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Abstract. The problem of embedding arises in many machine learning
applications with the assumption that there may exist a small number
of variabilities which can guarantee the “semantics” of the original high-
dimensional data. Most of the existing embedding algorithms perform to
maintain the locality-preserving property. In this study, inspired by the
remarkable success of representation learning and deep learning, we pro-
pose a framework of embedding with autoencoder regularization (EAER
for short), which incorporates embedding and autoencoding techniques
naturally. In this framework, the original data are embedded into the
lower dimension, represented by the output of the hidden layer of the
autoencoder, thus the resulting data can not only maintain the locality-
preserving property but also easily revert to their original forms. This
is guaranteed by the joint minimization of the embedding loss and the
autoencoder reconstruction error. It is worth mentioning that instead
of operating in a batch mode as most of the previous embedding algo-
rithms conduct, the proposed framework actually generates an induc-
tive embedding model and thus supports incremental embedding effi-
ciently. To show the effectiveness of EAER, we adapt this joint learning
framework to three canonical embedding algorithms, and apply them to
both synthetic and real-world data sets. The experimental results show
that the adaption of EAER outperforms its original counterpart. Be-
sides, compared with the existing incremental embedding algorithms, the
results demonstrate that EAER performs incremental embedding with
more competitive efficiency and effectiveness.

Keywords: Embedding, Autoencoder, Representation Learning, Unsu-
pervised Dimensionality Reduction

1 Introduction

In many real-world applications, one is often confronted with overwhelmingly
complex features in the raw data and needs to obtain more useful data rep-
resentations. The manifold hypothesis, that real-world data presented in high-
dimensional spaces usually concentrate near a lower-dimensional non-linear man-
ifold, brings a rich geometric perspective to the problem of learning meaningful



2 W. Yu et al.

representations [15]. Illustrated by this assumption, various embedding meth-
ods have been developed [19, 24, 1]. However, most of them only focus on the
locality-preserving property of embedding, namely the relative distance between
the points in the high dimension is preserved in the low dimension space.

Recently, deep learning and representation learning attract many research
interests with its remarkable success in many applications [9, 2, 3, 23]. In these
works, autoencoder is usually adopted as a basic building block to initialize
the deep neural network [3, 23]. It is trained to encode the inputs into some
representations so that the resulting representations can revert to their original
forms. It has been shown that autoencoding is a powerful way to learn the hidden
representation of the data.
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Fig. 1. Illustration of embedding with autoencoder regularization: view from autoen-
coders

Motivated by the remarkable success of deep learning with autoencoders,
we solve the embedding problem collaboratively with autoencoding techniques.
Specifically, we propose a framework of embedding with autoencoder regular-
ization (EAER for short) with its two views from autoencoder and embedding
respectively. First, from the view of autoencoder in Figure 1, EAER actually
trains an autoencoder with the embedding constraints. Specifically, it contains
the input layer, hidden layer and output layer from bottom to top. In this frame-
work, besides minimizing the reconstruction error in the original autoencoder,
the embedding loss at the hidden layer is also minimized simultaneously. Second,
from the view of embedding in Figure 2, each data point with D dimensions is
embedded into a d-dimensional space. Simultaneously, it is required that the data
points in the hidden space can be recovered to their original form. In other words,
the autoencoder is used here as a complementary regularizer to the embedding
process. Hopefully, by this joint minimization we can derive the embedding with
more semantic representations.
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Fig. 2. Illustration of embedding with autoencoder regularization: view from embed-
ding

It should be noted that the training of the proposed framework actually
generates an inductive embedding model, the function between the input and
hidden layers of the autoencoder. It can directly map an instance into the low-
dimensional space without accessing the original training data set. Thus, it sup-
ports incremental embedding more efficiently compared with most of the existing
embedding algorithms which perform in a batch mode.

To show the effectiveness of EAER we adapt this joint learning framework to
three well known embedding algorithms, namely Laplacian eigenmaps [1], multi-
dimensional scaling [5] and margin-based embedding [7], and apply them to both
the synthetic and real-world data sets. The experimental results show that the
adaption of EAER outperforms its original counterpart. Also, we demonstrate
that compared with the existing incremental embedding algorithms, EAER per-
forms incremental embedding more efficiently with the competitive effectiveness.

