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Abstra
t. The a

ura
y of the k-nearest neighbor algorithm depends

on the distan
e fun
tion used to measure similarity between instan
es.

Methods have been proposed in the literature to learn a good distan
e

fun
tion from a labelled training set. One su
h method is the large margin

nearest neighbor 
lassi�er that learns a global Mahalanobis distan
e. We

propose a mixture of su
h 
lassi�ers where a gating fun
tion divides

the input spa
e into regions and a separate distan
e fun
tion is learned

in ea
h region in a lower dimensional manifold. We show that su
h an

extension improves a

ura
y and allows visualization.
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1 Introdu
tion

Nonparametri
, memory-based methods, su
h as the k-nearest neighbor 
las-

si�er, interpolates from past similar 
ases. This requires a good distan
e (or

inversely, similarity) measure to determine the relevant subset of the training

set. Given two d-dimensional instan
es xi,xj ∈ ℜd
, the Eu
lidean distan
e, or

its square, is the best known:

DE(xi,xj) = ‖xi − xj‖
2
2 = (xi − xj)

⊤(xi − xj)

The Eu
lidean distan
e assumes that all features have the same varian
e

and that they are un
orrelated. If this is not the 
ase and there is a 
ovarian
e

stru
ture as given by a 
ovarian
e matrix S, one should use the Mahalanobis

distan
e:

DM = (xi − xj)
⊤
M(xi − xj)

where M ≡ S
−1
. The Eu
lidean distan
e is a spe
ial 
ase where M = S = I, the

identity matrix.

M is a d× d symmetri
, positive semi-de�nite matrix and when d is large,

not all features may be informative and/or there may be strong 
orrelations



between features, and one may want to do dimensionality redu
tion by a low-

rank approximation. Any symmetri
 Mahalanobis matrix 
an be fa
torized as

M = L
⊤
L, where L is an e× d proje
tion matrix and e ≤ d:

DM(xi,xj) = (xi − xj)
⊤
M(xi − xj) = (xi − xj)

⊤
L
⊤
L(xi − xj)

= (L(xi − xj))
⊤
L(xi − xj) = (Lxi − Lxj)

⊤(Lxi − Lxj)

= ‖zi − zj‖
2
2 = DE(zi, zj)

= DL(xi,xj) (1)

That is, using su
h a low-rank (e < d) approximation is equivalent to pro-

je
ting the data to this new e-dimensional spa
e as, zi = Lxi, zi ∈ ℜe
and using

Eu
lidean distan
e there.

In a high dimensional problem, di�erent regions of the input spa
e may ex-

hibit di�erent dependen
ies and varian
es and hen
e, instead of a single, global

metri
, it may be more appropriate to use di�erent metri
s in di�erent regions.

Besides, be
ause regions have lo
al stru
tures, dimensionality 
an be further

de
reased. In this study, we propose a framework where the input spa
e is par-

titioned into regions and di�erent proje
tion matri
es are learnt in di�erent

regions.

The rest of this paper is organized as follows: We give a brief literature

survey of related work in Se
tion 2, and among these, the 
losest to our work are

the Large Margin Nearest Neighbor (LMNN) algorithm�that learns M�and

Large Margin Component Analysis (LMCA) algorithm�that learns L�whi
h

are dis
ussed in more detail Se
tion 3. Our proposed extension of mixtures of

LMNN�that learns multiple Mm or Lm in di�erent parts of the input spa
e�is

given in Se
tion 4. We dis
uss our experimental results in Se
tion 5 and 
on
lude

in Se
tion 6.

2 Related Work

In the literature, many methods have been proposed to train a Mahalanobis

matrix M or a proje
tion matrix L. Some methods train multiple Mahalanobis

or proje
tion matri
es, whi
h 
an be per-
lass or per-exemplar. Below, 
hrono-

logi
ally we give a brief summary of some methods.

One of the �rst distan
e metri
 learning algorithm is given by Xing et al.

in [1℄ who de�ne a 
onvex optimization problem to �nd a Mahalanobis matrix.

The instan
es in the data set form two disjoint subsets of similar and dissimilar

pairs and a Mahalanobis matrix is trained su
h that the distan
e between similar

points is minimized while the dissimilar points are at least 1 unit way from ea
h

other.

