|O and σx|O are the mean and standard deviation associated with
the point x by GP, and, Φ(·) and φ(·) are standard Gaussian CDF and PDF,
respectively. Here, O = {(xi, f(xi))}ni=1 is the set of n observed samples xO with
their function evaluations f(xO) and define ymax = maxxi∈xO f(xi). Further,
the means and variances are defined as follows:

µx|O = k(x, xO) k(xO, xO)−1 f(xO)

σ2
x|O = k(x, x)− k(x, xO) k(xO, xO)−1 k(xO, x),

where k(·, ·) is some kernel function. In this paper, we consider Gaussian kernel
k(x1, x2) = exp(− 1

` ‖x1 − x2‖
2
2).

EI has been widely used and studied; however, there has been always a con-
cern about balancing the exploration and exploitation of EI. The main reason for
this concern is that even though the asymptotic convergence of EI is guaranteed
under certain conditions [9], EI tries to exploit the information and potentially
can request a lot of samples if it hits a local optimum region, while we have a
limited number of experiments. There has been some attempts in the literature
to address this concern with varying degrees of success, which we briefly discuss
here.

(a) Considering the original definition of EI, researchers have proposed to replace
ymax with a smaller value to make EI more exploitative and with a larger
value to make it more explorative. In particular, [10] suggested ymax + ξ and
[11] suggested (1 + ξ)ymax to replace ymax. However, this approach has not
seen much empirical success. [10] showed that starting with large values of
ξ (to be explorative in the beginning) and cooling it down (to make it more
and more exploitative) makes little or no difference in the performance of EI.

(b) On a separate line of work, [12] proposed to consider a surrogate function

EIξ(x) = E
[
(f(x)− ymax)ξ I{f(x)−ymax>0}

]
.

For ξ = 1, this objective tries to improve over ymax (exploiting mode) and if
we decrease ξ it starts to explore uncertain areas (exploration mode). This
method is very sensitive to small changes in ξ and except for very specific
setup like the one used in [13], there is no systematic way to choose ξ. This
makes it nearly impossible to use this method.
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Fig. 1. Plot of regret versus the number of random exploration for EI algorithm. For a
fixed budget nb, we run a number of experiments as follows: first we consider the case
where there are 1 random samples followed by nb − 1 EI samples, next we consider
the case where there are 2 random samples followed by nb − 2 EI samples and so on.
For 2D and 3D functions, we let nb = 15 and for high-dimensional functions, we let
nb = 35. This result shows that the best EI performance is when we do not do random
exploration.

(c) The third proposal is to have a “random” exploration phase proceeding EI.
In this approach, we take a number of random samples before switching
to EI. We analyzed this method in Fig. 1. For a fixed budget nb, we run
nb experiments as follows: first we consider the case where there is 1 ran-
dom sample followed by nb − 1 samples selected by the EI criterion, next
we consider the case where there are 2 random samples followed by nb − 2
EI samples and so on. The purpose of this investigation is to understand
whether exploring with random samples prior to selecting with EI can im-
prove the performance of EI, and if so how much exploring is necessary.
We run this experiments on a number of different functions introduced in
Section 4. These experiments reveal that “random” exploration never helps
EI, since the regret monotonically increases as we increase the number of
random samples from 1 to nb. One possible explanation for this behavior
is that the values of the function are highly correlated and hence, uniform
sampling does not efficiently represent the skewness of the data points.

Based on the existing literature as well as our empirical investigation of EI
discussed above, we would like to know whether or not it is possible to design
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Algorithm 1 Next Best exploRative Sample (NBRS)

Input: Maximum M , Lipschitz Constant L and Set of observed samples
{(x1, f(x1)), . . . , (xt, f(xt))}
Output: Next best explorative sample x

Dt = D−
t⋃
i=1

S(xi, rxi)

x←− argmax
x∈Dt

Vol

(
Dt∩S

(
x,

∣∣M − µx|O∣∣− 1.5σx|O

L

))

an algorithm that operates in two naturally defined phases of exploration and
exploitation and achieves consistently better performance than EI. We devote
the next section to answer this question and introduce our proposed algorithm.

