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Finnish Institute of Occupational Health,
Topeliuksenkatu 41 a A, FI-00250 Helsinki, Finland

{andreas.henelius,jussi.korpela,kai.puolamaki}@ttl.fi

Abstract. Sequences of events are an ubiquitous form of data. In this
paper, we show that it is feasible to present an event sequence as an
interval sequence. We show how sequences can be efficiently randomized,
how to choose a correct null model and how to use randomizations to
derive confidence intervals. Using these techniques, we gain knowledge of
the temporal structure of the sequence. Time and Fourier space represen-
tations, autocorrelations and arbitrary features can be used as constraints
in investigating the data. The methods presented are applied to two
real-life datasets; a medical heart interbeat interval dataset and a word
dataset from a book. We find that the interval sequence representation
and randomization methods provide a powerful way to explore interval
sequences and explain their structure.

1 Introduction

Time series are sequences of consecutive, time-stamped events. The events can
have properties, such as values of measurements at the particular time instances.
A single event can have multiple properties, in which case one ends up with a
multidimensional time series. In this paper we, however, ignore the properties of
the events and study only the fundamental temporal structure of the time series,
which can be represented as a sequence of intervals.

Interval sequences are ubiquitous. They can be analyzed and compared by
numerous methods, and many application areas such as medical signal processing
have established conventions on how to study them. The structure of event
sequences can be described by complex models. However, before addressing
more complex properties of the event sequence, the first question is whether
it is meaningful to look for complex structures. Can the structure observed in
the interval sequence be explained by a random occurrence? If not, then what
constitutes a good description?

Randomization methods provide a means of studying non-random structures.
These techniques have a long tradition in statistics and are used increasingly in
data analysis as well. To use randomization methods one first needs to define the
null distribution from which random samples are drawn. If the observed event
sequence differs, in terms of one or more test statistics, from the random samples,
we can conclude that there are non-random structures.

The null distribution encodes our prior information and assumptions about
the data as constraints. The choice of constraints is, however, far from trivial and
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no clear guidelines exist. A suitable set of constraints depends on the research
question and hence there is no universally appropriate null model. A natural
choice is to select constraints that explain those aspects of the data we assume
known and wish to account for. This makes previously unknown patterns stand
out. The randomization methodology can therefore be used as a probabilistically
robust means of detecting statistically significant patterns [14, 5, 6, 20].

1.1 Structure and Contributions of this Paper

In this paper we show how an event sequence can be represented as a sequence
of events in the time and Fourier domains, and in the autocorrelation space. We
present the main theoretic properties of these representations in Section 2. We
introduce fast and convenient randomization methods in which various properties
such as Fourier amplitudes or phases, autocorrelation coefficients, or arbitrary
statistics of the event sequence are kept fixed. We demonstrate how these random-
ization techniques can be used to determine if the observed features of the event
sequence are just random artifacts, and show how to detect the features explaining
the event sequence. In Section 3 we demonstrate our approach by applying the
methods to important real-life data consisting of heart rate variability data and
the occurrence of words in natural language.

Summarizing, the main contributions of this paper are:

– Interval sequence representation and its theoretic properties.
– Efficient randomization techniques for interval sequences.
– Using randomization to derive confidence limits and to explain non-random

features of the data.
– Application of the proposed methods in two real-life applications.

2 Methods and Theory

2.1 Definitions

Assume that we have a sequence of N +1 events that occur at times t0, t1, . . . , tN ,
where t0 ≤ t1 ≤ . . . ≤ tN . In this paper, we consider a sequence of N intervals S,
defined by

S = (x0, x1, . . . , xN−1),

where xn = tn+1 − tn. In most of the numerical formulæ we use the logarithmic
interval sequence Sz = (zo, z1, . . . , zN−1), where zn = log xn. The logarithmic
scale is more appropriate for our two applications: doubling and halving the
interval both cause equal absolute changes in the value of the logarithm of the
interval sequence, whereas without use of the logarithm, long intervals would
receive much larger weight in the analysis. Furthermore, logarithms of intervals
can take any value, including negative, which is numerically convenient.

