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Abstract. Many systems rely on predictive models using sensor data,
with sensors being prone to occasional failures. From the operational
point of view predictions need to be tolerant to sensor failures such that
the loss in accuracy due to temporary missing sensor readings would be
minimal. In this paper, we theoretically and empirically analyze robust-
ness of linear predictive models to temporary missing data. We demon-
strate that if the input sensors are correlated the mean imputation of
missing values may lead to a very rapid deterioration of the prediction
accuracy. Based on the theoretical results we introduce a quantitative
measure that allows to assess how robust is a given linear regression
model to sensor failures. We propose a practical strategy for building and
operating robust linear models in situations when temporal sensor fail-
ures are expected. Experiments on six sensory datasets and a case study
in environmental monitoring with streaming data validate the theoretical
results and confirm the effectiveness of the proposed strategy.
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1 Introduction

The amount of sensors installed in the urban and natural environments is rapidly
increasing. It is predicted that sensor data collected from satellites, mobile de-
vices, outdoor and indoor cameras will become the largest information trove for
our society in the coming years [3]. Predictive models using sensor readings as
inputs are widely applied in real-time systems, such as production quality con-
trol, air pollution monitoring, detecting traffic jams or severe road conditions,
route recognition, road navigation, cargo tracking and many more [6].

Physical sensors are exposed to various risks due to, for instance, severe
environmental conditions or exposure to physical damage. Moreover, typically
sensors rely on batteries, are installed in remote or hardly accessible locations,
or are unaccessible during operation runtimes. Sensors may break causing a
sudden failure until replaced. Sensors may get covered in snow or water causing
a seasonal temporary disruption. Some sensors may lose sensitivity due to wear
and tear. Under such circumstances it is very common to have time intervals
when readings from some sensors are missing. At the same time a predictive
model needs to operate continuously and deliver predictions in real time.



We study how to make predictive models robust to temporary sensor failures
during real-time operation. We focus on linear regression models. We assume that
the observed process is stationary and the predictive model remains fixed during
real-time operation. Our goal is to maximize prediction accuracy not only when
all the input sensors are available, but also when readings from several sensors
are missing for continuous periods of time. The problem is more challenging
than it may seem due to the temporal nature of the missing data and limited
computational resources under the stream setting.

Discarding the incoming instances that contain missing values is not an op-
tion, since there will be no predictions for continuous periods of time. The it-
erative multiple imputation (MI) [14] carries high computational costs and is
not considered for real-time operation. Deploying additional predictive models
for filling in missing values given the available sensors is computationally im-
practical, since an exponential number of models would be required to cover
all combinations of failing sensors. One could consider an adaptive regression,
e.g. [17]. However, the time for learning a stable model before recovery or the
next failure is very limited, while the previous model is in principal correct. This
applies to persistent temporal failures as well as once-off outlier failures. Hence,
adaptation is not considered when to cover for frequent temporary failures.

A simple replacement of the missing values by the sensor mean value is a pop-
ular and easy to implement strategy in industrial applications. Unfortunately, in
the stream setting where values of the same sensors are missing for a continuous
period of time, this strategy may lead to a drastic deterioration of the prediction
accuracy, particularly if the input sensors are highly correlated and a regression
model exploits that correlation. Therefore, if sensor failures are expected in real-
time operation it is not enough to replace missing values by the mean; we also
need to ensure that the predictive model is robust to temporary missing data.

This paper presents a theoretical analysis of the predictive performance under
sensor failures and formulates robustness criteria for real-time operation. We in-
troduce the deterioration index that allows to assess robustness of a given linear
model to partial loss of input data. We propose a practical strategy for build-
ing robust linear models that is based on a de-correlating transformation and a
subsequent regularization of the model parameters in the transformed space. Ex-
perimental validation on six sensor datasets and a case study in environmental
monitoring domain confirms the effectiveness of the proposed strategy.

Our study contributes a theoretically supported methodology for diagnosing
robustness of linear regression models to loss of input data. This methodology
makes it possible to assess the robustness of alternative models prior to deploy-
ment in real-time operation. The second contribution is a practical strategy for
optimizing linear regression models such that they are robust to sensor failures.

The paper is organized as follows. Section 2 outlines the setting. In Section 3
we theoretically analyze how sensor failures affect the prediction accuracy and
develop an index for diagnosing the performance. Section 4 gives practical rec-
ommendations. Experimental analysis is reported in Section 5 and the case study
in Section 6. Section 7 discusses related work and Section 8 concludes the study.



