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Abstract. This paper presents a fast variational Bayesian method for
linear state-space models. The standard variational Bayesian expectation-
maximization (VB-EM) algorithm is improved by a parameter expansion
which optimizes the rotation of the latent space. With this approach, the
inference is orders of magnitude faster than the standard method. The
speed of the proposed method is demonstrated on an artificial dataset
and a large real-world dataset, which shows that the standard VB-EM al-
gorithm is not suitable for large datasets because it converges extremely
slowly. In addition, the paper estimates the temporal state variables us-
ing a smoothing algorithm based on the block LDL decomposition. This
smoothing algorithm reduces the number of required matrix inversions
and avoids a model augmentation compared to previous approaches.

Keywords: variational Bayesian methods, linear state-space models,
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1 Introduction

Linear state-space models (LSSM) are widely used in time-series analysis [1, 2].
They assume that the observations are generated linearly from a latent linear
dynamical system. Although many real-world processes are non-linear, the lin-
earity makes the model easy to analyze and efficient to estimate. In addition,
many non-linear systems can be approximated using linear models, thus the
LSSM is an important tool for time-series applications.

The Bayesian framework offers a principled way to estimate the model pa-
rameters from data. However, the estimation is analytically intractable mak-
ing approximations necessary. This paper focuses on the variational Bayesian
(VB) approximation, which can be computed using the variational Bayesian
expectation-maximization (VB-EM) algorithm. The VB-EM algorithm assumes
that the variables are independent and updates the approximate posterior dis-
tributions of the variables one at a time [3, 4].

The standard VB-EM algorithm may converge extremely slowly if the vari-
ables are strongly coupled. Because the variables are updated one at a time, the
updates to each variable may be small and this results in zigzagging. This effect
can be reduced by using parameter expansion to add auxiliary variables which



reduce the coupling between some variables [5, 6]. This can be seen as a param-
eterized joint optimization of multiple variables. Because the expansion and the
effect on the speed of the algorithm depends on the model, it is important to
examine efficient parameter expansions for different models (see, e.g., [7–9]).

This paper derives a parameter expansion for the linear state-space model
and shows experimentally that the VB-EM algorithm can be unusable for large
datasets if the expansion is not used. The proposed parameter expansion is based
on the rotation of the latent space, thus reducing the coupling between the states
and the system parameters. Similar parameter expansion has been applied to
canonical correlation and factor analysis models [8, 7]. However, those results
cannot be applied directly to the LSSM because the rotation of the dynamics
adds extra complexity.

In addition to convergence speed problems, the estimation of the state vari-
ables is not trivial, because the standard Rauch-Tung-Striebel [10] smoother
cannot be applied directly as noted in [11]. This has been previously solved by
using a parallel variant of the smoother in [11] and a model augmentation in
[12]. This paper provides another perspective on the smoothing algorithm by
deriving it from the Cholesky, or LDL, decomposition of a block-banded matrix.
This results in a smoothing algorithm which requires less matrix inversions than
the previous approaches, avoids the cost of the model augmentation and can be
extended to other Markov random fields with different graph structure.

The paper is organized as follows: Section 2 defines the linear state-space
model used in the paper. Section 3 briefly summarizes the standard VB-EM
algorithm for the model. Section 4 derives the proposed smoothing algorithm.
Section 5 presents the parameter expansion for the model. Section 6 presents
experimental results that show the effect of the parameter expansion. Section 7
ends the paper with conclusions.

2 Model

In linear state-space models a sequence of M -dimensional observations Y =
(y1, . . . ,yN ) is assumed to be generated from latent D-dimensional states X =
(x1, . . . ,xN ) which follow a first-order Markov process:

xn = Axn−1 + noise, (1)

yn = Cxn + noise, (2)

where the noise is Gaussian, A is the D×D state dynamics matrix and C is the
M ×D loading matrix. Usually, the latent space dimensionality D is assumed to
be much smaller than the observation space dimensionality M in order to model
the dependencies of high-dimensional observations efficiently.