For convenience and where appropriate, we extend the interval sequence
by assuming that it is cyclic with a cycle of length N , i.e., xn+N = xn and
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zn+N = zn for all n. We denote the mean by z and the variance by σ2
z , defined

by z =
∑N−1
n=0 zn/N and σ2

z =
∑N−1
n=0 (zn − z)2/N , respectively.

Fourier Representation. The Fourier representation of the data is defined by
the sine and cosine series,

zn = a0 +

K∑
k=1

ak cos
2πkn

N
+

K∑
k=1

bk sin
2πkn

N

= a0 +

K∑
k=1

ck cos

(
2πkn

N
− ϕk

)
, (1)

where K = bN/2c. The data can be parametrized either by the parameters
(a0, {ak}, {bk}) or (a0, {ck}, {ϕk}), where k ∈ {1, . . . ,K} The Fourier amplitudes
satisfy ck =

√
a2k + b2k and the Fourier phases satisfy ϕk ∈ [0, 2π). The Fourier

parameters and the inverse transformation can be computed in O(N logN) time
by a Fast Fourier Transform (FFT).

Autocorrelation. We use the autocorrelation function rl with lag l, defined by

rl =
1

N

N−1∑
n=0

(zn − z)(zn+l − z)
σ2
z

. (2)

A value of the autocorrelation function for a single lag can be computed in O(N)
time, and the values of the autocorrelation function for all lags can be computed
in O(N logN) time by using the fast Fourier transformation. Notice that due to
the cyclicity assumption, the lags satisfy rl = rN−l; therefore, it is sufficient to
consider lags in l ∈ {1, . . . , dN/2e} only.

2.2 Randomization Methods

We define several distributions of interval sequences, and the respective random-
ization methods. Each of the distributions preserves some aspect of the original
sequence.

Interval Randomization. The interval distribution is a uniform distribution
over all permutations of sequence S. A sample S∗ from the interval distribution
can be drawn by permuting S uniformly in random.

Fixed Subsequence Randomization. The subsequence distribution is a
uniform distribution over all permutations of the sequence S where a given
subsequence Gx ⊆ {0, . . . , N − 1} of the intervals is kept fixed. A sample S∗ is
obtained by permuting all intervals in S that are not in Gx uniformly in random.

Fixed Fourier Parameters Randomization. The fourier distribution is a
distribution of interval sequences in which given subsets of Fourier amplitudes



4 Andreas Henelius, Jussi Korpela, Kai Puolamäki

and phases have been fixed. The fourier distribution is obtained by fixing a
subset Gc ⊆ {1, . . . ,K} of Fourier amplitudes ck where k ∈ Gc, and a subset
Gϕ ⊆ {1, . . . ,K} of Fourier phases ϕk where k ∈ Gϕ. A sample S∗ from fourier
is obtained by first taking a sample S′∗ from the interval distribution, and then
replacing the Fourier amplitudes ck and Fourier phases ϕk not in Gc and Gϕ,
respectively, by the respective Fourier parameters of the sample S′∗. The sample
S∗ is then obtained by applying the inverse Fourier transformation of Equation
(1) to the randomized Fourier parameters.

Uniform Randomization. As a comparison to the interval distribution, we
define the uniform distribution to a uniform distribution over all sequences of
N intervals in which the duration is fixed to tN − t0.

Fixed Distance Function Randomization. Finally, we define a randomiza-
tion method which approximately preserves any arbitrary constraint. We define
the constraint by a distance function d(S′) which is a non-negative function of per-
mutations of the original interval sequence and zero for the original non-permuted
sequence, d(S) = 0. We define a distribution distance by

f(S′) ∝ e−d(S
′), (3)

where S′ is a permutation of the original interval sequence S. A sample from the
distribution f is likely to include intervals which are close to the original interval
sequence in terms of the distance function. A sample S∗ from distance can be
obtained via Markov chain Monte Carlo (MCMC) integration, described in more
detail in Section 2.4.