In this paper, we describe the EAER framework, along with the details of
implementation and performance on a simple synthetic example and real-world
data sets. The organization of this paper is as follows: In Section 2, we review
the preliminary knowledge of embedding algorithms and autoencoder. In Sec-
tion 3, we describe EAER framework of learning a low dimensional mapping
with autoencoder regularization. In Section 4, we illustrate the algorithm’s per-
formance by adapting this joint learning framework to three canonical embedding
algorithms. In Section 5, we compare EAER framework to other unsupervised
embedding algorithms and discuss several related works. Finally, in Section 6 we
conclude this study and mention several directions for future work.

2 Preliminaries

In this section, the summary of general embedding algorithms will be given,
followed by a brief review of autoencoders.
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2.1 Embedding Algorithms

Many well known embedding algorithms can be described as a rather general
form [26]: given the data set x(1), ..., x(m) find an embedding f(x(i)) of each point
x(i) by solving the following optimization problem∑

1≤i<j≤m

L(f(W, b;x(i)), f(W, b;x(j)), ϕij) (1)

where f(W, b;x) ∈ Rd is the embedding result for a given input x ∈ RD. L(·) is
the loss function between pairs of inputs. ϕij is the weight between x(i) and x(j).
We define ϕij = 0 if i = j. For certain loss function L(·) such as Equation (2),
constraints may need to remove arbitrary factors in the embedding.

To compute the parameter set ϕ, one can construct an adjacency graph
by putting an edge between between x(i) and x(j) if they are “similar”. The
similarity of any two data points can be evaluated with k-nearest neighbors
(kNN) or ε-neighborhoods. Nodes x(i) and x(j) are connected by an edge if x(i)

is among k nearest neighbors of x(j). If one chooses ε-neighborhoods metric,
nodes are connected by an edge if ‖x(i) − x(j)‖2 < ε where the norm is usually
the Euclidean norm. The edges are weighted with Euclidean distance ϕij =

‖x(i) − x(j)‖2 or Gaussian kernel ϕij = e−
‖x(i)−x(j)‖2

τ (τ ∈ R) if x(i) and x(j) are
connected. Another simple way for weighting the edges is to set ϕij = 1 if nodes
are connected, otherwise ϕij = 0.

We consider the following embedding algorithms which fit into this frame-
work.

Laplacian Eigenmaps. Laplacian eigenmaps (LE) [1] is a coherent framework
for embedding by emphasizing the preservation of the locality. One constructs
the adjacency graph of input samples and encodes them into d-dimensional Eu-
clidean space. The embedding is given by the d×m matrix F = [f1, f2, ..., fm],
fi is short for f(W, b;x(i)). L = D − ϕ is the Laplacian matrix where D is a
diagonal weight matrix Dii =

∑
j ϕji. Then, we need to minimize∑

i<j

L(fi, fj , ϕij) =
∑
i<j

‖fi − fj‖2ϕij = Tr(FLFT ) (2)

subject to: FDFT = I and FD1 = 0.

Multidimensional Scaling. Multidimensional scaling (MDS) [5] is a canonical
form of linear embedding that attempts to find an embedding from the input
data into a low-dimensional space such that distances between data points are
preserved. Usually, MDS is formulated as an optimization problem∑

i<j

L(fi, fj , ϕij) =
∑
i<j

(‖fi − fj‖ − ϕij)
2 (3)
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Kernel PCA can be interpreted as a form of metric MDS when the kernel function
is isotropic [27].

Isomap [24] is one of several widely used low-dimensional embedding methods
which works by defining the geodesic distance to be the sum of edge weights
along the shortest path between two nodes and then performs low-dimensional
embedding with classical MDS based on the pairwise distance between data
points.

Margin-based Embedding. The margin-based loss function proposed for
learning a globally coherent nonlinear function that maps the data evenly to
the output manifold and relies solely on neighborhood relationships [7]. The
following optimization is used:

L(fi, fj , ϕij) =

{
‖fi − fj‖2 if ϕij = 1
max (0, l − ‖fi − fj‖2) if ϕij = 0

(4)

which ensures that the data in the embedding space have a distance of at least
l from each other when they are similar in the input space. In our experiments l
is set to 1. The weight of edges ϕij = 1 if x(i) and x(j) are connected, otherwise
ϕij = 0.