Neighborhood Components Analysis (NCA) is a sto
hasti
 gradient-based

algorithm to �nd a linear proje
tion matrix that minimizes the leave-one-out


lassi�
ation error of the nearest neighbor 
lassi�er in the new spa
e (see [2℄). A

di�erentiable obje
tive fun
tion is de�ned on the soft neighbor assignments in



the linearly proje
ted spa
e. The proje
tion matrix 
an be also used for dimen-

sionality redu
tion. Slakhutdinov and Hinton extend NCA to embed a nonlinear

proje
tion in [3℄, where a multilayer neural network is trained for this purpose.

Frome et al. in [4℄ propose a method to train a weight ve
tor for ea
h image

to 
al
ulate the global distan
e between images using the feature ve
tor whi
h

is a 
on
atenation of lo
al pat
h distan
es between the images. A large margin


lassi�er is trained over the lo
al distan
e feature ve
tors in a 
onvex program-

ming problem. Sin
e the trained distan
es are not guaranteed to be 
ompatible,

a logisti
 model is trained over them to estimate posterior probabilities. They

are ranked and the query image is assigned to the 
lass of the image with the

highest rank. In [5℄, they improve the algorithm by training a globally 
onsis-

tent lo
al distan
e fun
tions su
h that no se
ond-level 
lassi�er is required to

be trained. They rede�ne the problem using a 
onvex optimization formulation.

Sin
e all the weight ve
tors are trained together, the �nal distan
e estimates are


ompatible with ea
h other.

Chang and Yeung in [6℄ train an a�ne fun
tion per instan
e that provides

smooth transitions between instan
es. A variant of regularized moving least

squares is applied in a semi-supervised setting. Although the obje
tive fun
-

tion has a 
losed-form solution, it be
omes intra
table for data sets with many

instan
es and an approximation algorithm is given.

Davis et al. in [7℄ study metri
 learning from an information-theoreti
 point

of view. They de�ne the optimal Gaussian distribution whose 
ovarian
e ma-

trix satis�es the distan
e 
onstraints de�ned on the instan
e pairs; the distan
e

between instan
e pairs belonging to the same 
lass must be smaller than a pre-

determined threshold and the instan
e pairs from di�erent 
lasses must be away

from ea
h other by at least a spe
i�ed distan
e. Then, the problem is 
onverted

into a LogDet (logarithm of determinant) optimization problem that is 
onvex.

The Large Margin Nearest Neighbor algorithm (LMNN) (see [8℄ and [9℄)

de�nes a semi-de�nite programming problem over the squared Mahalanobis dis-

tan
es of target and impostor sets�the impostors are the 
losest instan
es with

di�erent 
lass labels and targets are the 
losest instan
es with the same label.

Distan
es to the target neighbors are minimized while the distan
es to impostors

are penalized if they are within a margin, whi
h is a safe distan
e away from

the furthest target neighbor. This is a 
onvex programming instan
e and hen
e

has a unique solution. A multiple metri
s version of LMNN where a metri
 is

trained for ea
h 
lass is also studied in [9℄.

Large Margin Component Analysis (LMCA) in [10℄ is a variant of LMNN and

�nds a lower dimensional re
tangular proje
tion matrix L instead of a square Ma-

halanobis matrix M (see Eq.1). Both methods share the same obje
tive fun
tion

but sin
e LMCA de�nes the squared distan
e in terms of the proje
tion matrix,

this is no longer a 
onvex optimization problem and LMCA 
onverges to a lo-


al optimum. Our proposed method is an extension of LMNN and LMCA, and

these methods will be dis
ussed in more detail in Se
tion 3, before we dis
uss

our method in Se
tion 4.



Malisiewi
z and Efros in [11℄ fo
us on training per-exemplar metri
 for image

retrieval. They also work on the 
on
atenated ve
tor of segment distan
es. Their

algorithm 
onsists of two parts. Sequentially, they train metri
s per-exemplar

given the nearest neighbors and then they re-assign the nearest neighbors given

the trained metri
s. They spe
ify a margin on the trained distan
e fun
tion val-

ues as used in support ve
tor ma
hines (SVM). The neighbors that are away less

than one unit distan
e are 
alled the support set and the pre
ision of 
lassi�
a-

tion result is determined by this support set.