We use the distribution distance to sample intervals preserving the auto-
correlation function at lags given in Gr ⊆ {1, . . . , dN/2e}. We use the distance
function d(S′) = λ

∑
l∈Gr

|r′l − rl|, where λ > 0 is a parameter describing the
accuracy to which we want to preserve the autocorrelations and r′l is the value
of autocorrelations for the resampled sequence. There is a critical value of λ in
Equation (3) corresponding to the phase transition in statistical physics: the
threshold value is recognized from the fact that when λ exceeds the threshold
most of the probability mass of f is close to the original interval sequence (i.e.,
the expected value of the distance function is small). For all datasets considered
in this paper a sufficiently high value is λ = 104, which is used in all experiments.
Notice that the MCMC method could also be used to preserve the Fourier pa-
rameters, but it would be much slower than using the earlier introduced fourier
randomization.

Time Complexity of the Randomizations. The time complexity of the
uniform, interval and subsequence randomizations is O(N), and of fourier
O(N logN). MCMC distance randomization is in practice always much slower,
but its time complexity cannot be given for a general case because the number
of MCMC iterations needed depends on the original sequence and the distance
function. The time required by one MCMC iteration is typically dominated by
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the time complexity of the distance function. However, typical wall-clock running
times to produce 1000 MCMC samples from the word and interbeat interval
datasets used here are on the order of 1–3 and 10–20 minutes, respectively, using
a non-optimized R [27] implementation and a standard desktop computer.

2.3 Properties of Fourier Parameters

In this section we show some properties of the Fourier parameters under the
interval distribution: (i) the Fourier amplitudes are uncorrelated and their
variance is proportional to σ2

z , (ii) the phases ϕk approximately obey the uniform
distribution on [0, 2π).

Theorem 1. The Fourier parameters satisfy the following properties under the
interval distribution:

– The coefficient a0 is the mean of the intervals in Sz.
– The expectations E(ak) and E(bk) vanish for every k.
– The variances are E(akal) = E(bkbl) = 2δklσ

2
z(N − 2)/(N(N − 1)) for every

k and l, where δkl is the Kronecker delta.
– The cross-correlations E(akbl) vanish for every k and l.
– For all k, the phases ϕk + 2πl/N (mod 2π) are equally probable for all values

of l ∈ {0, . . . , N − 1}.

We omit the proof for brevity.

2.4 MCMC and Parallel Tempering

We use MCMC integration with parallel tempering [9, 22] to draw samples from
the distribution f defined by Equation (3). Instead of drawing samples directly
from f the samples are drawn from a product distribution F

F ({S′α}α∈Λ) ∝
∏
α∈Λ

f(S′α)α, (4)

where {0, 1} ⊆ Λ ⊆ [0, 1] is a finite set and S′α is a permutation of the original
sequence. At each MCMC iteration, the value of S′1 gives a sample from f .

The distribution for specific values of α in Λ are called “chains”. We perform
sampling using the Metropolis-Hastings algorithm in which the proposal distribu-
tions include changes into one chain (within-chain jumps) and swapping chains
with adjacent values of α (chain swaps). Here we use the following proposal
distributions for within-chain jumps, repeated 10 times per MCMC iteration: (i)
permuting the interval sequence in random, (ii) permuting a randomly chosen
subsequence of the sequence in random, (iii) reversing a randomly chosen sub-
sequence, (iv) swapping randomly chosen intervals, and (v) swapping adjacent
items.

The idea is that the chain mixes well for low values of α (“high temperatures”).
Indeed, for the chain with α = 0 each consecutive state is a random permutation
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of the interval sequence. If the set Λ is chosen suitably then there is a sufficient
number of chain swaps, which brings states from the well-mixed high temperature
chains into the target distribution for which α = 1; we have verified that the chains
mix sufficiently with the high temperatures and hence include a sufficient number
of practically independent samples for use in the computation of confidence
intervals. See [22] for a more detailed discussion on parallel tempering.