The equations defining the linear state-space model can be used to construct
a Bayesian model [11]. The likelihood function is

p(Y|C,X, τ ) =

N∏
n=1

N (yn|Cxn,diag(τ )−1), (3)



where N (x|µ,Σ) is the probability density function of the Gaussian distribution
of variable x with mean µ and covariance Σ. The covariance matrix in (3) is
diagonal, that is, the noise is independent for each observed element of yn. The
probability of the states is given as

p(X|A) = N (x0|m0,Λ
−1
0 )

N∏
n=1

N (xn|Axn−1, I), (4)

where x0 is an auxiliary initial state with mean m0 and precision Λ0. The noise of
the process in (4) has unit covariance matrix without loss of generality, because
the latent space can be rotated arbitrarily by compensating it in the parameters
A and C. The parameters of the process are given the following priors:

p(A|α) =

D∏
i=1

D∏
j=1

N (aij |0, α−1j ), p(α) =

D∏
d=1

G(αd|aγ , bγ), (5)

p(C|γ) =

M∏
m=1

D∏
d=1

N (cmd|0, γ−1d ), p(γ) =

D∏
d=1

G(γd|aγ , bγ), (6)

p(τ ) =

M∏
m=1

G(τm|aτ , bτ ), (7)

where aij is the element on the i-th row and j-th column of the matrix A,
αd is the d-th element of the vector α, and G(α|a, b) is the probability density
function of the gamma distribution with shape a and rate b. The variables α
and γ are automatic relevance determination (ARD) parameters, which prune
out components that are not significant enough. The hyperparameters aα, bα,
aγ , bγ , aτ and bτ can be set to small values (e.g., 10−5) to give broad priors.
The above model definition is similar to [11, 12] and the details can be modified
without affecting the main results of this paper.

3 Posterior Approximation

As the posterior distribution of the variables is analytically intractable, it is ap-
proximated using variational Bayesian (VB) framework [4]. The approximation
is assumed to factorize with respect to the variables as

p(X,A,α,C,γ, τ |Y) ≈ q(X,A,α,C,γ, τ ) = q(X)q(A)q(α)q(C)q(γ)q(τ ).
(8)

The approximation is optimized by minimizing the Kullback-Leibler divergence
from the true posterior, which is equivalent to maximizing the lower bound of
the marginal log likelihood

L(Y) = 〈log p(Y|C,X, τ )〉+

〈
log

p(X|A)

q(X)

〉
+

〈
log

p(A|α)

q(A)

〉
+

〈
log

p(α)

q(α)

〉
+

〈
log

p(C|γ)

q(C)

〉
+

〈
log

p(γ)

q(γ)

〉
+

〈
log

p(τ )

q(τ )

〉
,

(9)



where 〈·〉 is the expectation with respect to the approximate posterior distribu-
tion q.

For conjugate-exponential models, the approximation can be optimized by
using the variational Bayesian expectation-maximization (VB-EM) algorithm
[3]. In VB-EM, the posterior approximation is updated for the variables one at
a time and iterated until convergence. The approximate distributions have the
following forms:

q(X) = N ([X]:|µx,Σx), q(τ ) =

M∏
m=1

G(τm|ā(m)
τ , b̄(m)

τ ), (10)

q(A) =

D∏
d=1

N (ad|µ(d)
a ,Σ(d)

a ), q(α) =

D∏
d=1

G(αd|ā(d)α , b̄(d)α ), (11)

q(C) =

M∏
m=1

N (cm|µ(m)
c ,Σ(m)

c ), q(γ) =

D∏
d=1

G(γd|ā(d)γ , b̄(d)γ ), (12)

where ad and cm are the row vectors of A and C, respectively, and [X]: is a
vector obtained by stacking the vectors xn. It is straightforward to derive the
following update equations of the variational parameters:

Σ(d)
a =

(
〈diag(α)〉+

N∑
n=1

〈xn−1xT
n−1〉

)−1
, µ(d)

a = Σ(d)
a

N∑
n=1

〈xdnxn−1〉,

(13)

ā(d)α = aα +
D

2
, b̄(d)α = bα +

1

2

D∑
i=1

〈a2id〉, (14)

Σ(m)
c =

(
〈diag(γ)〉+

∑
n∈Om:

〈τm〉〈xnxT
n 〉

)−1
, µ(m)

c = Σ(m)
c

∑
n∈Om:

ymn〈τm〉〈xn〉,

(15)

ā(d)γ = aγ +
M

2
, b̄(d)γ = bγ +

1

2

M∑
m=1

〈c2md〉, (16)

ā(m)
τ = aτ +

Nm
2
, b̄(m)

τ = bτ +
1

2

∑
n∈Om:

ξmn, (17)

where Om: is the set of time instances n for which the observation ymn is not
missing, Nm is the size of the set Om:, and ξmn =

〈
(ymn − cTmxn)2

〉
. Gaussian

and gamma distributed variables have the following expectations:

For x ∼ N (µ,Σ), 〈x〉 = µ and 〈xxT〉 = µµT + Σ. (18)

For α ∼ G(a, b), 〈α〉 =
a

b
and 〈logα〉 = ψ(a)− log(b). (19)

The formula for updating q(X) is discussed in the following section.



4 Smoothing Algorithm

The approximate posterior distribution q(X) can be updated using filtering
and smoothing algorithms. However, the standard Rauch-Tung-Striebel (RTS)
smoother cannot be applied straightforwardly because the required expectations
under q(A) are difficult to compute [11]. Previous approaches have solved this
by using a parallel variant of the smoother [11] or augmenting the model to be
able to apply standard RTS smoother [12]. Although these are working meth-
ods, this section presents another view on the smoothing problem and derives
an algorithm which can be applied easily and efficiently in the VB framework.

Instead of trying to apply standard filters and smoothers directly, the smooth-
ing can be computed equivalently from a Cholesky decomposition perspective
[13]. The smoothing can be seen as a multiplication by the inverse of a large
block-banded matrix. Utilizing the block-banded structure of the matrix, the
computational complexity of the inversion is O(D3N) instead of O(D3N3),
where D � N . The inverse is computed using the block LDL decomposition
and inverting this decomposition in two parts. The resulting smoothing algo-
rithm is similar to the standard Kalman filter [14] and RTS smoother although
not exactly identical.

The smoothing algorithm can be derived from the standard update equations
of q(X). Computational aspects aside, the update equation of the covariance
matrix Σx is

Σx =

Σ1,1 · · · Σ1,N

...
. . .

...
ΣN,1 · · · ΣN,N

 =


Ψ0,0 Ψ0,1

ΨT
0,1 Ψ1,1

. . .

. . .
. . . ΨN−1,N

ΨT
N−1,N ΨN,N


−1

= Ψ−1, (20)

where the block-banded matrix Ψ is defined as

Ψ =


Λ0 + 〈ATA〉 〈A1〉T

〈A〉 I− 〈ATA〉
. . .

. . .
. . . 〈A〉T
〈A〉 I− 〈ATA〉



+


0 ∑

m∈O:1
〈τm〉〈cmcTm〉

. . . ∑
m∈O:N

〈τm〉〈cmcTm〉

 ,
(21)

and O:n is the set of dimensions m for which the observation ymn is not missing.
The first matrix term in the sum (21) comes from the prior (4) and the second
matrix term comes from the likelihood (3). Note that although Ψ is block-



Algorithm 1 Forward pass.