Zhan et al. in [12℄ propose to learn instan
e-spe
i�
 distan
es by using metri


propagation. A smooth fun
tion (su
h as a Gaussian kernel) is propagated be-

tween the labelled and unlabelled instan
es. A regularized loss fun
tion is de�ned

su
h that the distan
es between instan
es of the same label are minimized with

respe
t to the given neighborhood relationships; the distan
e fun
tion trained

using labeled instan
es 
an then be used for unlabeled instan
es. The proposed

framework is formulated as a 
onvex problem.

Chen and Sun in [13℄ propose a hierar
hi
al LMNN algorithm. Overlapping

ratio is de�ned to measure the 
onfusion between 
lasses and if this ratio is

above a threshold, overlapping 
lasses are grouped in the same 
luster. The

hierar
hy des
ribes how to map a test instan
e to a 
luster. A Mahalanobis

matrix is trained for ea
h 
luster and a given test instan
e is 
lassi�ed by using

its 
luster's metri
 matrix.

Noh et al. in [14℄, aim redu
ing the expe
tation error that the nearest neigh-

bor has a di�erent label. They show that if the distributions of the two 
lasses

are known, the di�eren
e between the empiri
al nearest neighbor error and the

optimal nearest neighbor error based on asymptoti
 Bayes error is 
aused by

�nite sampling. They propose Generative Lo
al Metri
 Learning whi
h de�nes

a 
onvex problem if the divergen
e fun
tion used is also 
onvex.

Chang in [15℄ proposes an iterative metri
 boosting method. An upper bound

fun
tion on the leave-one-out error for the nearest neighbor 
lassi�
ation is de-

�ned and is minimized. The mis
lassi�ed instan
es are weighted and the Maha-

lanobis matrix is optimized with respe
t to these weights. An eigenvalue problem

is solved to �nd the Mahalanobis matrix.

Bunte et al. in [16℄ propose Limited Rank Matrix Learning whi
h is a re
ent

algorithm that extends Learning Ve
tor Quantization. It learns 
lass prototypes

and a low-rank proje
tion matrix at the same time, iteratively. The proje
tion

matrix is trained to be dis
riminative by optimizing a 
ost fun
tion that maps

instan
es 
lose to their 
lass prototypes and away from the other 
lass prototypes,

using a 
riterion similar to that of Linear Dis
riminant Analysis.

Wang et al., in [17℄, propose to 
ombine multiple metri
 matri
es to form

per-exemplar lo
al metri
s. The algorithm 
onsists of two steps. First, a weight

matrix is trained su
h that ea
h data point 
an be expressed as a linear 
ombina-

tion of pre-de�ned an
hor points. The 
luster means are de�ned as the an
hors

and any 
lustering algorithm 
an be used for de�ning the an
hors, i.e., k-means.

Then, a metri
 learning algorithm, a modi�ed version of Multiple-metri
 LMNN,

is used to train a metri
 for ea
h an
hor point. The per-exemplar lo
al metri
s



are 
ombinations of these an
hor metri
s whose weights are determined by the

weight matrix.

The Bregman distan
e fun
tions are trained in a SVM-like manner in [18℄.

Sin
e the general Bregman distan
es are not metri
s, the authors work with a

parti
ular set of 
onvex Bregman fun
tions to ensure that they train a metri
.

Kernelizing the Bregman distan
es, they solve a quadrati
 problem.