2.5 Confidence Intervals and Hypothesis Testing

Confidence intervals cannot in general be determined analytically for non-trivial
features of interest and must hence be obtained by simulation. Confidence intervals
of level α for any feature of interest (e.g., Fourier amplitudes, Fourier phases or the
autocorrelation structure) can be computed by calculating the value of the feature
for a set of simulated samples obtained from a chosen null distribution. The
confidence intervals here are defined to be the α/2 and 1− α/2 quantiles, where
we always use α = 0.05 in confidence levels and as a limit of significance. The
parameters of interest can also be averaged in bins, in which case the confidence
intervals will be narrower.1 In this paper, we use the term significant feature
to denote features that are outside the confidence intervals of some chosen null
distribution. We further define a non-random feature as a feature that lies outside
the confidence intervals calculated using the interval distribution.

The Fourier phases are approximately uniformly distributed under interval
randomization (see Theorem 1). Due to the cyclic nature of the phases, confidence
intervals for the phases cannot be computed in a meaningful way. Instead, the
null hypothesis that the phases are uniformly distributed on the interval [0, 2π)
is tested by the Kolmogorov-Smirnov test.

3 Experiments

3.1 Datasets

The application of the randomization methods presented in this paper are illus-
trated using one artificial and two real-life datasets.

Toy Dataset. The toy dataset consists of two sequences: (1) The AR sequence
is an autoregressive sequence of order 1 obeying zn+1 ∼ N(zn, ε) and (2) the
periodic sequence obeying zn ∼ N(cos (2πktoyn/N), ε) is a cosine embedded in
noise. N(µ, σ) denotes a normal distribution with mean µ and standard deviation
σ; here we have used ktoy = 7 and ε = 0.7.

IBI Dataset. The signals in the IBI dataset are interval sequences representing
the time between two successive heartbeats, forming an interbeat-interval (IBI)
series. It has been shown that the IBI series have different time domain (e.g. [23])
and frequency domain (e.g. [1]) properties for normal subjects and for subjects

1 In this paper, we always use bins of width one for the word data and bins of width
10 for the heartbeat data.
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with heart failure. The IBI dataset was hence formed from two different datasets
from the PhysioBank biomedical signal archive [11]: (1) The normal rhythm

dataset2 contains recordings from 54 subjects in normal sinus rhythm, (2) The
heart failure dataset3) contains recordings from 29 subjects with congestive
heart failure. The first 1500 intervals were chosen for analysis, which translates
to about 25 minutes of data at a heart rate of 60 beats per minute.

Word Dataset. The word dataset is composed of words from the book Pride
and Prejudice by Jane Austen, publicly available from Project Gutenberg4. The
interval sequence in this case represents the number of words between successive
occurrences of a particular word.5 A previously reported [19] representative set
of words was chosen for analysis, forming the (1) bursty and (2) non-bursty

datasets, each containing 12 words. In addition, the words were also divided
into frequency classes of low, medium and high, corresponding to frequencies of
roughly 40, 200 and 1200, respectively.

3.2 Null Model Selection and Confidence Intervals

Here we demonstrate the advantages of the interval distribution over the
uniform distribution. In Fig. 1, both uniform and interval randomizations
are shown for the word met. We notice that for the uniform randomization many
of the Fourier amplitudes are significant, whereas for the interval randomization
all Fourier parameters are consistent with the random data. This shows that there
is structure in met not present in the uniform distribution, but explained by
the interval distribution. Observing non-random features under the interval
distribution is always due to the ordering of the intervals, which is not the case if
the uniform distribution is used, as shown by the example in Fig. 1. See [21] for
further discussion on the unsuitability of the uniform distribution in the analysis
of interval sequences.

3.3 Investigating the Structure of the Datasets

In this section, we present an overview of the datasets and illustrate their general
properties using examples. We determine non-random features of the sequences
by calculating confidence intervals in accordance with Section 3.2, using the
interval distribution as the null model.