Input: {Ψn,n}Nn=0, {Ψn,n+1}N−1
n=0 , {vn}Nn=0

Σ̃0,0 ← Ψ−1
0,0

µ̃0 ← Σ̃0,0v0

for n = 0→ N − 1 do
Σ̃n,n+1 ← Σ̃n,nΨn,n+1

Σ̃n+1,n+1 ←
(
Ψn+1,n+1 − Σ̃T

n,n+1Ψn,n+1

)−1

µ̃n+1 ← Σ̃n+1,n+1

(
vn+1 − Σ̃T

n,n+1µ̃n

)
end for

Output: {Σ̃n,n}Nn=0, {Σ̃n,n+1}N−1
n=0 , {µ̃n}Nn=0

banded, Σ is dense in general. The posterior mean parameter is updated as

µx =


µo
µ1

...
µN

 = Σx


v0

v1

...
vN

 = Σxv, where v =


Λ0m0∑

m∈O:1
ymn〈τm〉〈cm〉

...∑
m∈O:N

ymn〈τm〉〈cm〉

 . (22)

The vector v0 comes from the prior and the vectors {vn}Nn=1 come from the
likelihood.

Instead of computing the full matrix Σx, it is sufficient for the VB-EM algo-
rithm to compute only the diagonal blocks Σn,n, the first super-diagonal blocks
Σn,n+1, and the mean µx. These terms can be computed efficiently by writing
the parameters as Σx = Ψ−1I and µx = Ψ−1v, and utilizing the block-banded
structure of Ψ. Because Ψ is a symmetric positive-definite matrix, it can be
decomposed using the block LDL decomposition Ψ = LDLT, where D is a
block-diagonal matrix and L is a lower-triangular matrix with identity matrices
on the diagonal. Thus, multiplying on the left by Ψ−1 is equivalent to multi-
plying on the left by L-TD−1L−1. This can be computed in two phases: First,
multiplying on the left by D−1L−1 results in the forward pass shown in Al-
gorithm 1. Second, multiplying on the left by L-T results in the backward pass
shown in Algorithm 2. Note that both algorithms can be implemented as in-place
algorithms by overwriting the inputs with the outputs.

This smoothing algorithm has a few benefits compared to the previous meth-
ods [11, 12]. First, the algorithm needs to compute only one matrix inversion per
time instance, whereas the parallel and the augmented variants require three
and two inversions, respectively. Second, the augmented variant requires the
Cholesky decomposition of 〈ATA〉 and 〈CT diag(τ )C〉 for each time instance if
A, C or τ varies in time or if the data Y contains missing values. Third, the
proposed Cholesky approach makes it straightforward to modify the algorithm
if one changes the graph structure of the Markov random field to something else
than a Markov chain. Fourth, if Ψ is modified directly, for instance, if optimizing
the natural parameters, the covariance and the mean can be computed without
needing to solve what would be the parameters of the corresponding Markov



Algorithm 2 Backward pass.

Input: {Σ̃n,n}Nn=0, {Σ̃n,n+1}N−1
n=0 , {µ̃n}Nn=0

ΣN,N ← Σ̃N,N

µN ← µ̃N

for n = N − 1→ 0 do
Σn,n+1 ← −Σ̃n,n+1Σn+1,n+1

Σn,n ← Σ̃n,n − Σ̃n,n+1Σ
T
n,n+1

µn ← µ̃n − Σ̃n,n+1µn+1

end for
Output: {Σn,n}Nn=0, {Σn,n+1}N−1

n=0 , {µn}Nn=0

chain. However, whatever smoothing algorithm is used, significant speeding up
can be obtained by using the parameter expansion discussed in the next section.

5 Speeding Up the Inference

The variational Bayesian EM algorithm may converge extremely slowly because
it updates only one variable at a time resulting in zigzagging for strongly cou-
pled variables. It may be possible to speed up the algorithm using parameter
expansion which reduces the coupling between the variables [5, 6]. For instance,
parameter expanded VB-EM has been used for factor analysis [7], canonical
correlation analysis [8], and common spatial patterns [9].

