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Abstract. Intrinsic manifold structure of a data collection is valuable informa-
tion for classification task. By considering the manifold structure in the data set
for classification and with the sparse coding framework, we propose an algo-
rithm to: (1) find exemplars from each class to represent the class-specific man-
ifold structure, in which way the object-space dimensionality is reduced; (2) si-
multaneously learn a latent feature space to make the mapped data more dis-
criminative according to the class-specific manifold measurement. We call the
proposed algorithm Exemplar-represented Manifold in Latent Space for Classi-
fication (EMLSC). We also present the nonlinear extension of EMLSC based on
kernel tricks to deal with highly nonlinear situations. Experiments on synthetic
and real-world datasets demonstrate the merit of the proposed method.

Keywords: Sparse Coding, Dimensionality Reduction, Manifold, Exemplar Se-
lection, Classification

1 Introduction

Among various areas of machine learning, information retrieval and signal processing,
one needs to deal with high-dimensional data collections ahead of specific tasks, such
as classification focused on in this paper. This has motivated a lot of work in dimen-
sionality reduction, whose goal is to find compact representations of the data that can
save memory and computational time, and also enhance the performance of algorithms
that deal with the data.

Since datasets often consist of high-dimensional data, most dimensionality reduc-
tion methods aim at reducing the feature-space dimension for all the data, e.g. PCA [1],
LLE [2] and Isomap [3], etc. Among these methods, geometrically motivated approaches
are shown to be effective in discrovering the geometrical structure in the data. Mean-
while, manifold-based methods, such as LLE and Isomap and their variants, have at-
tracted considerable attention in data analysis [4–6], and have achieved very encour-
aging performances in clustering, classification and data visualization. However, these
methods separate the manifold-motivated dimensionality reduction and classifier learn-
ing apart, in which way, further improved classification performance is prevented.
⋆ Corresponding author. This work is supported by Natural Science Foundations (No.61071218)

of China and 973 Program (No.2010CB327904).
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On the other hand, since datasets usually contain a large number of data, dimen-
sionality reduction in the object space is a desirable solution [7]. This can be achieved
either by learning an adaptive dictionary [8, 9] or finding exemplars [7]. Learning a
compact dictionary to represent data (see [10] and therein) and the problem of learning
a supervised dictionary for classification have been well studied in literature [9, 11]. But
such learned dictionaries intrinsically ignore the data manifold structures. Because, the
dictionary atoms almost never coincide with the original data [12, 11]. Specifically, for
example, the negative sign of some atoms are hard to interpret, and the unit Euclidean
length of the atoms means they just act as bases for reconstruction of data points but
not for representing them. This intrinsic problem in dictionary learning has also been
recognized in [7]. Therefore, the learned dictionary atoms cannot be considered as good
representatives for the collection of data points when meeting various tasks such as clas-
sification. In contrast, one can find a small subset of the data to appropriately represent
the whole data collection owing to the self-expressiveness property, which has been
studied for subspace clustering using sparse representation [13, 7] and low-rank repre-
sentation [14]. The selected exemplars can naturally represent the manifold structure
of the dataset, and thus reduce the dimensionality in the object space. Actually, finding
exemplars is of particular significance in large-scale dataset summarization and visu-
alization, and improves memory requirement and computational time of classification
on such large-scale datasets. Nevertheless, merely selecting exemplars in the original
space is insufficient to cover all the data points for classification task, since these data
points distribute along complex manifolds and the exemplars may be neighbors to the
data points from different classes. For this reason, it is desirable to learn a latent space
in which the selecting exemplars can better serve the classification purpose.

By considering the two ways of dimensionality reduction and their limitations in
classification presented above, we propose an algorithm to implement dimensionality
reduction along the two directions by considering the manifold structure of each class.
The proposed algorithm simultaneously does the following:

– find exemplars from each class to represent the class-specific manifold structure, in
which way the object-space dimensionality is reduced;

– learn a latent space in the feature space to make the mapped data more discrimina-
tive according to the class-specific manifold measurement.

– carry out classification under a simple sparse coding framework.