2 Background and Problem Setting

We start by formalizing the problem and presenting a recap on linear models.
Setting. Suppose we have r sensors generating multidimensional streaming

data vectors x ∈ <r (e.g. weather observation sensors). Our task is to predict
the target variable y ∈ <1 (e.g. solar radiation) using these sensor readings as
inputs. Data arrives in real time, the predictions need to be available in real
time. The expected loss in accuracy due to sensor failures should be minimum.
We assume that the observed process is stationary and the predictive model
remains fixed during real-time operation. To keep the focus, we do not explicitly
model potential spatial or temporal correlation between sensors.

Prerequisites. Without loss of generality we assume that the data (includ-
ing the target variable) is standardized to zero mean and unit variance. To keep
the focus we also assume that we know when a sensor fails (we do not need
to detect it). We also assume that when a sensor fails, the missing values are
automatically replaced with a constant value, say zero or the median value [2].

2.1 Linear Regression

In this study, we consider linear regression models for prediction [9], which as-
sume that the relationship between r input sensors x = (x1, . . . , xr) and the
target variable y is linear. The model takes the form

y = b1x1 + b2x2 + . . .+ brxr + ε = xβ + ε, (1)

where ε is the error variable and the vector β = (b1, b2, . . . , br)
T contains the

parameters of the linear model (regression coefficients). Since the data is assumed
to have been standardized, the bias term in the regression model is omitted.

There are different ways to estimate the regression parameters [8,9]. Ordinary
least squares (OLS) is a simple and probably the most common estimator. It
minimizes the sum of squared residuals giving the following solution

β̂OLS = arg min
β

(
(Xβ − y)T (Xβ − y)

)
= (XTX)−1XTy, (2)

where Xn×r is a sample data matrix containing n records from r sensors, and
yn×1 is a vector of the corresponding n target values. Having estimated a regres-
sion model β̂ the predictions for on new data xnew can be made as ŷ = xnew β̂.

If the input data is correlated, regularization is often used for estimating the
regression parameters. The Ridge regression (RR) [9, 10] regularizes the regres-
sion coefficients by imposing a penalty on their magnitude. The RR solution
is

β̂RR = arg min
β

(
(Xβ − y)T (Xβ − y) + λβTβ

)
= (XTX + λI)−1XTy, (3)

where λ > 0 controls the amount of shrinkage: the larger the value of λ, the
greater the amount of shrinkage. Ir×r is the identity matrix.



2.2 Prediction Error

The mean squared error (MSE ) is a popular measure to quantify the discrepancy
between the true target y and the prediction ŷ. For a test dataset it is computed
as MSE =

∑n
l=1(ŷ(l)−y(l))2/n = ŷTy/n, where n is the number of samples. We

use MSE since it punishes large deviations from the true values, that is relevant
to industrial applications. Also, MSE has interesting analytical properties. We
can decompose the expected mean squared error as

E[MSE ] = E
[ 1

n

n∑
l=1

(ŷ[l] − y[l])2
]

= E[(ŷ − y)2] = E[(ŷ)2 − 2ŷy + y2]

= E[ŷ2]− 2E[ŷy] + E[y2] = Var [ŷ]− 2Cov [ŷ, y] + Var [y] (4)

The last equation follows from Var [z] = E[z2]− (E[z])2 and Cov [x, z] = E[xz]−
E[x]E[z]. E[y] = 0 and E[ŷ] = 0, since the data has been standardized.

Let the prediction be ŷ = xβ. Then the variance of this prediction is

Var [ŷ] = Var
[ r∑
i=i

bixi
]

=

r∑
i=1

r∑
j=i

bibjCov [xi, xj ] = βTΣβ, (5)

where Σ = XTX/(n− 1) is the covariance matrix of the input data.
The covariance of the prediction is

Cov [ŷ, y] = E[ŷy] = E
[
y

r∑
i=1

bixi
]

= yTXβ/(n− 1). (6)

In real-time predictive systems if a sensor fails, typically, a constant value
is displayed. For convenience but without loss of generality we assume that the
missing values are replaced by the mean (zero, since the data is standardized)
as they arrive. Detecting sensor failures is beyond the scope of this work. We
assume that the data collection system can signal sensor failures automatically.
If this is not the case one can set up a simple rule based detector, such as: if the
value is constant for a period of time declare sensor failure.

3 Theoretical Analysis of the Effect of Sensor Failures

Let us consider theoretically the prediction error of a linear model when the
input sensors start to fail. Surprisingly, the jump in error can be nonlinear in
the number of sensors failed and highly depends on the correlation of the inputs.

Denote by MSEm the mean square error after m sensors have failed. Let
MSE 0 be the error when all the sensors are working. Correspondingly, Varm
and Covm denote the variance and the covariance after m sensors have failed.
Note that cross-validtion MSE 0 is often the only consideration when assessing
the performance of a model or deploying in practice.