2.2 Autoencoders

An autoencoder neural network is an unsupervised learning algorithm that ap-
plies back-propagation [20], setting the target values to be equal to the inputs. In
terms of embedding, the network learns to encode the inputs into a small num-
ber of dimensions and then decode it back into the original space. Specifically,
given an unlabeled data set x(i), i = 1, ...,m, we want to learn representations

f(W (1), b(1);x(i)) = σ(W (1)x(i) + b(1)) (5)

such that the output hypotheses

h(W, b;x(i)) = σ(W (2)f(W (1), b(1);x(i)) + b(2)) (6)

is approximately x(i). Thus we use L2 norm to minimize the reconstruction error
J(W, b;x)

J(W, b;x) =
1

2

m∑
i=1

‖h(W, b;x(i))− x(i)‖2 (7)

We consider sparse autoencoder with sparsity parameter ρ and penalize it
with the Kullback-Leibler (KL) divergence [10]. We then define the overall cost
function to be

J(W, b;x) + β

d∑
j=1

KL (ρ‖ρ̂j) +
λ

2
‖W‖2 (8)
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where ρ̂j = 1
m

∑m
i=1 fj(W

(1), b(1);x(i)) is the average activation of hidden unit
j; m is the number of inputs and d is the number of hidden units; The last term
is a weight decay term that tends to decrease the magnitude of the weights,
and helps prevent over-fitting. β and λ control the weight of the corresponding
penalty terms;

KL(ρ‖ρ̂j) = ρ log
ρ

ρ̂j
+ (1− ρ) log

1− ρ
1− ρ̂j

(9)

is the KL divergence between Bernoulli random variables with mean ρ and ρ̂j
respectively.

3 Learning a Low Dimensional Mapping with
Autoencoder Regularization

We consider the problem of finding a function that maps high-dimensional input
data to lower-dimensional representations given the neighborhood relationships
between the data in the input space.

3.1 Embedding with Autoencoder Regularization

We would like to use the ideas developed in autoencoding for embedding. The
general approach we propose for EAER is to add an autoencoder regularizer
to the embedding optimization function. As shown in Figure 1 and 2, we aim
to simultaneously minimize the autoencoder reconstruction error at the output
layer and the embedding loss in the hidden layer. The general form of this joint
loss function is as follows:

Jem(W, b, ϕ;x) =
∑

1≤i<j≤m

L(f(W (1), b(1);x(i)), f(W (1), b(1);x(j)), ϕij)

+γJ(W, b;x) + β

d∑
j=1

KL (ρ‖ρ̂j) +
λ

2
‖W‖2 (10)

where L(·) is the embedding loss function between pairs of the data (its detailed
form can be any of the functions (2), (3) and (4) for different embedding al-
gorithms). Here, f(W (1), b(1);x(i)) actually maps x(i) to the lower dimension;
J(W, b;x) is the autoencoder reconstruction error defined by Equation (7); the
last two terms are sparsity penalty term and weight decay term discussed in Sec-
tion 2.2; γ, β and λ control the balance between these penalty terms. The idea
that injecting an autoencoder regularization may help to guide the embedding
towards better data representations, and we use a synthetic swiss roll example
to illustrate this conjecture.

3.2 A Case Study on Synthetic Data

The swiss roll, considered in [1, 24, 19], is a flat two-dimensional sub-manifold of
R3 which is shown in Figure 3(a), and the data set of 2000 points chosen at ran-
dom from the swiss roll is shown in Figure 3(b). We build the adjacency graph
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Fig. 3. A synthetic swiss roll example. (a) the synthetic swiss roll manifold, (b) 2000
points chosen at random from the swiss roll, (c) embedding result of LE, (d) embedding
result of EAER-LE.

with 8 nearest neighbors, and set the weight ϕij = 1 if node i is among the 8
nearest neighbors of node j, otherwise ϕij = 0. For EAER-LE (the EAER frame-
work applied to the LE algorithm), we have the following parameter settings in
Equation (10): γ = 0.65, λ = 0.003, and β = 0. We compute the two-dimensional
representations by LE and EAER-LE, and their results are respectively shown
in Figure 3(c) and Figure 3(d).