Table 1. The overall summary of distan
e metri
 learning methods

Method Convexity Type of Metri
 Distan
e

Xing et al. [1℄ Yes Single Mahalanobis

Golberger et al. [2℄ No Single Proje
tion

Salakhutdinov and Hinton [3℄ No Single Nonlinear Proje
tion

Frome et al. [4℄ Partial Per-Exemplar Weight Ve
tor

Frome et al. [5℄ Yes Per-Exemplar Weight Ve
tor

Chang and Yeung [6℄ Yes Per-Exemplar Mahalanobis

Davis et al. [7℄ Yes Single Mahalanobis

Weinberger and Saul [8℄ Yes Single Mahalanobis

Weinberger and Saul [9℄ Yes Per-Class Mahalanobis

Torresani and Lee [10℄ No Single Proje
tion

Malisiewi
z and Efros [11℄ Partial Per-Exemplar Weight Ve
tor

Zhan et al. [12℄ Yes Per-Exemplar Weight Ve
tor

Chen and Sun [13℄ Partial Per-Cluster Mahalanobis

Noh et al. [14℄ Yes Single Mahalanobis

Chang [15℄ Partial Single Mahalanobis

Bunte et al. [16℄ No

Per-Class Ve
tor

Single Proje
tion

Wang et al. [17℄ Partial Multiple Mahalanobis

Wu et al. [18℄ Yes Per-Exemplar Mahalanobis

The methods are summarized in Table 1. Note that partial 
onvexity means

that the algorithm 
onsists of some sub-problems or steps and that not all of

them are 
onvex.

3 Large Margin Nearest Neighbor (LMNN) and Large

Margin Component Analysis (LMCA) Algorithms

The Large Margin Nearest Neighbor (LMNN) trains a global Mahalanobis ma-

trix that evaluates distan
es dis
riminatively (see [9℄ and [8℄). Let us de�ne our

data set as pairs (xi, yi), where xi is the input instan
e ve
tor and yi is the 
orre-

sponding label. The notation j  i (j leads to i) means xj is a target neighbor of

xi. A target is a neighbor with the same (
orre
t) 
lass label whereas an impostor

is a neighbor with di�erent (wrong) 
lass label. For a

urate nearest neighbor


lassi�
ation, targets must be 
loser than the impostors.



Using the label information, a Mahalanobis matrix M 
an be trained to

minimize (1− µ)
∑

i,j i

(xi − xj)
⊤
M(xi − xj) + µ

∑

i,j i,l

(1− yil)ξijl

subje
t to (xi − xl)
⊤
M(xi − xl)− (xi − xj)

⊤
M(xi − xj) ≥ 1− ξijl

ξijl ≥ 0

M � 0 (2)

where yil = 1 if yi = yl, whi
h are the labels of xi and xl, and yil = 0 otherwise.
The �rst term is the sum of distan
es of ea
h instan
e to its target neighbors

whi
h we want to be minimum and the se
ond term penalizes 
lose impostors:

For any instan
e i where l is an impostor and j is a target, we would like the

distan
e to the impostor be at least one unit more than the distan
e to a target.

If this is not satis�ed, there is a sla
k and we minimize the sum of su
h sla
ks.

Equation 2 de�nes a positive semi-de�nite programming problem and there is

a unique minimum. After some manipulations, the loss fun
tion 
an be rewritten

as:

E = (1− µ)
∑

i,j i

tra
e(MCij)

+µ
∑

i,j i,l

(1− yil) [1 + tra
e(MCij)− tra
e(MCil)]+ (3)

where [a]+ is the hinge loss whi
h is a when a > 0 and is 0 otherwise. The

di�eren
e matrix, Cij , is de�ned as Cij = (xi − xj)(xi − xj)
⊤
. Though other

solving methods su
h as alternating proje
tion algorithms 
an also be used here,

using iterative gradient des
ent is simple and the global solution 
an still be

rea
hed [8℄. The gradient is:

∂E

∂M
= (1− µ)

∑

i,j i

Cij + µ
∑

(i,j,l)

(Cij −Cil) (4)

where (i, j, l) means a
tive triples (that a
tivate the hinge loss) in the 
urrent

gradient update (the impostors 
an vary in ea
h update).

As we dis
ussed in Equation 1, the metri
 matrix learned 
an be fa
torized as

M = L
⊤
L, where L is the proje
tion matrix. Large margin 
omponent analysis

(LMCA) in [10℄ is a variant of LMNN whi
h uses this idea. It fo
uses on �nding

a lower dimensional re
tangular proje
tion matrix instead of a full square Maha-

lanobis matrix. LMCA also minimizes Equation 3, but when de�ned in terms of

L, this is no longer a 
onvex optimization problem and gradient-des
ent is used.