Proposition 1 Suppose sensors fail independently with the uniform prior prob-
ability. With m failed sensors the expected error of a linear model is

E[MSEm] =
r −m
r

E[MSE 0] +
m

r
− (r −m)m

r(r − 1)
βT (Σ− I)β,

where r is the number of input sensors, β is a vector of the regression coefficients,
Σ is the covariance matrix of the input data.

MSE can be decomposed into variance of the prediction, covariance of the
prediction and the target and the variance of the target, as given in Eq.(4). For
proving Proposition 1 we will analyze each component separately.

Proposition 2 Suppose sensors fail independently with the uniform prior prob-
ability. With m failed sensors the expected variance of the prediction ŷ = xβ is

Varm[ŷ] =
r −m
r

Var0[ŷ]− (r −m)m

r(r − 1)
βT (Σ− I)β.

Proof (of Proposition 2). We decompose the variance from Eq. (5) into Var0[ŷ] =
βTΣβ = βTβ + βT (Σ− I)β. The first part βTβ =

∑r
i=1 biVar [xi] describes the

variance when the inputs are linearly independent. The second part βT (Σ−I)β =

2
∑r−1
i=1

∑r
j=i+1 bibjCov(xi, xj) is due to correlation of the inputs.

Consider the first component βTβ. If a sensor fails, the individual variance
becomes zero and the term vanishes. The total variance decreases by 1

r b
2
1+ 1

r b
2
2+

· · ·+ 1
r b

2
p = 1

rβ
Tβ. Likewise, if m sensors fail, the variance decreases by m

r β
Tβ.

Now consider the second component βT (Σ− I)β. Since (Σ− I) has zeros on
the diagonal, the component is a weighted sum of r(r− 1) covariances from the
covariance matrix. If one sensor (say, sensor i) fails, all the covariances of other
sensors with xi will become zero and all the terms containing covariance with xi
will vanish. The sum will lose 2(r− 1) elements (such is the amount of elements

with Cov [xi, . . .]), the total loss will be 2(r−1)
r(r−1)β

T (Σ− I)β.

However, if two sensors fail then only 2(r − 1) + 2(r − 2) elements will be
lost from the sum. If sensors i and j fail, there will be 2(r − 1) lost containing
covariance with xi, but only 2(r−2) more terms lost containing covariance with
xj , as the term Cov(xi, xj) has already been lost earlier. Hence, if m sensors fail
then 2(r − 1) + 2(r − 2) + · · ·+ 2(r −m) = (2r − 1−m)m elements will be lost

and the collinearity component will decrease by (2r−1−m)m
r(r−1) βT (Σ− I)β.

Plugging the terms into Var [ŷ] expression gives

Varm[ŷ] = βTβ − m
r β

Tβ + βT (Σ− I)β − (2r−1−m)m
r(r−1) βT (Σ− I)β = r−m

r βTβ +

+ r−m
r βT (Σ−I)β− (r−m)m

r(r−1) β
T (Σ−I)β = r−m

r Var0[ŷ]− (r−m)m
r(r−1) β

T (Σ−I)β. ut

Proposition 3 Suppose sensors fail independently with the uniform prior prob-
ability. With m failed sensors the expected covariance of the prediction ŷ = Xβ is

Covm[ŷ, y] =
r −m
r

Cov0[ŷ, y].



Proof (of Proposition 3). The covariance is Cov0[ŷ, y] = E
[
y
∑r
i=1 bixi

]
. If a

sensor fails, the expected value of that sensor becomes zero, the term becomes
independent from y and vanishes. If one sensor fails, the expectation decreases
by 1

ryb1x1 + 1
ryb2x2 + · · ·+ 1

rybrxr = 1
ry
∑r
i=1 bixi. If m sensors fail the expec-

tation decreases by m
r y
∑r
i=1 bixi. Plugging that into the covariance expression

gives Covm[ŷ, y] = E
[
y
∑r
i=1 bixi −

m
r y
∑r
i=1 bixi

]
= E

[
r−m
r y

∑r
i=1 bixi

]
=

r−m
r Cov0[ŷ, y]. Note that the effect of sensor failure on Cov [ŷ, y] is the same no

matter whether the input data is correlated. ut

Given Proposition 2 and Proposition 3 we can now prove Proposition 1.

Proof (of Proposition 1). Following Eq. (4) we decompose the error with m failed
sensors into E[MSEm] = Varm[ŷ]−2Covm[ŷ, y]+Varm[y]. Failing input sensors
do not affect the variance of the true target, thus Varm[y] = Var0[y] = 1. From
Propositions 2, 3 and Eq. (4) we get E[MSEm] = r−m

r Var0[ŷ]−2 r−mr cov0[ŷ, y]+

Var0[y]− (r−m)m
r(r−1) β

T (Σ− I)β = r−m
r E[MSE 0] + m

r −
m(r−m)
r(r−1) β

T (Σ− I)β. ut

For constructing fault tolerant models we will need the next proposition.