The Toy Dataset. The Toy dataset is shown in Fig. 2. For AR, most of the
Fourier coefficients are non-random, as the complex structure of the sequence
cannot be easily captured by a low number of Fourier amplitudes. For periodic,
the Fourier coefficient for k = 7 is clearly non-random, corresponding to the

2 http://www.physionet.org/physiobank/database/nsr2db/
3 http://www.physionet.org/physiobank/database/chf2db/
4 http://www.gutenberg.org
5 More specifically, the interval is one plus the number of words between successive

occurrences of a word, i.e., adjacent words have an interval value of one.
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Fig. 1: uniform (top) and interval (bottom) randomizations of the word
met. Shown are, from the left: (1) the original sequence, (2) a realization from
the random distribution, (3) the autocorrelation function, and (4) the Fourier
amplitudes. Confidence intervals are shown in blue. Values outside confidence
intervals are shown in red.

number of periods in the sequence. The other Fourier amplitudes are mostly non-
random, except for some high frequencies corresponding to the noise. interval
randomization does not explain the autocorrelation structure of either sequence.

The IBI Dataset. Example sequences from the IBI dataset are shown in Fig. 3.
Sequences from both the normal rhythm and heart failure datasets exhibit
clear temporal structures, caused e.g. by different activities undertaken by the
subject. This leads to segments with varying IBI distributions within one record.
The temporal structure of the IBI sequences is usually characterized by a slow
global trend containing segments with more rapid local variation.

The Fourier amplitudes for records with a strong temporal structure are only
partially explained under the interval distribution. For such records, most of the
Fourier amplitudes are non-random (see records chf201 and nsr033 in Fig. 3).

The non-random low-order Fourier amplitudes probably reflect the global
trend, whereas the higher-order non-random Fourier amplitudes likely reflect
short-range temporal variation. In contrast, some records with a weak global
trend (nsr044 in Fig. 3) or a high degree of outliers (chf207 in Fig. 3) are better
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Fig. 2: The sequences in the Toy dataset. The AR (top row) and the periodic

sequences (bottom row). Subplots follow the same order as in Fig. 1. The
confidence intervals are based on interval randomization.
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Fig. 3: Example IBI sequences. Subfigures and confidence intervals as in Fig. 2.

explained by the interval distribution, and for these records only a few Fourier
coefficients are non-random.

The significant temporal structure of the sequences is also strongly reflected
in the autocorrelation, which for most records is non-random.

The Word Dataset. Three example sequences from the word dataset are shown
in Figs. 1 and 4. Only a few Fourier amplitudes or autocorrelation lags are non-
random, usually marking visible temporal patterns in the data. The words met
(Fig. 1) and soon (Fig. 4) are explained by the interval distribution. The word
William (Fig. 4) contains a temporal structure that does not fit the interval
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Fig. 4: Examples of word sequences. Soon (top) is a frequent word mostly (but not
completely) explained by the interval distribution, William (bottom) contains
a clear temporal structure. Subfigures and confidence intervals as in Fig. 2.
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distribution. The confidence intervals for the Fourier amplitudes are wider for low
frequency words (mean confidence interval width 0.9) than for medium (0.3) and
low (0.1) frequency words. Also, within a frequency class, confidence intervals
are wider for bursty than for non-bursty words, the difference being 0.6 for low
frequency, 0.1 for medium and 0.05 for high frequency words. Both observations
are explained by the variance of the sequence, which follows a similar pattern
(see Theorem 1).

Significant Features in the Datasets. The proportions of Fourier amplitudes,
Fourier phases, and autocorrelation lags not explained by the interval random-
ization are shown in Tab. 1 (left column). On average, well over half of these
features are non-random for the IBI sequences, compared to only a few percent
for the word sequences. Therefore, the word dataset is better explained by the
interval randomization than the IBI data. Furthermore, records in the heart

failure dataset are generally better explained by the interval distribution
than records in the normal rhythm dataset. This is likely due to the greater
amount of outlier beats in the heart failure dataset and weaker global trends.
The Fourier phases of the IBI data contain some non-random structure, but all
phases in the word sequences are uniformly distributed.

3.4 Constrained Randomizations

We construct constrained randomizations by fixing a specific set of features in
the fourier or distance randomizations. If the data are explained by the
constrained null hypothesis, we can conclude that we have successfully located
the features explaining the non-random characteristics of the data.

Connection between Fourier amplitudes and autocorrelation. In this
section, both the AR and periodic sequences are randomized by fixing the most
significant feature (with respect to interval randomization, see Fig. 2). The fixing
of features is performed separately for autocorrelations and Fourier amplitudes.
The results are shown in Fig. 5.