In state-space models, the states xn and the loadings C are coupled through
a dot product Cxn, which is unaltered if the latent space is rotated arbitrarily:

yn = Cxn = CR−1Rxn. (23)

Thus, one intuitive transformation would be C→ CR−1 and X→ RX. In order
to keep the dynamics of the latent states unaffected by the transformation, the
state dynamics matrix A must be transformed accordingly:

Rxn = RAR−1Rxn−1, (24)

resulting in a transformation A→ RAR−1.
The parameter expansion is performed by parameterizing the posterior dis-

tributions with R and maximizing the lower bound of the marginal log likelihood
(9) with respect to R. Thus, the method optimizes the posterior distributions of
several variables jointly instead of one at a time. In general, the optimal value
for the parameter R is found using numerical optimization methods, although
for a simple factor analysis model, the solution can be found analytically [7].
The optimal transformation is guaranteed not to decrease the lower bound if the
initial value R = I recovers the original posterior unaffected. The optimization
is computationally efficient because the lower bound terms affected by R are
low-dimensional.

The rotation can be optimized using nonlinear conjugate gradient (CG) al-
gorithm. It is sufficient to find only a rough estimate of the optimal rotation



R to speed up the algorithm significantly, thus 10 iterations of CG was used in
this paper, and CG was run after each iteration of the VB-EM algorithm. The
gradients required by CG are not given in order to keep the paper concise but
the derivations are straightforward.

The work required deriving the cost function for R for different models may
be reduced by deriving the cost function for small general blocks that appear in
several models. These general results may be used directly if a similar transfor-
mation for a similar block appears in another model. In order to provide modular
results that can be applied to other models, the following subsections consider
the following transformations of small blocks: rotating a Gaussian with an ARD
prior (C and γ), rotating a Gaussian with an ARD prior from left and right (A
and α), and rotating a Gaussian Markov chain (X).

5.1 Rotation of a Gaussian Variable with an ARD Prior

Let us examine the rotation of C as CR−1 in our linear state-space model.
This transformation corresponds to a trivial rotation of the posterior mean and
covariance of C. However, recall that C has an ARD prior with hyperparameters
γ as defined in (6). It would be possible to simply rotate C without changing
γ but it is more efficient to also transform the hyperparameters γ. This allows
q(C) and q(γ) to be optimized jointly. The transformation of γ is motivated by
the VB-EM update equation (16).

The rotation of C can be seen as the following transformation of q(C) and
q(γ):

q∗(C) =

M∏
m=1

N
(
cm

∣∣∣R-Tµ(m)
c ,R-TΣ(m)

c R−1
)
, (25)

q∗(γ) =

D∏
d=1

G(γd|ā(d)γ , β(d)
γ ), (26)

where µ
(m)
c , Σ

(m)
c and ā

(d)
γ are the parameters of the original distributions defined

in (12),

β(d)
γ = bγ +

1

2

[
R-T〈CTC〉R−1

]
dd
, (27)

〈·〉 is the expectation with respect to the original posterior distribution, and [·]ij
is the element on the i-th row and j-th column. Note that the original posterior
distributions q(C) and q(γ) are recovered by setting R = I, thus the optimal
transformation is guaranteed not to worsen the posterior approximation.

The transformation affects only a small number of lower bound terms in
(9) making the optimization of the rotation efficient. The transformation of C
affects the likelihood term 〈log p(Y|C,X, τ )〉∗ but this effect is cancelled by the
transformation of X and can thus be ignored. The remaining terms are affected



as

〈log q(C)〉∗ = −M log |R-T|+ const, (28)

〈log p(C|γ)〉∗ = −1

2
tr
(
〈CTC〉∗〈diag(γ)〉∗

)
+
M

2

D∑
d=1

〈log γd〉∗ + const, (29)

〈log q(γ)〉∗ =

D∑
d=1

〈log γd〉∗ + const, (30)

〈log p(γ)〉∗ = (aγ − 1)

D∑
d=1

〈log γd〉∗ − bγ
D∑
d=1

〈γd〉d + const, (31)

where const is the part that is constant with respect to R, 〈·〉∗ is the expectation
with respect to the transformed posterior distribution q∗, and

〈CTC〉∗ = R-T〈CTC〉R−1. (32)

The expectations 〈γd〉∗ and 〈log γd〉∗ are computed as shown in (19). When
optimizing the rotation R, it is not necessary to compute the rotated covari-
ance matrix nor the rotated mean of C because the cost function only requires
〈CTC〉∗ which can be computed efficiently using (32). After the optimization,
the parameters of the posterior distribution are transformed using the optimal
rotation in (25).