3 Finite Horizon Bayesian Optimization

Not being able to balance the exploration-exploitation, EI might have poor per-
formance especially when the query budget is small. In this section, we propose
a two-phase exploration/exploitation algorithm that outperforms EI with its
smart exploration and exploitation.

3.1 Exploration

Generally, a good exploration algorithm should be able to shrink the search
space, so that we are left with a small region to focus on during the exploit stage.
Let D =

⊗
[ai, bi] ∈ Rd be the Cartesian product of intervals [ai, bi] for some

ai < bi and i ∈ {1, 2, . . . , d}. Suppose the unknown function f : D 7→ [m,M ]
(with f(x∗) = M) is a Lipschitz function over D with constant L, that is for all
x1, x2 ∈ D, we have

|f(x1)− f(x2)| ≤ L‖x1 − x2‖2.

Notice that if the function is not Lipschitz, then there is no hope that we can find
the global optimum of f(·) even with infinitely countable evaluations. Thus, the
Lipschitz continuity assumption is not a strong assumption. Moreover, functions
with larger L are harder to optimize since they change more abruptly over the
space.

For any point x ∈ D, let rx = M−f(x)
L be the associated radius to the point x.

By Lipschitz continuity assumption, we know that x∗ /∈ S(x, rx), where, S(x, rx)
is the set of all points inside the sphere (or circle) with radius rx centered at x
(and single point x if rx ≤ 0); otherwise, the Lipschitz assumption is violated.
This means if we have a sample at point x, then we do not need any more
samples inside S(x, rx).
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The expected value of rx satisfies E[rx] = |M−µx|
L . Since f(x) is a normal

random variable N (µx, σ
2
x), using Hoeffding inequality for all ε > 0, we have

P
[
rx <

|M − µx|
L

− ε
]
≤ exp

(
−2ε2L2

σ2
x

)
.

Replacing ε with 1.5σxL , the above inequality entails that with high probability

( 99%), rx ≥ |M−µx|−1.5σx
L . Hence, a “good” algorithm for exploration should

try to find x that maximizes the lower bound on rx. This choice of x will remove
a large volume of points from the search space. Note, however, if x is close to
the boundaries of D, then it might be the case that most of the volume of the
sphere lies outside D. Also, the sphere associated with x might have significant
overlap with spheres of other points that are already selected. To fix this issue,
we pick the point whose sphere has the largest intersection with unexplored
search space in terms of its volume. The pseudo code of this method is described
in Algorithm 1, which we refer to as the Next Best exploRative Sample (NBRS)
algorithm. NBRS achieves the optimal exploration in the sense that it maximizes
the expected explored volume.

The value of |M − µx| − 1.5σx might be negative, especially for large values
of σx. This artifact happens at points x that are “far” from previously observed
samples. To prevent/minimize this, we need to make sure that the observed
samples affect the mean and variance of all points in the space. For example, if
we use the Gaussian kernel k(x1, x2) = exp(− 1

`r
‖x1−x2‖22) for exploration, then

we need to choose `r large enough to make sure each observed sample affects all
the points in the space, e.g., `r ≥

∑d
i=1(bi − ai)2. If we pick small `r, then the

exploration algorithm starts exploring around the previous samples and extend
the explored area gradually to reach to the other side of the search space. This
strategy is not optimal if we have limited samples for exploration.

To implement NBRS, we need to maximize the volume

g(x) = Vol

(
Dt ∩ S

(
x,

∣∣M − µx|O∣∣− 1.5σx|O

L

))
where Dt represents the current unexplored input space. To evaluate g(x), we

take a large number of points N inside the sphere S(x,
|M−µx|O|−1.5σx|O

L ) uni-
formly at random. Then, for each point, we check if it crosses the borders [ai, bi]
or falls into the spheres of previously observed samples. If not, we count that
point as a newly explored point. Finally, if there are n newly explored points,

then we set g(x) ≈ n
N

(
|M−µx|O|−1.5σx|O

L

)d
.