Proposition 4 Given a r× r covariance matrix Σ and a vector β ∈ <r with at
least one non-zero element, the term βT (Σ− I)β is bounded by

−βTβ ≤ βT (Σ− I)β ≤ (r − 1)βTβ.

Proof (of Proposition 4). The Rayleigh quotient of the covariance matrix is de-

fined as βTΣβ
βT β

, for non-zero β ∈ <r and is bounded by the maximum and the

minimum eigenvalues of Σ: `min ≤ βTΣβ/βTβ ≤ `max, where ` are eigenvalues,
and takes the extreme values when β is equal to the corresponding eigenvectors.

Since Σ is a covariance matrix, all eigenvalues are non-negative and their sum
is equal to the sum of the trace. As the data is standardized the sum of eigenval-
ues is r, hence the maximum eigenvalue does not exceed r: 0 ≤ βTΣβ/βTβ ≤ r.
Algebraic manipulations give the bound −βTβ ≤ βT (Σ− I)β ≤ (r− 1)βTβ. ut

Our analysis relies on theoretical variance and covariance of the predic-
tion. Potentially it could be extended to higher order regression models (e.g.
quadratic), that would require much more involved theoretical analysis due to
interaction terms. Alternatively, one could obtain non linear prediction models
by using the same linear regression with non-linear input features.

Proposition 1 has an important implication. If input data is uncorrelated then
MSE is increasing linearly with the number of sensors failed. If some sensor fails,
the predictive information is lost, there is no source for replacement.

On the other hand, if input data is correlated, MSE changes quadratically
in the number of sensors lost. From Proposition 4 we see that this quadratic
term can be positive or negative depending on the regression model (β). The
good news is that a well chosen β may reduce the loss in accuracy to sub-linear.
The next section considers strategies for building regression models such that
the expected MSE , when sensors are failing, is minimized.
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Fig. 1. Three regression models and the deterioration of the prediction accuracy as a
function of number of failed sensors (m)

4 How to Build Fault Tolerant Regression Models

Based on the theoretical results next we propose a quantitative measure for
assessing robustness of regression models and present practical guidelines on
how to build fault tolerant regression models.

4.1 Deterioration Index

In Proposition 1 the term − (r−m)m
r(r−1) β

T (Σ− I)β decides whether MSE increases

linearly, quadratically or sub-linearly due to sensor failures. Hence, for diagnosing
model robustness to sensor failures we define a deterioration index as

d = −βT (Σ− I)β.

When input data is uncorrelated, i.e. Σ = I, then d = 0. When input data is
correlated d may be positive or negative (see Proposition 4). If d > 0 then MSE
deteriorates quadratically, if d < 0 then MSE deteriorates sub-linearly. Thus,
the lower the deterioration index the more robust the predictive model is.

4.2 An Illustrative Example

For illustrative purposes, let us consider a small regression problem where four
input sensors are perfectly correlated with each other and the target variable:
x1 ∼ N (0, 1), x1 = x2 = x3 = x4 = y. Note that Σ = 14×4. Figure 1 gives three
regression models that would give perfect predictions if all sensors are working,
i.e. MSE 0 = 0 and their respective MSEm after m sensors fave failed (from
Proposition 1). Figure 1 plots the expected errors when sensors start to fail.

Model β1 utilizes only one input sensor and the deterioration of MSEm is
linear to the number of sensors failed (m). Can we do better? In fact we can do
better with model β2, which makes use of the redundancy in sensors. As a result,
the loss in accuracy is lower. Model β3 represents a really bad case of overfitting
with the regression, although this model can predict perfectly well, the weights
grow unnecessary high. In such a case, if a sensors start failing, the variance of
the prediction grows really high and so does the MSEm. We can observe that
even if a single sensor has failed MSE 1 > 1 making the predictions worse than
a naive baseline that always predicts constant value (MSE constant = 1).



4.3 Comparing Robustness of Several Regression Models

Since our goal is to deploy an accurate model that would also be robust to sensor
failures, the models that have small initial MSE 0 and small d are preferred.

Suppose we have a choice between two regression models A and B. Two
situations may occur. First, one model, say A, has a better deterioration index

and at least equally good initial error: MSE
(A)
0 ≤ MSE

(B)
0 and d(A) < d(B). In

such a case for m = 0 . . . r we have MSE (A)
m ≤ MSE (B)

m (results from Proposition
1); hence, model A is preferable. Example in Section 4.2 showed such a situation.

The other situation is more tricky. One model, say A, may have a better

deterioration index , but worse initial error: MSE
(A)
0 > MSE

(B)
0 and d(A) < d(B).