5.2 Double Rotation of a Gaussian Variable with an ARD Prior

The state dynamics matrix A should be rotated as RAR−1. However, perform-
ing this transformation exactly would make the rows of A dependent in the
posterior approximation causing the VB-EM algorithm to be computationally
much more intensive. Thus, the posterior distribution is transformed in such a
way that the rows remain independent but that the transformation resembles
the “true” transformation. The idea is to use a transformation which gives true
values for the relevant expectations 〈A〉 and 〈ATA〉 although the covariance of
A is transformed “incorrectly”. Note that the transformation of the posterior
distribution is not really incorrect even if it does not correspond to RAR−1

because, in principle, the transformation can be chosen arbitrarily.
In addition to rotating A, the ARD parameter α in (5) is also transformed

in order to improve the effect of the transformation. Thus, the transformation
of q(A) and q(α) is

q∗(A) =

D∏
d=1

N

ad

∣∣∣∣∣∣
D∑
j=1

rdjR
-Tµ(d)

a ,

(
D∑
i=1

rid

)2

R-TΣ(d)
a R-T

 (33)

q∗(α) =

D∏
d=1

G(αd|ā(d)α , β(d)
α ) (34)



where µ
(d)
a , Σ

(d)
a and ā

(d)
α are the parameters of the original distributions in (11),

rij is the element [R]ij , and

β(d)
α = bα +

1

2

[
〈ATA〉∗

]
dd
. (35)

This transformation differs from the exact transformation RAR−1 in that the
cross-covariances between the rows of A are kept zero and the covariance of each
row is not a weighted sum of the covariances of all rows but only a rotated and
scaled version of the covariance of the same row. Although this transformation
does not exactly correspond to RAR−1, it has the nice property that the expec-
tations 〈A〉∗ and 〈ATA〉∗ are transformed “correctly”. Also, note that setting
R = I recovers the original posterior approximation unaffected.

The terms in the lower bound of the marginal log likelihood (9) are affected
as

〈log q(A)〉∗ = −D log |R-T| −D
D∑
j=1

log

∣∣∣∣∣
D∑
i=1

rij

∣∣∣∣∣+ const, (36)

〈log p(A|α)〉∗ = −1

2
tr
(
〈ATA〉∗〈diag(α)〉∗

)
+
D

2

D∑
d=1

〈logαd〉∗ + const, (37)

〈log q(α)〉∗ =

D∑
d=1

〈logαd〉∗ + const, (38)

〈log p(α)〉∗ = (aα − 1)

D∑
d=1

〈logαd〉∗ − bα
D∑
d=1

〈αd〉∗ + const . (39)

In addition, the transformation of q(A) affects the lower bound term 〈log p(X|A)〉∗
but that is examined in the next subsection. The transformed expectations of A
are

〈A〉∗ = R〈A〉R−1, (40)

〈ATA〉∗ = R-T

〈A〉TRTR〈A〉+

D∑
d=1

(
D∑
i=1

rid

)2

Σ(d)
a

R−1. (41)

The expectations 〈αd〉∗ and 〈logαd〉∗ are computed as shown in (19).

5.3 Rotation of a Gaussian Markov Chain

The state variables xn are rotated as Rxn. Because the states xn are not inde-
pendent in the posterior approximation, the rotation is written equivalently for
all the states as (I⊗R)[X]:. This results in the transformed posterior

q∗(X) = N
(
[X]:

∣∣(I⊗R)µx, (I⊗R)Σx(I⊗R)T
)
, (42)



where µx and Σx are the original posterior mean and covariance parameters in
(10). Note that it is not necessary to compute nor store the full covariance matrix
Σx, because the cost function of the rotation requires only the cross-covariance
cov(xn−1,xn) between consecutive states and the covariance cov(xn,xn).