At ea
h iteration, the proje
tion matrix is updated in the negative dire
tion of

the gradient:

∂E

∂L
= 2(1− µ)L

∑

i,j i

Cij + 2µL
∑

(i,j,l)

(Cij −Cil) (5)



4 Mixtures of Large Margin Nearest Neighbor Classi�ers

LMNN uses the a single, global M and LMCA uses a single, global L over the

whole input spa
e. It may be the 
ase that a data set has multiple lo
ally varying

distributions�features may have di�erent varian
es and di�erent 
orrelations in

di�erent parts of the input spa
e, de�ning multiple lo
al manifolds. Our idea

is to divide up the input spa
e into lo
al regions using a gating fun
tion and

learn di�erent metri
s in di�erent regions; we hen
e de�ne a mixture of LMNNs.

In doing this, we are inspired by the Mixture of Experts neural network model

of Ja
obs et al. in [19℄. Previously, Gönen and Alpayd�n in [20℄ used the same

idea in multiple kernel learning where they write a kernel as a weighted sum of

lo
alized kernels.

The gating fun
tion that de�nes the region of expertise of a lo
al metri
 
an

be 
ooperative or 
ompetitive, whi
h is implemented respe
tively by the sigmoid

or softmax fun
tion (P is the number of regions):

Cooperative: ηm(xi|wm) =
1

1 + exp(−w⊤
mxi − wm0)

(6)

Competitive: ηm(xi|wm) =
exp(w⊤

mxi + wm0)
∑P

h=1 exp(w
⊤

h xi + wh0)
(7)

Lo
al model m be
omes a
tive if ηm(xi) > 0 and we say that xi belongs to

region m. The softmax fun
tion is 
ompetitive be
ause it enfor
es a soft winner-

take-all me
hanism and for any input, we expe
t a single a
tive lo
al metri
 and

the gating model works as a sele
tor (

∑

m ηm(xi) = 1). The sigmoid fun
tion

is 
ooperative be
ause there 
an be more than one a
tive lo
al metri
 and the

model takes a weighted sum (

∑

m ηm(xi) need not be 1).

In ea
h lo
al region, using a full M may lead to over�tting and to regularize,

we learn a lo
al lower rank L in ea
h: When x 
hooses lo
al model m, Lm is the

lo
al proje
tion used. The lo
alized proje
tion of xi into region m is

zi,m = ηm(xi|wm)Lmxi

The total distan
e between a pair (xi,xj) is 
al
ulated as the sum of the lo
al

distan
es:

Dtotal(xi,xj) =

P
∑

m=1

DLm
(xi,xj)

where DLm
(xi,xj) is the lo
al distan
e in region m:

DLm
(xi,xj) =‖zi,m − zj,m‖22

=‖ηm(xi|wm)Lmxi − ηm(xj |wm)Lmxj‖
2
2

=‖Lm(ηm(xi|wm)xi − ηm(xj |wm)xj)‖
2
2

= [ηm(xi|wm)xi − ηm(xj |wm)xj ]
⊤
L
⊤

m

Lm [ηm(xi|wm)xi − ηm(xj |wm)xj ] (8)



Hen
e, the total distan
e is a weighted 
ombination of lo
al distan
es and the


ontribution of lo
al proje
tions are determined by ηm(xi). Thus, it is possible
that multiple metri
s are a
tive, parti
ularly in the 
ooperative setting.

The model parameters are the lo
alized proje
tion matri
es Lm and the

gating parameters wm. We use the same formulation of LMNN in Equation 2

by using Dtotal instead of the Mahalanobis distan
e (xi − xj)
⊤
M(xi − xj):

minimize (1− µ)
∑

i,j i

Dtotal(xi,xj) + µ
∑

i,j i,l

(1− yil)ξijl

subje
t to Dtotal(xi,xl)−Dtotal(xi,xj) ≥ 1− ξijl

ξijl ≥ 0 (9)

Let us rewrite the loss fun
tion:

E(η) = (1− µ)
∑

i,j i

P
∑

m=1

tra
e(L⊤

mLmC
(m)
ij (η)) + µ

∑

i,j i,l

(1− yil) [1 + ζijl]+

(10)

where

ζijl =

P
∑

m=1

(

tra
e(L⊤

mLmC
(m)
ij (η)) − tra
e(L⊤

mLmC
(m)
il (η))

)

We 
an use the same tri
k and rewrite the gated loss fun
tion in terms of

di�eren
e matri
es. C
(m)
ij (η) is de�ned over the gated proje
tions of xi and xj

in region m:

C
(m)
ij (η) = [ηm(xi|wm)xi − ηm(xj |wm)xj ] [ηm(xi|wm)xi − ηm(xj |wm)xj ]

⊤

When we use a gating fun
tion, the problem is not 
onvex anymore and we

use gradient des
ent. The derivative of the loss fun
tion with respe
t to the lo
al

proje
tion matrix Lm 
an then be derived:

∂E(η)

∂Lm

= 2(1− µ)Lm

∑

i,j i

C
(m)
ij (η) + 2µLm

∑

(i,j,l)

(C
(m)
ij (η)−C

(m)
il (η)) (11)

The derivative of obje
tive fun
tion with respe
t to the gating parameters

depends on the fun
tion used:

∂E(η)

∂wh,k

= 2(1− µ)
∑

i,j i

∂Dtotal(xi,xj)

∂wh,k

+µ
∑

(i,j,l)

(1− yil)

(

∂Dtotal(xi,xj)

∂wh,k

−
∂Dtotal(xi,xl)

∂wh,k

)

(12)



Algorithm 1 Training a Mixture of Large Margin Nearest Neighbor Classi�ers

1: Initialize wm,k and wm,0 to small random numbers.

2: Initialize Lm matri
es to the PCA proje
tion matrix of the whole data.

3: repeat

4: repeat

5: Cal
ulate D(xi, xj) and �nd target neighbors and impostors.

6: w
(t+1)
m,k ← w

(t)
m,k − γ(t) ∂E(η)

∂wm,k

7: until 
onvergen
e of gating parameters

8: repeat

9: Cal
ulate D(xi, xj) and �nd target neighbors and impostors.

10: L
(t+1)
m ← L

(t)
m − γ(t) ∂E(η)

∂Lm

11: until 
onvergen
e of lo
al proje
tions

12: until 
onvergen
e

We 
an apply the 
hain rule to get the derivative of the total distan
e:

∂Dtotal(xi,xj)

∂wh,k

=

P
∑

m=1

2

[

xi

∂ηm(xi|wm)

∂wh,k

− xj

∂ηm(xj |wm)

∂wh,k

]⊤

L
⊤

mLm [ηm(xi|wm)xi − ηm(xj |wm)xj ] (13)

If the sigmoid gating is used, the derivatives are (xi,0 ≡ 1):

∂ηm(xi|wm)

∂wh,k

= δmh (1− ηm(xi|wm)) ηm(xi|wm)xi,k, k = 0, 1, . . . , d (14)

For the softmax gating, we have (xi,0 ≡ 1):

∂ηm(xi|wm)

∂wh,k

= (δmh − ηh(xi|wh)) ηm(xi|wm)xi,k, k = 0, 1, . . . , d (15)

where δmh, is 1 if m = h and it is 0 otherwise.

The pseudo-
ode for the Mixture of LMNN (MoLMNN) is given in Algorithm

1. To have a meaningful starting proje
tion dire
tion we initialize the lo
al pro-

je
tions Lm by using Prin
ipal Components Analysis (PCA) on the training

data. At ea
h iteration, we �rst apply gradient-des
ent to update the gating

parameters, and then, using the trained gating model, the lo
al proje
tion ma-

tri
es are updated. We apply these steps, until both the gating model and the

proje
tion matri
es 
onverge or the 
lassi�
ation result does not improve any

further. The learning rate, γ, is determined using linear sear
h at ea
h iteration.

5 Experiments and Results

We 
ompare sigmoid and softmax-gated MoLMNN with LMNN and LMCA on

21 data sets, that are publi
ly available in [20, 21, 22, 23℄. In yeast, faults and

segment data sets, two 
lasses are used (nu
 vs 
yt, k_strat
h vs bumps, and



sky vs windows, respe
tively). In musk data set, only the real valued features

are used. The input data is z-normalized.