The curve in Figure 3(c) is only a half ellipse, while the curve in Figure 3(d)
maintains the roll in the two-dimension space. Thus, it is obvious that the result
of EAER-LE is more “semantic” since it preserves the curve of the original
manifold together with the locality properties. As shown in Section 4, we can also
obtain such meaningful results when EAER is applied to the other embedding
algorithms.

3.3 Model Learning

Our goal is to minimize Jem(W, b, ϕ;x) as a function of W , b and ϕ. One can
construct a weighted graph by the method of k-nearest neighbors (kNN) or
ε-neighborhoods to compute ϕ and then train this regularized neural network
parameterized by W and b. The key step of model learning is computing the
partial derivatives ∂

∂W (l) Jem(W, b, ϕ;x) and ∂
∂b(l)

Jem(W, b, ϕ;x) with respect to
the input x. We will use an efficient way to compute the partial derivatives in
light of the intuition behind the back-propagation algorithm [20]. In order to
measure how much the nodes of the same layer is “responsible” for the errors of
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the output hypotheses, we introduce an “error term” vector δ, and define δ(1)

and δ(2) for the hidden layer and output layer respectively. To incorporate the
KL-divergence term into the derivative calculation, δ(1) and δ(2) are computed
as follows [16]:

δ(1) =

((
W (2)

)T
δ(2) + β

ρ̂− ρ0
ρ̂(1− ρ0)

)
· σ′(z(1)) (11)

δ(2) =
∂

∂z(2)
1

2
‖h(W, b;x)− x‖2 = − (h(W, b;x)− x) · σ′(z(2)) (12)

where ρ̂ = 1
m

∑m
i=1 f(W (1), b(1);x(i)) is the average activation of embedding

layer; ρ0 ∈ Rd is a vector with all entries ρ; “·” denotes the element-wise product
operator; z(1) = W (1)x + b(1) and z(2) = W (2)f(W (1), b(1);x) + b(2). In detail,
the procedure can be described in Algorithm 1.

Algorithm 1 Partial Derivatives Computation

Input: The input sample x
Output: Partial derivatives of the function defined by Equa-
tion (10): ∂

∂W (l) Jem(W, b, ϕ;x) and ∂

∂b(l)
Jem(W, b, ϕ;x).

1. Randomly initialized W (l) and b(l), (l = 1, 2).
2. Perform a feedforward pass, computing the activations for the embedding layer

and output layer.
3. For the output layer, compute δ(2) by Equation (12).
4. Compute δ(1) by Equation (11).
5. Compute the partial derivatives:

∂

∂W (2) Jem(W, b, ϕ;x) = γδ(2)
(
f(W (1), b(1);x)

)T
+ λW (2);

∂

∂b(2)
Jem(W, b, ϕ;x) = γδ(2);

∂

∂W (1) Jem(W, b, ϕ;x) = ∂

∂W (1)

∑
ij L(·) + γδ(1)xT + λW (1);

∂

∂b(1)
Jem(W, b, ϕ;x) = ∂

∂b(1)

∑
ij L(·) + γδ(1) where

L(·) = L
(
f(W (1), b(1);x(i)), f(W (1), b(1);x(j)), ϕij

)
.

In Step 5 of Algorithm 1, we compute ∂
∂W (1)

∑
ij L(·) according to its concrete

form of different embedding algorithms, such as LE, MDS and margin-based em-
bedding. For certain embedding loss function, the gradient can be incorporated
into the “error term” δ(1) in order to speed up the algorithm. Pseudocode of the
full approach is given in Algorithm 2, where α is the learning rate. To train this
model, we can now repeatedly take steps of gradient descent to reduce our cost
function Jem(W, b, ϕ;x). Note that EAER is a general framework, which can be
adapted for different embedding algorithms. In the experiments we adapt the
framework to LE, MDS and the margin-based embedding algorithm for compar-
ison.
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Algorithm 2 Algorithm for EAER Framework

Input: The input data set {x(i)}mi=1.
Output: Results of embedding layer f(W (1), b(1);x).