Table 1: Percentages of non-random features in the different datasets. The values
represent mean (standard error of the mean) for ck and rl, and the percentage of
sequences with non-uniform phases for ϕk (see Section 2.5).

interval fourier (ck) distance (rl)

Dataset ck rl ϕk ck rl ϕk ck rl ϕk

IBI
normal rhythm 89

(1.5)
94

(0.9)
69 0.2

(0.07)
2

(0.5)
0 5

(0.6)
3

(0.4)
5

heart failure 66
(4.7)

81
(4.5)

30 0.8
(0.2)

6
(1.3)

0 7
(1.7)

2
(0.4)

5

Word
bursty 6

(1.0)
10

(1.7)
0 0.4

(0.2)
2

(0.4)
0 9

(2.6)
8

(2)
6

non-bursty 4
(0.9)

3
(0.9)

0 0.5
(0.1)

1
(0.4)

0 8
(0.9)

5
(0.9)

4
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For AR, fixing the autocorrelation r1 produces a sequence that retains the
local temporal structure of the original sequence. The Fourier amplitudes are
almost explained, but the autocorrelation function matches the original only for
short lags. In contrast, fixing a single non-random feature in the Fourier domain
performs much worse in explaining the data.

For periodic, Fourier amplitude randomization yields signals resembling the
original. The majority of the Fourier amplitudes are explained, and the confidence
intervals for the autocorrelations follow the course of the original autocorrelation
function, albeit not perfectly. In contrast, fixing a single autocorrelation lag for
periodic does not explain the features of the signal at all.

Fixing Fourier Amplitudes and Autocorrelation Structure. Constrained
randomization of Fourier amplitudes and autocorrelation lags was applied to
both the IBI and word datasets, keeping the non-random Fourier amplitudes
and autocorrelation lags constant. The percentage of Fourier amplitudes and
autocorrelation lags that remain significant under the randomizations are shown
in Tab. 1. For the constrained Fourier amplitude randomization (middle column)
the percentages are low, indicating that the data are well explained. Only the au-
tocorrelations of the heart failure dataset shows a slightly higher percentage of
significant features. For the constrained autocorrelation randomization (rightmost
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(a) The AR sequence randomized by fixing r1.
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(b) The AR sequence randomized by fixing c1.
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(c) The periodic sequence randomized by fixing c7.
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(d) The periodic sequence randomized by fixing r182.

Fig. 5: Constrained randomizations of the toy data. Subplots are as in Fig. 1.
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column), the Fourier amplitudes of the word data and heart failure IBI data
have above 5% of significant features, indicating that the randomization does not
fully explain the Fourier amplitudes. There is also unexplained autocorrelation
structure in the word data.

Since 95% confidence intervals were used, one must note in the interpretation
of Tab. 1, that if the randomization explains the data, at most 5% of features
should remain significant. In practice, this value is lower as a large portion of the
features is kept fixed, especially for the IBI data. Also, the autocorrelation lags
are not independent, causing them to fit the simple quantile based confidence
intervals better than Fourier amplitudes.

Fixed Subsequence Randomization Outliers in the data can significantly
affect the structure and interpretation of the data. In order to investigate the
structure of the data, outliers can be considered subsequences and kept fixed in
the subsequence randomization.

In Fig. 6, outliers detected using a commonly used algorithm by [37] were
kept fixed while the rest of the data were randomized using the subsequence
method. In Fig. 6a several of the Fourier coefficients are outside the confidence
intervals calculated using interval randomization, i.e., the structure of the
data is not modeled by the interval distribution. However, fixing the outliers
and calculating the confidence intervals using the subsequence distribution
explains the data. In contrast, the Fourier amplitudes in Fig. 6b remain outside
the confidence intervals even after fixing the outliers. This indicates that a more
sophisticated method should be used to explain the remaining structure.
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Fig. 6: Application of fixed subsequence randomization. Outliers in the sequences
(plotted as red stars) are kept fixed during interval randomization. The plots
show (1) the original data, (2) a realization of interval randomized data, (3)
the original Fourier coefficients and interval confidence intervals and (4) the
original Fourier coefficients with subsequence confidence intervals.
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3.5 Application to Hypothesis Testing

Constrained realizations obtained e.g. by fixing non-random Fourier amplitudes
can be used in statistical hypothesis testing. As an example of this, the significance
of the pNN50-value commonly used in heart rate variability analysis [23] was
calculated6 for the records in the IBI datasets. The results are shown in Tab. 2.
There are clearly differences between the choices of constraints.