To optimize g(x), one can use deterministic and derivative free optimizers
like DIRECT [14]. The problem is that DIRECT only optimizes Lipschitz con-
tinuous functions; however, g(x) is not necessarily Lipschitz continuous. In our
implementation, we take a large number of points inside Dt and evaluate g(·)
at those points and pick the maximum. This method might be slower than DI-
RECT, but avoids inaccurate results of DIRECT especially when Dt describes
a small region.



A Lipschitz Exploration-Exploitation Scheme for Bayesian Optimization 7

Algorithm 2 Next Best exploItive Sample (NBIS)

Input: Maximum M , Lipschitz Constant L and Set of observed samples
{(x1, f(x1)), . . . , (xq, f(xq))}
Output: Next best exploitive sample x

Dq = D−
q⋃
i=1

S(xi, rxi)

x←− argmin
x∈Dq

Vol

(
S

(
x,

∣∣M − µx|O∣∣+ 1.5σx|O

L

))

3.2 Exploitation

In the exploitation phase of the algorithm, we would like to use the information
gained in the exploration phase to find the optimal point of f(·). Suppose we
have explored the search space with t samples and we want to find x∗ ∈ Dt. In
order to exploit, we would like to find points x whose sphere is small. The reason

is that if rx = M−f(x)
L ≤ γ is small enough, then by local strong convexity of

f(·) around x∗, for some constant κ we have

κ

2
‖x− x∗‖22 ≤M − f(x) ≤ Lγ.

Following the argument in Section 3.1, we estimate rx by its mean E[rx] =
|M−µx|

L . By Hoeffding inequality, for all ε > 0, we have

P
[
rx >

|M − µx|
L

+ ε

]
≤ exp

(
−2ε2L2

σ2
x

)
.

Similarly, replacing ε with 1.5σxL , the above inequality entails that with high

probability ( 99%), rx ≤ |M−µx|+1.5σx
L . Hence, a “good” algorithm for exploita-

tion should try to find the point x that minimizes the upper bound on rx. This
choice of x introduces the expected closest point to x∗. We present the pseudo
code of this method in Algorithm 2.

The optimization in Algorithm 2 is nothing but minimizing

h(x) =

∣∣M − µx|O∣∣+ 1.5σx|O

L
.

To optimize h(x), again we take a large number of points in Dq (the current
unexplored space) uniformly at random and evaluate h(·) on those and pick the
minimum.

3.3 Exploration-Exploitation Trade-off

The main algorithm consists of an initial exploration phase followed by exploita-
tion. Notice that we are using GP as an estimate of the unknown function and
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Table 1. Benchmark Functions

Cosines(2)
1− (u2+ v2− 0.3 cos(3πu)− 0.3 cos(3πv))

Rosenbrock(2) 10−100(y− x2)2−(1− x)2
u = 1.6x− 0.5, v = 1.6y − 0.5

Hartman(3,6)

∑4
i=1Ωi exp

(
−
∑d
j=1Aij(xj − Pij)

2
)

Michalewicz(5) −
∑5
i=1 sin(xi) sin

(
i x2i
π

)20
Ω1×4, A4×d, P4×d are constants

Shekel(4)
∑10
i=1

1
ωi+Σ

4
j=1(xj−Bji)

2 ω1×10, B4a×10 are constants

our method, like EI, highly relies on the quality of this estimation. On a high
level, if the function is very complex, i.e., has large Lipschitz constant L, then
we need more exploration to fit better with GP. Small values of L correspond
to flatter functions that are easier to optimize. Thus, in general, we expect the
number of exploration steps to scale up with L. As a rule of thumb, functions we
normally deal with satisfy 2 < L < 20, for which we spend 20% of our budget
in exploration and the rest in exploitation.

We use different kernel widths for the exploration and exploitation phases.
In the case of exploration for complex functions, if we have enough budget (and
hence, enough explorative samples), the kernel width can be set to a small value
to fit a better local GP model. However, if we do not have enough budget, we
need to take the kernel width to be large. In the case of exploitation, we pick
the kernel width under which EI achieves its best performance.