In this case model A is preferable if we expect less than m? sensors to fail, and
otherwise model B is preferable. We can find m? from Proposition 1 by assigning
E[MSE (A)

m ] = E[MSE (B)
m ] and solving for m. The number of sensors to fail is

m? = (r − 1)(MSE
(A)
0 −MSE

(B)
0 )/(d(B) − d(A)). (7)

4.4 Building Fault Tolerant Regression Models

A regression model β obtained using the ordinary least squares procedure OLS
minimizes MSE 0. The index d takes its minimum when β is equal to the eigen-
vector with the maximum eigenvalue (Proposition 4). Unfortunately, such β does
not guarantee correct predictions, since eigenvectors are obtained not taking into
account the target variable. Hence, for making fault tolerant models we need an
optimization criteria that would minimize d and MSE 0 at the same time.

For a predictive model ŷ = xβ the deterioration index can be decomposed
into d = −βT (Σ − I)β = −Var [ŷ] + βTβ. We can rewrite Eq. (4) as Var [ŷ] =
MSE 0 + 2Cov [ŷ, y] − Var [y] → 1. Accurate prediction requires Cov [ŷ, y] → 1
and Var [y] is fixed. Thus, we cannot vary Var [ŷ] without affecting the error.

However, we could vary βTβ to a certain extent with little impact to MSE 0,
for instance, as in the toy example in Section 4.2. Hence, d will be minimized
when βTβ shrinks. To achieve that we recommend using regularization for build-
ing regression models, such as the Ridge regression (Section 2.1).

In addition, we recommend reducing the dimensionality rotating the input
data towards the first k principal components. Let X = UDVT be the singu-
lar value decomposition of the training data. Let the rotation matrix Rp×k be
composed of the eigenvectors in V that correspond to the largest eigenvalues
recorded in the diagonal of D. Then new k-dimensional input data is X? = XR.
Let β? be a vector of regression coefficients in the transformed k-dimensional
space. The model β = Rβ? would give the same predictions in the original.

In order to minimize d we need to minimize βTβ in the original space, but at
the same time we need to find the optimal β? in the transformed space. Hence,
our optimization criteria is β̂? = arg minβ?

(
(X?β? − y)T (X?β? − y) + λβTβ

)
.

Since R is orthogonal, thus βTβ = β?TRTRβ? = β?Tβ?. Therefore, optimizing
the above criteria is equivalent to the Ridge regression in the X? space.

Given these considerations, our recommendation for building fault tolerant
models is to apply PCA and then train the Ridge regression in the new space.



5 Experimental Analysis

Next we experimentally analyze the robustness of selected regression techniques
against sensor failure on a synthetic benchmark and real sensor datasets.

5.1 Datasets

Chemi dataset from the INFER project1 describes a chemical production pro-
cess via 70 real valued sensor variables sampled once per hour over a two years
period (17562 instances). The goal is to predict concentration of a product.

ChemiR extends the Chemi data, an additional variable indicates the con-
centration of the product an hour ago (71 sensors, 17562 instances).

Catalyst dataset2 is a chemical modeling dataset. Given 13 input variables
the goal is to predict catalyst activity. The dataset contains 8687 instances.

Wine dataset from the UCI repository3 presents 10 chemical measurements
as inputs and 4897 instances. The goal is to predict a wine quality score.

CPU dataset from the DELVE repository4 collects computer systems activ-
ity measures described by 19 real valued attributes. The goal is to predict the
portion of time that cpus run in user mode. The dataset contains 8192 instances.

Gaussian is a synthetic dataset in 30-dimensional space. Input data is sam-
pled from N (0, Σ), a random covariance matrix is generated as Σ = sT s, where

s ∼ U(−1, 1). The target variable is set to y =
∑30
i=1 xi + u, where u ∼ N (0, 6).

5.2 Regression Models

We test the following regression models.

ALL uses all r sensors as inputs. A regression model is built using the ordi-
nary least squares (OLS) optimization approach.

rALL uses all r sensors and the Ridge regression (RR) optimization.

SEL builds OLS regression on k sensors that have the largest absolute cor-
relation with the target variable (measured on the training data).

PCA rotates the input data using principal component analysis (PCA) and
builds the OLS regression on k new attributes with the largest eigenvalues.

rPCA extracts attributes using PCA, but then RR is used instead of OLS.

sPCA rotates the data using PCA, selects k new attributes that are the
most correlated with the target. A regression model is built using OLS.

PLS regression is very popular in chemometrics [18]. It is similar to PCA,
but instead of maximizing the variance with the rotation, a covariance between
the inputs and the target is maximized. We keep k new attributes.