Our experimental methodology is as follows: Ea
h data set is split into two

subsets as one-third test data and two-thirds training and validation data. The

two-thirds part is used to 
reate ten training and validation folds using 5 × 2

ross-validation. The number of redu
ed dimensions, namely e, is 
hosen among

the number of features that explain 90, 95 and 98 per 
ent of the varian
e;

LMNN, LMCA and MoLMNNs models with P = 1 up to 10 regions are trained

for k = 3, 5, 7 and 9 neighbors . We also try and 
hoose the best of sigmoid

and softmax gating. We do su
h a four-dimensional, (k, e, P, sigmoid/softmax)
grid sear
h and 
hoose the 
ombination that has the highest average validation

a

ura
y�the other models are similarly trained and the best 
on�guration is


hosen for their parameter set. For the best setting, the 
orresponding model

is trained on the ten di�erent training folds and tested on the same left-out

one-third test set. These ten test results are reported and 
ompared with the

parametri
 5 × 2 
ross-validation paired F test [24℄. Table 2 shows the mean

and standard deviation of the test results for ea
h data set and the results of

signi�
an
e tests.

We see that on most data sets, a few regions (P ≤ 4) is enough. The number
of regions 
orrespond to the modalities of data with di�erent input distributions.

In
reasing the number of regions does not improve a

ura
y beyond a 
ertain

value. Note that even with a single region, MoLMNN may be more a

urate

be
ause it reassigns impostors and targets at ea
h iteration while the other

algorithms �x them at initialization.

We also �nd that MoLMNN uses more neighbors when 
ompared with other

algorithms. We believe this to be an indi
ator that MoLMNN trains a more

suitable distan
e fun
tion whi
h pla
es more of the target neighbors nearby.

Other algorithms use fewer nearest neighbors be
ause due to ina

urate distan
e

approximation, their performan
e degrade if more neighbors are used. In terms

of sigmoid vs softmax gating, we do not noti
e one being always superior to the

other�ea
h has its use.

MoLMNN signi�
antly outperforms both LMCA and LMNN on Arabidopsis,

Musk, Yeast and Sonar. It outperforms LMCA on Spli
e and LMNN on Yale.

LMCA gives higher a

ura
y results on Yale and Ionosphere data sets. Ex
ept

Yeast, these data sets have more than 60 dimensions, whi
h shows that MoLMNN


an 
apture lo
al information to improve performan
e.

On the arabidopsis data set, we 
an visualize the data by redu
ing dimen-

sionality to two; this is a bioinformati
s data set with 1, 000 dimensions. In Fig.

1(a), we see the plot using PCA; there we see that the data has signi�
ant stru
-

ture but that PCA 
annot 
apture the di�eren
e between the two 
lasses. In Fig.

1(b), we see the plot using LMCA and the learned dis
riminant using k = 3. In
Fig. 2, we see results with MoLMNN with two regions. Ea
h data point is plotted

in the region where its gating value is higher and the dis
riminants are plotted

separately in ea
h region with k = 3. We see that we get better dis
rimination

between the 
lasses this way. Though we have not 
he
ked for this appli
ation,



Table 2. The mean and standard deviation of test set a

ura
ies of MoLMNN, LMCA

and LMNN. The parameters of the best 
on�guration are given in parantheses, where

So is softmax and Si is sigmoid. Boldfa
e indi
ates that the method is signi�
antly

better than the other two. In terms of pairwise 
omparisons (shown by `*'), on spli
e,

MoLMNN is more a

urate than LMCA and on Ionosophere, LMCA is more a

urate

than MoLMNN.

Data set MoLMNN (k,e,P,g) LMCA (k,e) LMNN (k,d)

Abalone 77.86 ± 1.01 (9,3,1,So) 78.21 ± 1.97 (9,3) 78.03 ± 1.33 (9,7)

Arabidopsis 81.89 ± 0.97 (9,473,1,Si) 77.21 ± 1.92 (5,390) 69.24 ± 2.17 (3,1000)

Australian 86.17 ± 1.42 (9,14,7,So) 85.83 ± 2.15 (5,14) 86.43 ± 1.08 (9,14)

Bupa 61.65 ± 4.27 (5,6,4,Si) 58.61 ± 2.79 (9,5) 59.57 ± 3.13 (9,6)

Ctg 89.73 ± 0.80 (9,16,2,So) 89.96 ± 0.62 (5,11) 89.83 ± 0.71 (5,21)

Faults 98.52 ± 0.58 (9,14,4,Si) 98.48 ± 0.25 (9,14) 98.56 ± 0.16 (9,27)