Note that the choice of M and L plays a crucial role in this algorithm. If we
pick L larger than the true Lipschitz function, then the radius of our spheres
shrink and hence we might need more budget to achieve a certain performance.
Choosing L smaller than the true Lipschitz is dangerous since it makes the
spheres large and increases the chance of including the optimal point in a sphere
and hence removing it. Thus, it is better to choose L slightly larger than our
estimate of the true Lipschitz to be on the safe side.

The method is less sensitive to the choice of M , since the derivative of the
radius with respect to M is proportional to 1

L . Thus, as long as we do not over
estimate M significantly, the 1

L factor prevents the spheres to become very large
(and include/remove the optimal point). Small values of M , make the spheres
smaller and hence, if we underestimate M , we would need more budget to achieve
certain performance. However, if M is significantly (proportional to L) smaller
than the true maximum of the function, then the algorithm will look for the
point that achieves M and hence will perform poorly.

4 Experimental Results

In this section, we compare our algorithm with EI under different scenarios for
different functions. We consider six well-known synthetic benchmark functions:

(1,2) Cosines [15] and Rosenbrock [16] over [0, 1]2

(3,4) Hartman(3,6) [17] over [0, 1]3,6
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Fuel Cell Hydrogen

Cosines Rosenbrock

Fig. 2. The contour plots for the four 2−dimension proposed benchmarks.

(5) Shekel [17] over [3, 6]4

(6) Michalewicz [18] over [0, π]5

The mathematical expression of these functions are shown in Table 1. Moreover,
we use two benchmarks derived from real-world applications:

(1) Hydrogen [19] over [0, 1]2

(2) Fuel Cell [20] over [0, 1]2

The contour plots of these two benchmarks along with the Cosines and Rosen-
brock benchmarks are shown in Fig 4. The Fuel Cell benchmark is based on opti-
mizing electricity output of microbial fuel cell by modifying some nano structure
properties of the anodes. In particular, the inputs that we try to adjust are the
average area and average circularity of the nano tube and the output that we try
to maximize is the power output of the fuel cell. We fit a regression model on a
set of observed samples to simulate the underlying function f(·) for evaluation.
The Hydrogen benchmark is based on maximizing the Hydrogen production of a
particular bacteria by varying the PH and Nitrogen levels of its growth medium.
A GP is fitted to a set of observed samples to simulate the underlying function
f(·). We consider a Lipschitz constant L ≈ 3 for all of the benchmarks, except
for Cosines and Michalewicz with L ≈ 6 and Rosenbrock with L ≈ 45. For the
sake of comparison, we consider the normalized versions of all these functions
and hence M = 1 in all cases. As mentioned previously, we spend 20% of the
budget on exploration and 80% on exploitation.
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Table 2. Comparison of the best results of EI, NBRS+EI and NBRS+NBIS. This
result shows that our algorithm outperforms the other two counterparts significantly
in most cases both in terms of the mean and variance of the performance.

EI EIM NBRS+EI NBRS+NBIS

Cosines .0736± .016 .2938± .020 .1057± .029 .0270± .009
Fuel Cell .1366± .006 .2232± .007 .1357± .004 .0965± .004
Hydrogen .0902± .004 .1689± .012 .1149± .004 .0475± .006
Rosen .0134± .001 .0153± .003 .0163± .001 .0034± .000
Hart(3) .0618± .006 .0837± .001 .0450± .003 .0384± .003
Shekel .3102± .017 .4104± .021 .3011± .018 .3240± .030

Michal .5173± .010 .5210± .008 .5011± .010 .4554± .019
Hart(6) .1212± .002 .2207± .006 .1235± .002 .1020± .003

4.1 Comparison to EI

In the first set of experiments, we would like to compare our algorithm with the
best possible performance of EI. For each benchmark, we search over different
values of the kernel width and find the one that optimizes EI’s performance.
Fig. 1 is plotted using these optimal kernel widths and shows that the best
performance of EI happens when we take only one random sample from a given
budget. This performance is then used as the baseline for comparison in Table
2. In addition to EI, we introduced a new version of EI, called EIM . Instead
of taking the expectation of improvement I from 0 to infinity, (equation 2), we
calculate the expectation of improvement from 0 to M − ymax assuming M is
given. This simple change decreases the level of exploration of EI and changes
its behavior to be more exploitative than explorative. Using GP as our posterior
model, the following lemma represents the EIM . The proof is in supplementary
document.