1 Source: http://infer.eu/.
2 Source: http://www.nisis.risk-technologies.com/.
3 Source: http://archive.ics.uci.edu/ml/.
4 Source: http://www.cs.toronto.edu/~delve/.



Table 1. Testing MSE0 and deterioration index on the six sensory datasets.

rPCA PCA rALL SEL sPCA PLS ALL

Chemi MSE0 0.47 0.47 0.38 0.52 0.42 0.41 0.41
d -0.25 -0.25 1.03 0.67 6.42 6.54 7.44

ChemiR MSE0 0.42 0.43 0.36 0.35 0.37 0.35 0.34
d -0.34 -0.33 0.09 0.53 4.90 3.83 5.57

Catalyst MSE0 0.51 0.51 0.45 0.82 0.47 0.44 0.43
d -0.11 -0.08 0.21 0.69 0.63 0.82 1.71

Wine MSE0 0.83 0.83 0.73 0.76 0.74 0.73 0.73
d -0.07 -0.07 0.04 0.12 0.04 0.08 0.18

CPU MSE0 0.31 0.31 0.28 0.30 0.29 0.28 0.28
d -0.31 -0.32 -0.25 -0.26 -0.16 -0.14 -0.11

Gaussian MSE0 0.23 0.23 0.12 0.25 0.14 0.12 0.12
d -0.32 -0.33 -0.13 -0.16 -0.10 0 7.58

5.3 Experimental Protocol and Parameters

Each dataset is split into training and testing at random (equal sizes). Some
data may have temporal dependencies, hence some predictive information (such
as autocorrelation) cannot be utilized, that applies to all the tested models in the
same way, while random splits allow multiple tests. We repeat every experiment
100 times and report averaged results. The input data and the target variable
is standardized, the mean and the variance for standardization is calculated on
the training data. The regression models are trained on the training part and
the reported errors and sample covariances are estimated on the testing part.
The regression coefficients are always reported in the original (not transformed)
feature space. For feature selection SEL, PCA and PLS models we set the num-
ber of components to be a half of original number of features: k = r/2. The
regularization parameter in the Ridge regression experiments is fixed to 200.

5.4 Robustness Versus Accuracy

Table 1 reports the testing errors and the deterioration index (d) on the six sen-
sory datasets. The models are grouped according to the potential deterioration
of their accuracies. We can distinguish three groups of models.

The first group contains PCA and regularized rPCA. These models consis-
tently achieve a very good deterioration index (below zero), that guarantees
preservation of prediction accuracy. The initial MSE 0 of PCA and rPCA is typi-
cally larger than the peer approaches, that is the price to pay for robustness. The
superior performance of rPCA and PCA is consistent across the six datasets.

The second group contains regularized rALL and SEL, which have varying
deterioration index , but typically not too high. rALL maintains a reasonable
accuracy (typically better than the first group); however, the accuracy of SEL
varies a lot, due to varying predictive power of the individual sensors (depends
on the prediction task at hand). The third group contains sPCA, PLS and ALL,
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Fig. 2. Empirical MSEm versus the number of sensors failed.

these models mostly show a very high deterioration index , especially in Chemi,
ChemiR and Catalyst datasets, where the inputs are highly correlated.

Thus, we recommend using rPCA (or PCA) if sensors are expected to fail
often and predictions are needed continuously. If failures are rare we recommend
rALL that is less robust but more accurate with all the sensors working.

5.5 Empirical Analysis of Deterioration of Accuracy

Next we investigate how the error depends on the number of sensors that have
failed. Figure 2 shows testing MSEm as a function of the failed sensors. We chose
sensors to fail uniformly at random, we report the results over 100 runs.

Advantages of PCA and rPCA are prominent in Chemi and ChemiR, where
the dimensionality is large and the input data is strongly correlated. All the
models perform similarly (nearly linear loss) in Wine and CPUact, where the
input data is not much correlated. In Catalyst PCA and rPCA have an advantage
as expected based on deterioration index . On this dataset SEL has notably
worse performance. As the overall number of features is low (12), quite a lot of
initial accuracy is lost by dropping half of the features. Gaussian data strictly
follows the normal distribution, and the contribution of each sensor to the target
variable is uniformly distributed. ALL performs notably badly, but we see that
any regularization attempt (all the other methods) leads to a good performance.
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Fig. 3. Deterioration index and prediction error as a function of components preserved.

5.6 Sensitivity to the Number of Extracted Components

In our analysis number of components extracted in PCA, rPCA, sPCA and PLS,
as well as the number of features selected in SEL was fixed. Next we analyze
how the deterioration index and the prediction error depends on the number
of components on the Chemi dataset that has high dimensionality (r = 70).
We analyze all five models that take the number of components as a parameter:
PCA, rPCA, sPCA, SEL and PLS. Our goal is to assess the stability with respect
to sensor failures at arbitrary selected number of components. Note, that if all
the components are preserved (k = r) then PCA, sPCA, PLS and SEL are
equivalent to ALL, and the regularized rPCA is equivalent to rALL.