On one hand, the interval randomization appears to provide realizations
that are consistently too extreme for hypothesis testing, at least if the objective is
to study the differences between normal rhythm and heart failure. On the other
hand, the number of significant p-values with the Fourier amplitude constraint
is much smaller for normal rhythm than for heart failure, suggesting that
part of the IBI signal measured by the pNN50 statistic and not explained by the
amplitudes, is related to the heart failure condition. Therefore, the null hypothesis
with the amplitude constraint might be suitable for modeling healthy individuals.

Table 2: Percentages (%) of significant pNN50 -values for the datasets. From the
left: by constraining Fourier coefficients, phases, autocorrelation lags, and using
interval randomization.

Randomization method

Dataset fourier (ck) fourier (ϕk) distance (rl) interval

normal rhythm 22.2 75.9 100.0 100.0
heart failure 58.6 79.3 86.2 96.5

4 Related Work

Randomization testing in statistical analysis has a long history; see, e.g., [12,
36] for a review. Randomization methods are useful in hypothesis testing and
defining confidence bounds when sampling from the null hypothesis is easier than
to define the null hypothesis analytically. Randomization methods have been
devised for various kinds of data structures, such as binary matrices [10], graphs
[13, 38], gene periodicity (e.g., [15]), and real matrices [24].

Time series randomization has been studied, e.g., in [3, 16, 25, 34, 2, 30, 35].
Some of the prior randomization methods work in the Fourier space (see, e.g.,
[26] for use of phase-randomization in hypothesis testing) or in the wavelet space,
see [17] for a review. However, usually the time series has not been represented
as (equally-spaced) sequence of intervals, but as an event sequence with variable
event interval (see, e.g., [4, 31]).

In the field of data analysis, a recently promoted approach [14, 20, 5, 6] to
the use of randomization is to interpret the patterns as constraints to the null

6 Here we consider all interbeat intervals, not just normal-to-normal (NN) intervals.
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hypothesis. The use of surrogate data [32] in the hypothesis testing of data
structures is a common technique, and has been applied in the generation of
constrained realizations for hypothesis testing regarding the properties of a time
series, e.g., by [33, 29, 28].

Randomization techniques have been applied in the analysis of heart rate
variability (HRV), e.g., by [18, 8], who used Fourier phase randomization for
generating surrogate data for hypothesis testing. Time-varying surrogates were
used by [7] for studying non-linearity in interbeat interval (IBI) series.

5 Conclusions

We have shown that interval sequences form a natural representation for event
sequences, and offer a principled and robust basis to sequence randomization. We
have investigated the problem of interpreting commonly used Fourier parameters
and autocorrelation structures. We find that the interpretation depends on the
null hypothesis used; for example, a näıve use of the uniform distribution may
lead to false conclusions regarding the temporal structure of sequences.

Furthermore, we have provided computationally efficient randomization meth-
ods for studying Fourier parameters, and an MCMC based method for studying
autocorrelation structures and arbitrary constraints. The randomization methods
allow the user to efficiently test different null hypotheses by fixing chosen subsets
of parameters. This makes it possible to infer possible causes for the observed
significant patterns.

In this paper, we have shown how the proposed randomization methods can
be used in hypothesis testing, and examined the role of the null hypothesis. There
is no universally suitable null hypothesis. The null hypothesis should encompass
our best understanding of the features of the data and hence depends on the
research question.

With the help of the randomization methods presented here, simple and
understandable explanations for the structure of the data can be found efficiently
and in a statistically robust way. If there are structures left unexplained by the
proposed methods, more complex constraints or models of different types can be
used to further investigate and explain the remaining patterns in the data.
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