We call this algorithm Exemplar-represented Manifolds in Latent Space for Classi-
fication (EMLSC). In the classification stage, EMLSC adopts a simple sparse cod-
ing framework for classification in a way like Sparse Representation-based Classifi-
cation (SRC) [15]. But different from employing all training data in SRC, EMLSC only
uses the selected exemplars as the bases. As the sparse coding is done in the lower-
dimensional latent space and the number bases is far smaller than the whole training set,
it is anticipated that the classification is performed faster than the original SRC method,
in which the whole training set is used for classification. Furthermore, we present a
nonlinear extension of EMLSC via kernel tricks (K-EMLSC) to deal with highly non-
linear situations. Through experimental validation, we can see that (K-)EMLSC not
only reduces the dimension of the data and the scale of the dataset, but also improves
classification performance.
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2 Notations and Related Work

Let X ∈ Rp×N denote a training data set which consists of N data points from C
classes, and Xc ∈ Rp×Nc denote the subset of data from the cth class, where N =∑C

c=1 Nc. I is an identity matrix with appropriate size.
Under SRC framework [15], Ngugen et al. propose a unified method called La-

tent Sparse Embedding Residual Classifier (LASERC) to learn dictionary and a latent
space [16]. In detail, for each class, LASERC jointly learn an adaptive dictionary Dc

and a latent space defined by a projection Wc through:

min
Wc,Dc,Ac

∥WT
c Xc −DcAc∥2F + λ∥Xc −WcW

T
c Xc∥2F ,

s.t. WT
c Wc = I, ∥Ac∥1 ≤ T,

(1)

where Ac is the coefficient matrix and ∥Ac∥1 is the sum of ℓ1 norms of all columns in
Ac. LASERC uses the projection to reduce the dimensionality of the data, and adopts
a reconstruction error based classifier for the final classification. However, even though
the method can be extended to nonlinear version via kernel tricks, it fails to consider
the discrimination power among the separately learned class-specific dictionaries Dc’s,
such that it is not guaranteed to produce improved classification performance.

Elhamifar et al. propose to find exemplars in the dataset to reduce the dimension-
ality in the object space [17], so that computational cost and memory requirements
are significantly reduced. They use nearest neighbor to do classification, and achieve
comparable results with exemplars to that with all the training data. In [7], the authors
also propose Sparse Modeling Representative Selection (SMRS) to find exemplars for
classification with different classifiers. SMRS first selects exemplars by solving the fol-
lowing objective function over row-sparse coefficient matrix A:

min
A

∥X−XA∥2F , s.t. ∥A∥1,q ≤ τ,1TA = 1T , (2)

where ∥A∥1,q =
∑N

i=1 ∥ai∥q denotes the sum of ℓq norms1 of the rows of coefficient
matrix A = [a1; . . . ;aN ] ∈ RN×N ; τ > 1 is an appropriately chosen parameter to
make the optimization program in Eq. 2 convex; and the affine constraint 1TA = 1T

means invariance of the selected exemplars w.r.t global translation of the data. As the
ℓ1,q-norm vanishes rows of A, the exemplars can be found according to nonzero rows
in A. SMRS learns different classifiers over the selected exemplars, and experimental
results demonstrate that well-chosen exemplars can not only reduce the scale of the
training set, but also produce very good classification performances with far fewer data
points. Despite the effectiveness of SMRS, it separately finds the exemplars in the orig-
inal space and learns the classifier. Therefore, the learned classifiers are not optimal for
classification based on the selected exemplars. Moreover, SMRS simply selects exem-
plars from all the classes, hence using the exemplars as a subset of the training data
in the original space can significantly change the inner and intra class distances of the
training data, such that good classification performance is not guaranteed as discussed
in [7].

1 In this paper, we merely set q = 2, i.e. using an ℓ1,2-norm regularizer in the objective functions
presented latter.



4 Shu Kong and Donghui Wang

3 Exemplar-Represented Manifold in Latent Space for
Classification (EMLSC)

As reviewed previously, finding exemplars in the original space directly from all classes
is not optimal for classification, and separately learning class-specific dictionaries also
limits the discrimination power of the dictionaries. Since we understand the importance
of selecting exemplars opposed to learning adaptive dictionaries in representing the
class-specific manifold structure, it is worth simultaneously finding exemplars in each
class and learning a latent space with consideration of the discrimination power.