Lemma 1. Let u1 = ymax−µx
σx

and u2 = M−µx
σx

, then

EIM (x) = E
[
(f(x)− ymax) I{0≤f(x)−ymax≤M−ymax}

]
= σ(x)

(
− u1Φ(u2) + u1Φ(u1) + φ(u1)

)
.

(3)

In light of the results of Fig. 1, we are also interested in whether our explo-
ration algorithm can be used to improve the performance of EI. To this end,
we replace the proposed exploitation algorithm with EI to examine if our explo-
ration strategy helps EI. We refer to this setting as NBRS+EI.

Table 2 summarizes the mean and variance of the performance, measured as
the “Regret”= M − max f(xO), for different benchmarks estimated over 1000
random runs. Interestingly, EI can consistently outperform the EIM in all bench-
marks. This shows that decreasing the exploration rate of EI could degrade the
performance.

It is easy to see that in all benchmarks, our algorithm (NBRS+NBIS) outper-
forms EI consistently except for the Shekel benchmark where EI and NBRS+EI
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Fig. 3. Plot of regret versus the number of explorations for NBIS algorithm. For a
fixed budget nb, we run a number of experiments as follows: first we consider the case
where there are 1 explorative sample (either random or NBRS) followed by nb − 1
EI samples, next we consider the case where where there are 2 explorative samples
followed by nb− 2 EI samples and so on. For 2D and 3D functions, we let nb = 15 and
for high-dimensional functions, we let nb = 35. This result shows that in most cases,
our exploration is a) better than random, and b) necessary, since the regret achieves
its minimum somewhere apart from zero. On average, we need to explore 20% of our
budget, however, this portion can be optimized if we consider any specific function.
The error bar here is the variance of the regret over different runs. This shows that our
regret variance is smaller.

have slightly better performances. We suspect this is due to the fact that we have
not optimized our kernel widths, where as the EI kernel width is optimized.

We also note that NBRS+EI does not lead to any consistent improvement
over EI. This is possibly due to the fact that EI does not take advantage of the
reduced search space produced by NBRS during selection.

4.2 Exploration Analysis

In the second set of experiments, we would like to compare our exploration
algorithm NBRS with random exploration when using NBIS for exploitation.
As discussed previously, both random exploration and NBRS fail to produce
better performance when used with EI. Thus, it is interesting to see whether
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they can help NBIS in terms of the overall regret, and if so which one is more
effective. Figure 3 summarizes this result for all benchmarks. For a fixed budget
nb, we start with 1 explorative sample (either using NBRS or random) followed
by nb − 1 NBIS samples; next, we start with 2 explorative samples followed by
nb − 2 NBIS samples and so on. In each case, we average the regret over 1000
runs. The black line corresponds to the NBRS exploration and the green line
corresponds to the random exploration. We will discuss each function in more
details later, but in general, this result shows that our exploration algorithm is
a) better than random exploration and b) necessary. To see why it is necessary,
notice that the minimum regret on all curves is achieved for a non-zero number
of NBRS samples. This means unlike EI, our exploitation algorithm benefits
from NBRS.

Looking closer into the results, we see that NBRS always lead to a smaller
regret comparing to the random exploration. On the Shekel benchmark, we see
that random exploration has better performance if we spend majority of the
budget to explore. However, for a reasonable amount of exploration that leads
to the minimum regret (5 to 10 experiments), random exploration and NBRS
achieve similar performance.

On our 6-dimensional benchmark Hartman(6), we notice that random explo-
ration and NBRS behave very similarly. This shows that the input space is so
large that no matter how clever you explore, you will not likely to improve the
performance for the limited budget of 35.