Figure 3 shows the deterioration index and the prediction error as a function
of extracted components (over 100 runs). The regularized rPCA performs much
better d than PCA when nearly all of the components are retained. PCA and
rPCA demonstrates superior d across all k in line with the previous experiments.
SEL demonstrates a mediocre d and sPCA together with PLS keeps a danger-
ously high d until the majority of the components are discarded (k is below 10).
We see from the right plot in Figure 3 that, unfortunately, at such a low k a lot
of prediction accuracy is lost, MSE is nearly twice as large with all the sensors.

Overall, we see a tendency to achieve a better deterioration index at an ex-
pense of a lower initial prediction accuracy. The regularized rPCA demonstrates
the most stable performance and superior results throughout all the range of k.

5.7 Worse than Blind Guessing

Blind guessing is a naive prediction, that does not use any input data and always
predicts the average of the target variable. Next we analyse how many sensors
can fail before predictions become worse than blind guessing. Table 2 reports
empirical results on the six datasets averaged over 100 runs.

We see that in Gaussian the problem of sensor failure is very serious, it is
enough for two sensors out of 30 to fail and the predictive model is useless. In
case of Chemi and ChemiR it is enough for 6-7 sensors to fail out of 70-71 to
make ALL or even PLS useless. PLS is a very popular state of the art technique



Table 2. No. of sensors to fail before the prediction becomes worse than blind guessing.

rPCA PCA rALL SEL sPCA PLS ALL sensors

Chemi - - 29 23 7 7 6 out of 70
ChemiR - - 70 41 10 9 6 out of 71
Catalyst - - - 4 10 9 5 out of 12
Wine - - - - - - - out of 9
CPU - - - - - - - out of 19
Gaussian - - - - - - 3 out of 30

often used in chemometrics applications [13, 18], such as Chemi. From Figure 2
we can see that if just one sensor is lost, the error of PLS or ALL in Chemi
already jumps up by nearly 40%. We see that the mean imputation of missing
sensor values is a serious problem for these regression models.

The experimental results suggest that careful regularization measures are
needed for ensuring that predictive models stay functional during real-time op-
eration. The experimental results confirm our theoretical findings and the indica-
tions of the deterioration index that the proposed rPCA and PCA can effectively
prevent rapid boosts in errors due to sensor failures. If a user does not have the
capacity to determine the optimal k, as a rule of thumb from our practical ex-
perience we recommend using k = r/2, where r is the number of input sensors.

6 Case Study in Environmental Monitoring

To validate our findings we perform a case study in environmental monitoring
where sensor failures are happening frequently. The task is to predict the level
of solar radiation from meteorological sensor data (such as temperature, precip-
itation, wind speed). We use a data stream recorded at SMEAR II station in
Finland [12]. This station can measure solar radiation; hence, the ground truth is
available for us. In general, measuring solar radiation is delicate and expensive.
Not many stations can afford to measure solar radiation and would be interested
in predicting it from other data that can be collected much cheaper and easier.

We use data over a five years period (2007-2012), recorded every 30 min.
from 39 meteorological sensors at one station. The data coming from the station
has about 7% of missing values. There is no single sensor that would provide
non interrupted readings over those five years; for any sensor from 1% up to 30%
values are missing. The solar radiation (target variable) is available 99% of the
times, we eliminate from the experiment the instances having no target value.

Our goal is to verify if the proposed deterioration index can effectively di-
agnose the performance of regression models and test the performance of our
regression models with naturally occurring missing data. We use the first two
years of data as a training set and the remaining three years as a testing set.
From the training set we eliminate all the instances that contain missing values
(−25% of train data). We standardize the training set (zero mean, unit vari-
ance). Then we standardize the testing set using the mean and the variance



Table 3. Accuracy and stability on the environmental monitoring data.

rPCA PCA rALL SEL sPCA PLS ALL

MSE on all test data 0.37 0.37 0.51 15.67 8.55 0.93 7.39

MSE on non-missing test data 0.33 0.33 0.29 0.35 0.29 0.28 0.28
MSE on missing test data 0.39 0.39 0.63 23.88 12.99 1.27 11.21

MSE on train data (cross-validation) 0.40 0.39 0.37 0.34 0.31 0.32 0.29
d on train data -0.22 -0.20 1.61 574.58 253.86 8.66 302.84

values obtained from the training set. After standardization we replace all the
missing values in the testing set by zeros and test the regression models.