3.1 Derivation of EMLSC Objective Function

In SMRS, solving Eq. 2 means finding exemplars from all classes in the original space,
and it cannot serve classification purpose well. Therefore, it is desirable to finding ex-
emplars in a simultaneously learned latent space, in which the exemplars can effectively
represent the data points according to their class-specific manifold structure. Suppose
a linear projection W ∈ Rp×m defines this m-dimensional latent space, then we have
the new data in the latent space as WTX. By replacing the original data set X in Eq. 2
with WTX ∈ Rm×N , and constraining WTW = I, we have:

min
A,W

∥WTX−WTXA∥2F ,

s.t. WTW = I, ∥A∥1,q ≤ τ,1TA = 1T .
(3)

The constraint of WTW = I not only leads to a computationally efficient scheme
for optimization as we see in the next subsection, but also allows the extension of our
proposed method to the nonlinear version as demonstrated in Section 4.

Moreover, it is essential to guarantee that the exemplars from a specific class can
well represent all the data of this class. Specifically, for the cth class Xc, we should also
minimize the following constraint:

∥WTXc −WTXcA
(c)
c ∥2F , (4)

where A(c)
c is the cth part of coefficient matrix Ac = [A

(1)
c ; . . . ;A

(i)
c ; . . . ;A

(C)
c ] corre-

sponding to Xc, i.e. Xc ≈ XAc =
∑C

i=1 XiA
(i)
c . For brevity, we introduce a selection

operator Qc = [qc
1, . . . ,q

c
j , . . . ,q

c
Kc

] ∈ RN×Nc , in which the jth column of Qc is of
the following form:

qc
j = [0, . . . , 0︸ ︷︷ ︸∑c−1

i=1 Ni

,

j−1︷ ︸︸ ︷
0, . . . , 0, 1, 0, . . . , 0︸ ︷︷ ︸

Nc

, 0, . . . , 0︸ ︷︷ ︸∑C
i=c+1 Ni

]T . (5)

Therefore, we have QT
c Qc = I, Xc = XQc, and A

(c)
j = QT

c Aj ∈ RNj means the cth

part of coefficient matrix Aj corresponding to Xc. Now, we can rewrite Eq. 4 as:

∥WTXc −WTXQcQ
T
c Ac∥2F . (6)
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Let Q̃c = [Q1, . . . ,Qc−1,Qc+1, . . . ,QC ], then we have XQ̃c = [X1, . . . ,Xc−1,

Xc+1, . . . ,XC ], and Q̃T
c Ac = [A

(1)
c ; . . . ;A

(c−1)
c ;A

(c+1)
c ; . . . ;A

(C)
c ]. To guarantee

that exemplars from other classes do not contribute to representing the data from class
c, we should also minimize the following:

∥WTXQ̃cQ̃
T
c Ac∥2F . (7)

This term measures how much the unrelated exemplars (from undesirable classes) con-
tribute to the representation of the data points from a specific class. Thus, minimizing
this term means drawing apart the exemplars belonging to different classes [11], in
which way the data points from different classes are better separated.

Considering the above three terms, i.e. Eq. 3, Eq. 6 and Eq. 7, we have our objective
function as below:

min
Ac,W

C∑
c=1

{
∥WTXc −WTXAc∥2F + α∥WTXc −WTXQcQ

T
c Ac∥2F

+ β∥WTXQ̃cQ̃
T
c Ac∥2F

}
s.t. WTW = I, ∥Ac∥1,q ≤ s,1TAc = 1T , for ∀c.

(8)

In the objective function, α and β are two parameters to balance relative importance
of the three terms, and s denotes the sparse level of the coefficient Ac. There are other
possible ways to add discrimination power to the latent space and exemplars, such as
the methods based on Linear Discriminative Analysis [18] and Maximum Margin Cri-
terion [19]. But it is worth noting the way of improving discrimination in Eq. 8 has
an intrinsic relation to the classifier adopted in this paper. As described in Section 5,
since our classifier is based on sparse coding technique, this discrimination-enhancing
method in Eq. 8 can benefit the classifier a lot.

3.2 Numerical Solution

Even though the optimization problem in Eq. 8 is a non-convex problem with two matrix
variables W and A = [A1, . . . ,AC ], we still can derive effective solutions through
iterative minimization, as demonstrated by experiments in Section 6. In this subsection,
we present the detailed optimization of each variable matrix.