NBRS starts from an initial point and explores the input space step by step.
Imagine you are in a dark room with a torch in your hand and you want to explore
the room. You start from an initial point and little by little walk through the
space until you explore the whole space. This is exactly how NBRS does the
exploration. Roughly speaking, NBRS minimizes µx|O + 1.5σx|O and hence, if
a point is far from previous observations, i.e., σx|O is large, it is unlikely to be
chosen. We see this effect in all functions, but most clearly in the Michalewicz
benchmark. When the number of explorative samples is smaller than 10, the step-
by-step explore procedure cannot explore the whole space and the exploitation
can be trapped in local minima. For 10 − 15 explorative samples, NBRS can
walk through the entire space fairly well and hence we get a minimum regret.
For more than 15 explorative samples, since the space is well explored, we are
wasting the samples that could be potentially used to improve our exploitation
and hence, the performance becomes worse.

Finally, this investigation suggests that the result in Table 2 can be further
improved by taking different number of explorative samples for different func-
tions. To minimize parameter tuning, we chose to explore 20% of our budget.
In general, this ratio can be adjusted according to the property of the function
(e.g., the Lipschitz constant).
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5 Conclusion

In this paper, we consider the problem of maximizing an unknown costly-to-
evaluate function when we have a small evaluation budget. Using the Bayesian
optimization framework, we proposed a two-phase exploration-exploitation algo-
rithm that finds the maximizer of the function with few function evaluations by
leveraging the Lipschitz property of the unknown function. In the exploration
phase, our algorithm tries to remove as many points as possible from the search
space and hence shrinks the search space. In the exploitation phase, the algo-
rithm tries to find the point that is closest to the optimal. Our empirical results
show that our algorithm outperforms EI (even in its best condition).
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Appendix: Proof of Lemma 1

Let f(x) be our function prediction at any point x distributed as a normal ran-
dom variable with mean µx and variance σ2

x; i.e f(x) ∼ N (µ(x, σ2
x)) where µx

and σ2
x obtained from Gaussian process. Suppose ymaxis the best current obser-

vation, the probability of improvement of I ∈ [0,M − ymax] can be calculated
as p(f(x) = ymax + I):

p
(
f(x) = ymax + I

)
=

1√
2πσx

exp

(
− (ymax + I − µx)2

2σ2
x

)
. (4)

Therefore we define EIM (x) as is simply the expectation of likelihood over I ∈
[0,M ] at any given point x:

EIM (x) =

∫ I=M−ymax

I=0

I

{
1√

2πσx
exp

(
− (ymax + I − µx)2

2σ2
x

)}
dI

=
1√

2πσx
exp

(
− (ymax − µx)2

2σ2
x

)∫ M−ymax

0

I exp

(
−2I(ymax − µx) + I2

2σ2
x

)
dI.

(5)
Let define

T = exp

(
−2I(ymax − µx) + I2

2σ2
x

)
∂T

∂I
= − 1

σ2
x

(IT + (ymax − µxT )) ,

(6)

therefore we can get
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IT = −(ymax − µx)T − ∂T

∂I
σ2
x. (7)

Using equations 7,6,5 we can get

EIM (x) =
1√

2πσx
exp

(
− (ymax − µx)

2

2σ2
x

)∫ M−ymax

0

IT dI

= σxφ

(
ymax − µx

σx

)
− (ymax − µx)

∫ M−ymax

0

1√
2πσx

exp

(
−1

2

(
ymax + I − µx

σx

)2
)
dI.

(8)
Let

I∗ =
ymax + I − µx

σx
, then dI∗ =

dI

σx
, (9)

then the equation 8 can be written as

EIM (x) = σxφ

(
ymax − µx

σx

)
− (ymax − µx)

∫ M−µx
σx

ymax−µx
σx

1√
2π

exp

(
−1

2
I∗2
)
dI∗

= σxφ

(
ymax − µx

σx

)
−
[
(ymax − µx)

(
Φ

(
M − µx
σx

)
− Φ

(
ymax − µx

σx

))]
.

(10)
Let

u1 =
ymax − µx

σx
, u2 =

M − µx
σx

,

then we can finally drive the maximum expected improvement at any given
point x as

MEI(x) = σx
(
− u1Φ(u2) + u1Φ(u1) + φ(u1)

)
, (11)

where Φ(·) is the normal cumulative distribution function and φ(·) is the
standard nomal distribution.