1. Construct the adjacency graph of {x(i)}mi=1 and compute ϕij .
2. while not stopping criterion do
3. Set ∆W (l) = 0, ∆b(l) = 0 for all l = 1, 2.
4. Use Algorithm 1 to compute ∂

∂W (l) Jem(W, b, ϕ;x(i)) and ∂

∂b(l)
Jem(W, b, ϕ;x(i))

for all x(i).
5. Compute ∆W (l) =

∑m
i=1

∂

∂W (l) Jem(W, b, ϕ;x(i));

6. Compute ∆b(l) =
∑m

i=1
∂

∂b(l)
Jem(W, b, ϕ;x(i)).

7. Update: W (l) = W (l) − α
(

1
m
∆W (l)

)
, b(l) = b(l) − α

(
1
m
∆b(l)

)
.

8. end while
9. Compute the embedding results f(W (1), b(1);x).

3.4 Incremental Embedding with EAER

Most of the embedding algorithms operate in a “batch” mode. That is, all data
need to be available during training. If the new data come, the naive method is to
re-run the training on the union of the original and new data, which prohibitively
involves with expensive computing. To address this point, some incremental ver-
sion of embedding algorithms, such as incremental Isomap [12] and incremental
locally linear embedding (LLE) [22], were proposed. Their basic idea is to iden-
tify the k-nearest neighbors in the original training data for the new point and
use these neighbors to represent the new one in the embedding space. It is clear
that the original training data must be accessed in these methods of incremental
embedding.

As to the EAER framework it is naturally an inductive embedding model.
After all the model parameters are learned, any instance x can be embedded
to f(W (1), b(1);x) in the lower dimension directly without accessing the original
training data. It should be noted that, when we use the Sigmoid function as the
activation function, the input data need to be normalized to the range [0, 1].
Therefore, it is convenient to apply incremental embedding to those data sets
with known data intervals, say MNIST [13], with each element ranging from 0
to 255.

Assume that we have m points for training and n for testing. EAER only
takes linear time O(n) to compute the low-dimensional embedding for the new n
points. However, the incremental versions of the existing embedding algorithms
need to compute its k-nearest neighbors among the training set. Thus, the over-
all time complexity of these algorithms is O(mn) (assuming the linear scanning
method for k-nearest neighbors is adopted here). Therefore, EAER dramati-
cally reduces the running time for incremental embedding. The experiments in
Section 4 also show the effectiveness of EAER for incremental embedding.
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4 Experimental Evaluation

To verify the embedding performance of EAER framework, we conduct the ex-
periments on various kinds of benchmark data sets. We begin with a simple
synthetic example to intuitively show the embedding performance of EAER in
Section 3. In this section, we build softmax classifiers [6] based on the embedded
features of the real-world data sets and check the performance on classification
accuracy. Then, we compare EAER with the incremental version of the baseline
methods.

4.1 Benchmark Data Sets and Baseline Methods

The benchmark data sets are summarized in Table 1. One is MNIST [13] and the
other six are taken from the UCI repository [4]. All these data sets are provided
with the class labels.

Table 1. Data sets description

# Data Sets #Instances #Attributes #Classes

1 Iris 150 4 3
2 Wine 178 13 3
3 Glass 214 9 6
4 Diabetes 768 8 2
5 Segment 2310 19 7
6 Satimage 6435 36 6
7 MNIST 70000 784 10

In our experiments, we adapt the proposed EAER framework to the following
embedding algorithms.

• LE: Laplacian Eigenmaps with the loss function defined by Equation (2) [1];
• MDS: Classical multidimensional scaling [5] with the loss function in Equa-

tion (3), where the norm adopted is the Euclidean distance;
• Margin-based: Embedding with the margin-based loss function defined by

Equation (4) [7].

The embedding algorithms adapted to EAER are denoted as EAER-LE,
EAER-MDS and EAER-Margin respectively.