Update projection W By omitting the terms which are independent to W, we have
the following:

W∗ =argmin
W

∥WT (X−XA)∥2F + α∥WT (X−XÂ)∥2F + β∥WT (XÃ)∥2F ,

s.t. WTW = I,
(9)

where Â = [Q1Q
T
1 A1, . . . ,QcQ

T
c Ac, . . . ,QCQ

T
CAC ], Ã = [Q̃1Q̃

T
1 A1, . . . , Q̃cQ̃

T
c Ac,

. . . , Q̃CQ̃
T
CAC ], and A = [A1, . . . ,Ac, . . . ,AC ]. Through simple derivation, we have

the following concise function:

W∗ =argmin
W

tr(WTΩW), s.t. WTW = I, (10)
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where Ω = (X −XA)(X −XA)T + α(X −XÂ)(X −XÂ)T + β(XÃ)(XÃ)T .
Therefore, to derive the optimal W∗ with fixed A, we can simply solve this eigenvalue
decomposition problem, and choose the eigenvectors w.r.t the m smallest eigenvalues
as the columns of W∗.

Update the coefficient matrix Ac Specifically, by fixing the projection W, we focus
on updating Ac for demonstration as below:

A∗
c = argmin

Ac

∥WTXc −WTXAc∥2F + α∥WTXc −WTXQcQ
T
c Ac∥2F

+ β∥WTXQ̃cQ̃
T
c Ac∥2F

= argmin
Ac

∥X̄c − X̄Ac∥2F

s.t. ∥Ac∥1,q ≤ s,1TAc = 1T ,

(11)

where X̄c =

 WTXc√
αWTXc

0

 and X̄ =

 WTX√
αWTXQcQ

T
c√

βWTXQ̃cQ̃
T
c

. In this paper, by

using Lagrange multipliers on ∥Ac∥1,q, we turn to an Alternating Direction Method of
Multipliers optimization framework [20] to solve the above problem.

In sum, the overall optimization procedure iterates the two steps, updating W in
Eq. 10 and updating A in Eq. 11. It stops when meeting a predefined condition, i.e.
reaching a maximum number of iterations or the difference between two consecutive
the projection W is small enough. Finally, we choose the data as selected exemplars
according to nonzero rows of the coefficient matrix A.

4 Kernel EMLSC

Even if the proposed EMLSC exploit the data manifolds in the learned latent space
based on the selected exemplars, it may fail to discover the intrinsic geometry when the
data manifold is highly nonlinear. In this section, we discuss how to perform EMLSC
in Reproducing Kernel Hilbert Space (RKHS), which gives rise to kernel version of
EMLSC, denoted as K-EMLSC.

4.1 An Equivalent Objective Function

Before deriving the K-EMLSC, we provide an equivalent objective function to the orig-
inal one in Eq. 8. We first present the following proposition.

Proposition 1 With fixed A, there exists an optional solution W∗ to Eq. 8 that has the
following form:

W∗ = XP (12)

for some P ∈ RN×m.
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The proof of this proposition is given in Appendix A. As a corollary of Proposi-
tion 1, it is sufficient to seek an optimal solution for the optimization in Eq. 8 through
P and coefficient matrix A. By substituting Eq. 12 into Eq. 8, we have:

min
A,P

∥PTK(I−A)∥2F + α∥PTK(I− Â)∥2F + β∥PTKÃ∥2F ,

s.t. PTKP = I, ∥Ac∥1,q ≤ s,1TAc = 1T , for ∀c,
(13)

where K = XTX, A = [A1, . . . ,Ac, . . . ,AC ], Â = [Q1Q
T
1 A1, . . . ,QcQ

T
c Ac, . . . ,

QCQ
T
CAC ], and Ã = [Q̃1Q̃

T
1 A1, . . . , Q̃cQ̃

T
c Ac, . . . , Q̃CQ̃

T
CAC ].

To derive the optimal P, we have the following proposition.

Proposition 2 The optimal solution of Eq. 13 when A is fixed is:

P∗ = US− 1
2G∗, (14)

where U and S come from the SVD of K = USUT , and G ∈ RN×m is the optimal
solution of the following minimum eigenvalue problem:

G∗ = argmin
G

trGT H̃G, s.t. GTG = I, (15)

where H̃ = S
1
2UTHUS

1
2 in which H = (I −A)(I −A)T + α(I − Â)(I − Â)T +

βÃÃT .

The proof of this proposition is provided in Appendix B. From the equivalence
illustrated by Proposition 2, we can derive the optimal W = XP after having the
optimal P. It is worth noting the following remark.