The transformation affects only a few lower bound terms in (9). The effect
on the likelihood term 〈log p(Y|C,X, τ )〉∗ is cancelled by the transformation of
C. Assuming that q(A) is transformed as described in the previous subsection,
the lower bound terms are affected as

〈log q(X)〉∗ = −(N + 1) log |R|+ const, (43)

〈log p(X|A)〉∗ = tr

(
− 1

2
Λ0〈x0x

T
0 〉∗ + Λ0m0〈x0〉T∗ +

N∑
n=1

[
− 1

2
〈xnxT

n 〉∗

− 1

2
〈ATA〉∗〈xn−1xT

n−1〉∗ + 〈A〉∗〈xn−1xT
n 〉∗
])

,

(44)

where 〈A〉∗ and 〈ATA〉∗ are defined in (40) and (41), respectively, and

〈xn〉∗ = R〈xn〉, (45)

〈xnxT
n 〉∗ = R〈xnxT

n 〉RT, (46)

〈A〉∗〈xn−1xT
n 〉∗ = R〈A〉〈xn−1xT

n 〉RT, (47)

tr
(
〈ATA〉∗〈xn−1xT

n−1〉∗
)

= tr
(
〈A〉TRTR〈A〉〈xn−1xT

n−1〉
)

+

D∑
d=1

(
D∑
k=1

rkd

)2

tr
(
Σ

(d)
A 〈xn−1x

T
n−1〉

)
.

(48)

Note that the sum over n in 〈log p(X|A)〉∗ can be computed independently of R
before starting the optimization of R in order to reduce the computational cost.

6 Experiments

6.1 Artificial Data

The method was tested on an artificial dataset, which was generated using the
model with known parameter values. We generated N = 400 latent states xn by
using the following state dynamics matrix:

A =


cos(ω) − sin(ω) 0 0
sin(ω) cos(ω) 0 0

0 0 1 0
0 0 0 0

 , (49)

where ω = 0.3. Thus, the four latent signals in X are as follows: the first and
the second signals are noisy oscillators, the third signal is Gaussian random
walk, and the fourth signal is Gaussian white noise. The loading matrix C for



projecting the observations with dimensionality M = 30 was sampled from the
Gaussian distribution with zero mean and unit variance for each element. The
variance of the observation noise was set to τ−1 = 9.

The dataset was used to estimate the parameters with the variational Bayesian
learning method. The learning was performed both with and without the rota-
tions in order to compare the effect of the rotations on the performance. Both
methods used the same model and initialization. The dimensionality of the la-
tent states was set to D = 8, which is larger than the true dimensionality, to let
the ARD prior prune out any irrelevant dimensions. The hyperparameters were
given broad priors by setting aα = bα = aγ = bγ = aτ = bτ = 10−5, µ0 = 0 and
Λo = 10−3 · I.

The approximate posterior distributions of the variables were initialized by
using the VB-EM update formulas (13)–(17) but ignoring the variational mes-
sages from the child nodes, that is, taking into account only the parent nodes.
This means roughly that the variables were initialized from the prior. For in-
stance, the mean of α, γ and τ were set to ones, the mean of A to zeros and the
covariance of A to the identity matrix. In order to get some initial latent space
spanned, the mean of the loading matrix C was initialized randomly from the
standard Gaussian distribution and the covariance was set to zero. The latent
states X were not initialized because they were updated first in the VB-EM
algorithm.

The performance of the methods was measured by monitoring the lower
bound of the marginal log likelihood (9) and root-mean-square error (RMSE) on
the training and test sets. The test set was created by removing training data
ymn randomly with probability 0.8, thus approximately 20% of the data was
used for training.