4.2 Experimental Results on Real-world Data Sets

The experiments are conducted on 7 real-world data sets listed in Table 1. For
each data set we first apply any embedding algorithm to it and then build the
classification model on the resultant features. The classification accuracy on the
training data is used as the evaluation measure for embedding.
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The model parameters are set as follows. In the joint loss function of Equa-
tion (10), we set ρ = 0.1, β = 0.2, λ = 0.003, and W , b are randomly initialized.
We set the weight ϕij = 1 if node i is among the nearest neighbors of node j,
otherwise ϕij = 0. Then, for the rest three parameters, namely the number d of
hidden units, the number k of the nearest neighbors in the adjacency graph and
the weight γ of the autoencoder regularizer, their ranges are given as follows. γ
is sampled from 0.1 to 1 with the interval of 0.1, k varies from 2 to 10 with the
interval of 1, and d is set as 2 ≤ d ≤ D+1

2 for the UCI data sets and 2 ≤ d ≤ 20
for the MNIST data set, where D is the dimension of the original data sets. The
data values are all normalized on each feature.

Table 2. Results on the data sets described in Table 1. We report the best accuracy
for each method over the parameter ranges. For MNIST, we randomly select 1000 and
5000 samples and evaluate the performances on them respectively. The last column
“Original” is the classification results on the original data sets.

Methods LE EAER-LE MDS EAER-
MDS

Margin-
based

EAER-
Margin

Original

Iris 0.8933 0.9467 0.9400 0.9733 0.9667 0.9800 0.9467
Wine 0.9663 0.9719 0.9831 0.9944 0.9775 0.9888 0.9944
Glass 0.5654 0.5374 0.5935 0.6916 0.6355 0.6963 0.6075

Diabetes 0.6680 0.6576 0.7083 0.7552 0.7578 0.7669 0.7813
Segment 0.7758 0.8823 0.6390 0.7643 0.9028 0.9443 0.9130
Satimage 0.8362 0.8410 0.7984 0.8413 0.8522 0.8738 0.8578

MNIST1k 0.8140 0.9520 0.8320 0.9020 0.9510 0.9840 1.0000

MNIST5k 0.8370 0.9340 0.8520 0.9260 0.9370 0.9900 1.0000

Average 0.7945 0.8404 0.7933 0.8560 0.8726 0.9030 0.8876

For each embedding algorithm we train the softmax classifier on the resul-
tant features and the original data sets, and record its classification accuracy on
these training data. Among the parameter ranges, the results with best training
accuracy are reported in Table 2. It shows that the EAER adaption is usually
better than its original counterpart except that on the two data sets of Glass and
Diabetes, EAER-LE is slightly worse than LE. On the whole, EAER increases
the average accuracy over all the data sets by 4.59%, 6.27%, 3.04% compared
with the corresponding three baseline methods respectively. It is worth mention-
ing that the average accuracy of EAER-Margin is better than the classification
performance with original data sets, which again verifies EAER can learn better
semantic representations.

Figure 4 shows the average accuracy of EAER-LE, EAER-MDS and EAER-
Margin (denoted as “EAER” in the figure) and baseline methods (denoted as
“Embedding” in the figure) when the embedding layer dimensionality d varies.
The parameter setting is identical to previous experiment. Figure 4 demonstrates
that when the embedding layer dimensionality d increases, the embedding ac-
curacy increases. Yet we also observed that embedding methods adapted to
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Fig. 4. The average accuracy of EAER-LE, EAER-MDS and EAER-Margin (denoted
as “EAER” in the figure) and baseline methods (denoted as “Embedding” in the figure)
when the embedding layer dimensionality d varies. The experiment was conducted on
six UCI data sets.
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0.1 to 1 with the interval of 0.1, the experiment was conducted on six UCI data sets.
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EAER framework led to comparatively higher accuracy even when d is small.
So to speak, embedding methods adapted to EAER framework is able to pre-
serve more data information. Figure 5 shows the average accuracy of embedding
methods adapted to EAER when γ changes. As can be seen from the figure,
when γ is small, the accuracy increases as γ goes up. When γ reaches a certain
value (usually 0.6 to 0.8, the value varies according to different data sets), the
result becomes comparatively stable. However, larger γ does not indicate better
result. When its value exceeds a certain value (say 3 or 5), the accuracy begins
to fall off (not shown in this figure).