Table 3 reports the testing results of the regression models ALL, rALL, SEL,
PCA, rPCA, sPCA and PLS (k = 20, which is half of the input sensors follow-
ing the rule of thumb suggested in Section 5.6). The recommended rPCA and
PCA demonstrate an outstanding performance (MSE = 0.37), followed by rALL
(0.51). The performance of PLS (0.91) is more than twice worse as of PCA and
rPCA. ALL, sPCA and SEL perform much worse by a large margin.

Next we split of the test data into non-missing (35%) and missing data (65%)
parts and inspect the errors separately. We see that the performance data of all
the models is very similar when there is no missing data. However, the non-
regularized models (ALL, SEL, sPCA and PLS) fail badly when there is missing
data, except for PCA, which is consistent with our theoretical findings. More-
over, we can see from the last part of the table that if we selected a model for
deployment based on cross-validation MSE , we would probably deploy ALL. It
would perform on non-missing data well, but the performance would deteriorate
very drastically when sensors started to fail. Finally, we can see that the pro-
posed deterioration index computed on the training data indicates very well the
future robustness of the model. Hence, after seeing a comparable cross-validation
performance of all models we would deploy rPCA that gives the minimum d.

The results support our recommendation to use PCA and rPCA when tem-
poral sensor failures are expected. The case study also confirms the effectiveness
of the deterioration index in diagnosing robustness of predictive models.

7 Related Work

Our study is closely connected with handling missing data research, see e.g. [1,2,
4,14]. The main techniques are: imputation procedures where missing values are
filled in and the resulting compete data is analyzed, reweighing procedures where
instances with missing data are discarded or assigned low weights, and model-
based procedures that define models for partially missing data. We investigate
what happens after missing values are imputed during real-time operation using
a very popular and practical mean value imputation. In our setting discarding
streaming data is not suitable, since there would be continuous periods when
we have no input data and thus no predictions. Model-based procedures could
handle one-two missing sensors; however, when many sensors may fail, such a



procedure is computationally impractical and likely infeasible, as we would need
to keep an exponential number of models to account for all possible situations.

Handling missing values in regression is reviewed in [14]. The majority of
research focuses on training regression models from data with partially missing
values. In our setting discarding some training data with missing values is not a
problem, since the volumes of data are typically large. The problem arises during
real-time operation. We not only need to input missing values, but also make
the regression models fault tolerant. Hence, our work solves a different problem
and is not directly comparable with missing value imputation techniques.

Topic-wise our work relates to fault tolerant control that is widely researched
and applied in industrial and aerospace systems [16, 19]. The main focus is on
detecting the actual fault, not operating with a fault present. In our setting there
is no fault in the system, just sensors fails, our model needs to remain accurate.

Redundancy in engineering duplicates critical components of a system to
increase reliability, see e.g. [5]. A common computational approach is to to use
an average the redundant sensors to reduce the impact of possible sensor failure.
In fact, this is the effect we are aiming to achieve by minimizing the deterioration
index . The main difference from our setting is in availability of backup sensors,
it is even possible to install duplicate sensors on demand. In our setting; however,
the data is given as is and we aim at exploiting it in the best way.

Robust statistics aims at producing models that are robust to outliers or
other small departures from model assumptions, see e.g. [11]. The main idea is
to modify loss functions so that they do not increase so rapidly, to reduce the
impact of outliers. In our setting there are no large deviations in the input data
due to sensor failure, in fact the opposite, the variance of a failed sensor goes to
zero. Hence, robust statistics approaches target a different problem.

Our theoretical analysis of the mean squared error resembles bias-variance
analysis (see e.g. [7]) in the way we decompose MSE into components. Regard-
ing the connection of the bias-variance decomposition to the Ridge regression
solution, we well know that enforcing strong regularisation is likely to decrease
variance and to increase bias. Further investigation is left for future work.

Finally, the setting relates to concept drift [20] and transfer learning [15] set-
tings in a sense that the training and the testing data distributions are different.
However, in our setting there is no model adaptation during real-time operation.

8 Conclusion

Systems relying on predictive models should be robust with regard to missing
input values, due to transient failures in the sensors, for instance. We focused on
linear models for predictions, and theoretically analyzed the criteria for linear
regression to be robust to sensor failures. Based on this analysis we introduced
the deterioration index measure that allows to quantify how robust is a given
linear regression model to sensor failure. We also proposed a practical strategy
for building robust linear models. Our experiments with real data confirmed the
theoretical results and demonstrated the effectiveness of the proposed strategy.



The current work assumes that input sensors fail with the uniform prior
probability, but does not quantify any distribution on how many are likely to
fail, or how the failures form correlated patterns among the sensors. These ques-
tions would make an interesting follow up investigation. Mapping the findings of
the current study to predictive models in the evolving data stream setting offers
another important avenue for future research.
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