German Numeri
 70.21 ± 2.27 (9,20,1,Si) 72.10 ± 2.84 (9,18) 72.01 ± 1.95 (9,24)

Heart 83.89 ± 4.10 (5,3,5,Si) 82.44 ± 4.38 (5,4) 85.22 ± 3.10 (7,13)

Ionosphere 81.54 ± 2.36 (9,17,3,Si) 83.25 ± 2.65* (3,27) 82.91 ± 2.88 (3,34)

Mg 83.58 ± 0.79 (9,5,1,So) 82.34 ± 0.61 (3,6) 82.34 ± 0.61 (3,6)

Musk 86.01 ± 2.66 (7,17,4,So) 80.82 ± 2.88 (5,28) 79.62 ± 4.00 (5,166)

Optdigits 96.98 ± 0.31 (9,51,3,Si) 97.26 ± 0.35 (3,41) 97.33 ± 0.35 (3,64)

Pendigits 97.33 ± 0.31 (5,11,2,So) 97.49 ± 0.15 (3,11) 97.31 ± 0.23 (5,16)

Pima 72.93 ± 0.96 (9,8,2,So) 73.32 ± 1.90 (9,8) 73.32 ± 1.90 (9,8)

Segment 99.95 ± 0.14 (7,8,9,Si) 100.00 ± 0.00 (7,8) 100.00 ± 0.00 (7,19)

Sonar 76.52 ± 3.60 (7,36,10,Si) 71.16 ± 3.01 (3,28) 68.55 ± 5.11 (3,60)

Spli
e 89.03 ± 0.71* (9,50,1,Si) 84.97 ± 0.83 (5,58) 85.81 ± 0.76 (9,60)

Transfusion 78.67 ± 1.13 (9,3,2,Si) 79.40 ± 1.34 (9,3) 79.36 ± 1.37 (9,5)

Wdb
 94.97 ± 1.35 (9,14,4,So) 94.02 ± 2.23 (7,10) 94.29 ± 1.94 (3,30)

Yeast 60.57 ± 2.58 (9,6,6,Si) 59.39 ± 2.38 (5,6) 59.33 ± 2.52 (5,8)

Yale 93.51 ± 0.77 (3,196,3,Si) 94.90 ± 0.50 (3,88) 92.77 ± 0.56 (7,896)



where the gating boundary lies and the dimensions in ea
h region 
ould also


arry information.

We also 
he
k the relationship between the number of regions and the number

of redu
ed dimensions. Figure 3 shows how test a

ura
y 
hanges as we vary the

number of dimensions and the number of regions. This is for k = 9, but we see
similar behavior for other k. We see that it is more the number of regions that

a�e
t a

ura
y rather than the lo
al dimensionality; we also see that sigmoid

gating leads to more �u
tuating performan
e�regions may overlap and hen
e

may interfere more.
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Fig. 1. The 2d mappings of Arabidopsis data set with (a) PCA and (b) LMCA.
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Fig. 2. The 2d mappings of Arabidopsis data set with MoLMNN (softmax) with two
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2
4

6
8

10

0.9
0.92

0.94
0.96

0.98
75

80

85

r

Arabidopsis,Validation,Sigmoid,k=9

d

ac
cu

ra
cy

0

5

10

0.9
0.92

0.94
0.96

0.98
75

80

85

r

Arabidopsis,Validation,Softmax,k=9

d

ac
cu

ra
cy

(a) Sigmoid (b) Softmax

Fig. 3. The e�e
ts of the number of regions and proportion of varian
e explained on

a

ura
y on validation dataset when k = 9.

6 Con
lusions

In this study, we propose the Mixture of LMNN (MoLMNN) method whi
h

softly partitions the input spa
e and trains a separate proje
tion matrix in ea
h

region to best dis
riminate the data. The partitioning of the spa
e and the

training of the proje
tion matri
es are 
oupled. Our experiments on real data

sets show that 
ompared with LMNN and LMCA proper, the mixture approa
h

frequently performs better. Lo
alization of the data and redu
ing dimensionality

to two allows visualization. The boundary of the gating model and the proje
ted

dimensions 
ould 
arry information whi
h may help understand the data.
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