Figure 1 shows the performance of both methods as a function of iterations.
The number of iterations is used for simplicity as the computational cost of the
rotations is negligible. The standard learning method converges in approximately
10000 iterations whereas the method with rotations converges in 10–20 iterations
based on the lower bound of the marginal log likelihood in Fig. 1a. The rotations
do not only affect the lower bound but also the reconstruction of the data. The
standard method overfits at the beginning of the learning phase as can be seen
from Fig. 1b and the predictions are improved very slowly as the test error shows
in Fig. 1c. In comparison, the method with rotations finds the solution orders of
magnitude faster.

6.2 Weather Data

The methods were tested on a real-world weather dataset provided by the
Helsinki Testbed project of the Finnish Meteorological Institute (FMI). From
the large dataset, we used temperature measurements in Southern Finland over a
period of almost two years with an interval of ten minutes resulting in N = 89202
time instances.1 Measurements from some weather stations were badly corrupted

1 The data is available at http://users.ics.aalto.fi/jluttine/ecml2013/ under
the FMI Open Data License.
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Fig. 1. Results of the artificial experiment. (a) The marginal log likelihood lower bound,
(b) training error, and (c) testing error shown as a function of iterations for the standard
learning method (baseline) and the proposed method using rotations. Note that the
x-axis has a logarithmic scale.

as discussed in [15] and were therefore discarded. Thus, M = 66 stations re-
mained for the analysis. From the remaining data, approximately 35% of the
measurements were missing.

The standard method and the proposed method using rotations were used to
estimate the linear state-space model from the data. The model used latent space
dimensionality D = 10 and broad hyperpriors as in the artificial experiment. The
initialization was done similarly as in the artificial experiment. Test data was
formed by removing training data randomly with probability 0.2 and completely
for periods of one day at ten day intervals resulting in a large number of short
gaps in the training data.

Figure 2 shows the lower bound of the marginal log likelihood, the training
error and test error for both methods. Based on the lower bound in Fig. 2a,
the standard method has not converged in 1000 iterations and the progress is
extremely slow, whereas the method with rotations converges in 20–30 iterations.
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Fig. 2. Results of the weather experiment. (a) The marginal log likelihood lower bound,
(b) training error, and (c) testing error shown as a function of iterations. Note that
the x-axis has a logarithmic scale.

The computational cost of the rotations is again negligible and can be ignored for
simplicity. Similarly to the artificial experiment, the standard method overfits
at the beginning as can be seen in Fig. 2b. The performance difference of the
learning methods can be seen clearly from the test error in Fig. 2c as the test
error for the standard method is significantly larger and decreasing very slowly.
From these measures it is evident that the standard learning method has not yet
converged in 1000 iterations and it might require several thousands iterations
more to reach convergence.

7 Conclusions

The paper presented a parameter expansion for improving the speed of the vari-
ational Bayesian inference of linear state-space models. The expansion was based
on optimizing the rotation of the latent space, which corresponds to a parameter-



ized joint optimization of multiple variables. The transformations improved the
speed of the inference by orders of magnitude compared to the standard VB-EM
algorithm as shown in the experiments for artificial and real-world data. Thus,
the proposed parameter expansion should be a standard technique if using VB
inference for variants of linear state-space models in problems that are not very
small.

The paper also gave a new perspective on estimating the posterior distribu-
tion of the states in the VB-EM algorithm. The states were estimated by using
a smoothing algorithm based on the block LDL decomposition instead of the
standard filters and smoothers used in previous papers. This approach reduced
the number of required matrix inversions and avoided a model augmentation. In
addition, as the algorithm is based on the LDL decomposition, one can utilize ex-
isting sparse LDL algorithms in order to generalize the smoothing algorithm, for
instance, to other Gaussian Markov random fields with different graph structure.

A Python implementation of the presented method is published as a part
of the Bayesian Python (BayesPy) package under the GNU General Public Li-
cense.2 In addition, the data and the scripts for running the experiments shown
in the paper are available under open licenses.3
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