4.3 Incremental Embedding Results

The EAER framework is an inductive embedding model. After all the model
parameters are learned, any instance x can be embedded to a lower-dimensional
space via f(W (1), b(1);x). Thus, EAER can naturally handle incremental embed-
ding. Since LE, MDS and Margin-based methods all perform in a batch mode,
we adapt them to handle new data as follows, similar to the method in [22].
For a new instance we first identify its k-nearest neighbors in the original data
and then construct the output by combining the embedded features of these
neighbors.

To evaluate the performance of incremental embedding, each data set is ran-
domly divided into two parts for training and testing respectively. On the train-
ing data we first apply the embedding algorithm and then train a classifier based
on the resultant features. Next, for each instance in the testing data we apply
the incremental embedding on it and then use the classifier to test on its embed-
ded features. Thus, the classification accuracy on the testing data can be used
as the evaluation measure for incremental embedding. We randomly sample the
training and testing data for 10 times and average the testing accuracy values
for each method. All the results are shown in Figure 6. We can find that EAER
achieves highest accuracy among 16 of the whole 18 cases, and 1 tie-break.

5 Related Work

Two canonical forms of linear embedding are eigenvector methods of principle
component analysis (PCA) [11] and multidimensional scaling (MDS) [5]. Re-
cently there have been lots of nonlinear approaches to compute a low-dimensional
embedding, including Isomap [24], LLE [19], Laplacian eigenmaps [1], margin-
based embedding algorithms [7] and their variants [17, 8]. The proposed EAER
framework is different from these methods in the following aspects. First, with
the autoencoder regularization it can be used as a general approach to comple-
ment any existing embedding method. Second, it embeds the new data using the
resultant inductive model without accessing the original training data.

Autoencoders are usually used as basic building blocks to train the deep
neural network [3] and currently variants of autoencoder have been investigated,
such as contractive autoencoders [18] and denoising autoencoders [25]. These
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(a) The accuracy of incremental LE and EAER-LE
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Fig. 6. The accuracy of LE, MDS, Margin-based embedding and the corresponding
methods adapted to EAER

are often called regularized autoencoders, where some regularization terms are
proposed to improve the data reconstruction performance. However, in the pro-
posed framework, an autoencoder as a whole is used as a regularizer to improve
the embedding algorithms.

There are also some other works related to EAER. First, in [26], the embedding-
based regularizer is plugged into the layers of deep architectures as an auxiliary
task for semi-supervised embedding. The focus of this work is on semi-supervised
learning, while ours is for unsupervised embedding with the autoencoder regu-
larizer. Second, in [14] the stacked restricted Boltzmann machines (RBMs) are
pre-trained and then fine-tuned with the supervised embedding constraints. It is
clear that this approach is a disjoint way of autoencoding and embedding while
our method trains them jointly. In [21], a multilayer neural network is pre-trained
and fine-tuned to learning a nonlinear embedding by preserving class neighbor-
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hood structure. However, EAER is a general framework which compatible with
different types of embedding algorithms.

Often we need to generalize the embedding results for the new data. LLE [19]
was extended to its incremental version [22] by identifying the k-nearest neigh-
bors of the new input and construct its output with its neighbors. Also, the
incremental version of Isomap was proposed [12]. EAER naturally generates an
inductive embedding model, whereas the methods mentioned embed new data
in a transductive way.

6 Conclusion

In this paper we proposed an embedding with autoencoder regularization (EAER)
framework for unsupervised nonlinear dimensionality reduction. By minimizing
the embedding loss and the autoencoder reconstruction error simultaneously,
EAER can learn more semantic representations of the inputs. We adapt the
framework to the embedding algorithms of Laplacian eigenmaps, multidimen-
tional scaling and margin-based method, and the results demonstrate that the
embedding methods adapted to EAER outperform the original counterparts
when applying the embedding codes to the classification tasks. The EAER frame-
work proposed in the paper is naturally an inductive model, thus can embed the
new data more efficiently. We plan to further investigate the performance of
EAER by extending it to deep architectures or combining the advanced autoen-
coders, such as contractive autoencoders and denoising autoencoders.
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