Remark 1. With fixed coefficient matrix A, we can derive the optimal projection W
either through solving Eq. 10 or Eq. 12 (Eq. 14 and Eq. 15 are used). The difference
between these two ways can be beneficial in different situations. Particularly, when the
number of training data N ≫ p, which stands for the dimensionality of the data, we
can choose the first way to derive the optimal W, as the complexity of the eigenvalue
problem is O(p3). When p ≫ N , we can use the second strategy to calculate the
optimal W with the O(N3) complexity of the eigenvalue problem .

4.2 Derivation of Kernel EMLSC

Since we have xi ∈ Rp where xi is the ith training sample, we consider the problem in
a feature space H induced by some nonlinear mappings:

ϕ : Rp → H. (16)

For a proper chosen ϕ, an inner produce ⟨·, ·⟩ can be defined on H which makes for a
reproducing kernel Hilbert space (RKHS). More specifically,

⟨ϕ(x), ϕ(y)⟩ = K(x,y) (17)



8 Shu Kong and Donghui Wang

holds where K(·, ·) is a positive semi-definite kernel function. Several popular kernel
functions are Gaussian kernel K(x,y) = exp(−∥x − y∥22/σ2), polynomial kernel
K(x,y) = (1 + xTy)α, and Sigmoid kernel K(x,y) = tanh(xTy + α).

Let Φ denote the data matrix in RKHS:

Φ = [ϕ(xi), . . . , ϕ(xN )]. (18)

Now, the problem Eq. 13 in RKHS can be written as below:

min
A,P

∥PTΦTΦ(I−A)∥2F + α∥PTΦTΦ(I− Â)∥2F + β∥PTΦTΦÃ∥2F ,

s.t. PTΦTΦP = I, ∥Ac∥1,q ≤ s,1TAc = 1T , for ∀c.
(19)

Denote the kernel matrix by K = ΦTΦ, in which Kij = K(xi,xj) = ⟨ϕ(xi), ϕ(xj)⟩.
Then, we have:

min
A,P

∥PTK(I−A)∥2F + α∥PTK(I− Â)∥2F + β∥PTKÃ∥2F ,

s.t. PTKP = I, ∥Ac∥1,q ≤ s,1TAc = 1T , for ∀c.
(20)

The resulting kernelized objective function in Eq. 20 can be solved in the same way
as in the linear case. Note that in the nonlinear case, the dimension m of the output
space can be higher than the dimension p of the input space, and is only upper bounded
by the number of training samples. For a sample datum x either from the training set or
a testing one, we have the corresponding mapped point z in RKHS as z = PTK(X,x).

5 Classification Scheme

After learning the projection and selecting the exemplars, we have the linear or non-
linear mapped exemplars as Z = [Z1, . . . ,ZC ] ∈ Rm×M , in which Zc ∈ Rm×Mc

is the mapped exemplars selected from the cth class (
∑C

c=1 Mc = M ). Specifically,
in the linear version, we have Zc = WTXc, while in nonlinear situation, we have
Zc = PTK(X,Xc). When comes a query datum x, we have the mapped point z ∈ Rm.
To classify the query, we follow the classification framework of SRC [15]. In detail, we
first solve the following sparse coding problem:

α∗ = argmin
α

∥z− Zα∥2F + γ∥α∥1. (21)

Then, we calculate the reconstruction error of each class by: ec = ∥z−Zcα
∗
c∥2F , where

αc is the part in coefficient α∗ corresponding to Zc. Finally, we classify the query to
class c∗ such that c∗ = argminc ec.

6 Experimental Results

In this section, we evaluate the performance of EMLSC with its kernel version de-
noted by K-EMLSC on both synthetic and two real-world datasets. We compare our
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(a) (b)

Fig. 1. Two synthetic datasets and each one has two classes: (a) circle-like distributed data and
(b) parabola-like distributed data.

proposed (K-)EMLSC with several state-of-the-art methods that are based on Sparse
Representation-based Classification (SRC) framework for classification on the learned
dictionaries or the selected exemplars. The standard SRC method (SRC) acts as a base-
line method, which uses all the training data without learning dictionaries or finding
exemplars. As our EMLSC can also learn a project along the feature-space dimension,
for comparing the effect of the dimensionality on the feature-space dimension, we first
apply random projection, PCA and LPP [6] to reduce the feature-space dimensionality,
and then use SRC for classification. We call these schemes rSRC, pSRC and lSRC re-
spectively. Moreover, we compare two closely related methods for comparison, they are
Sparse Modeling Representative Selection (SMRS) [7] and Latent Sparse Embedding
Residual Classifier (LASERC) [16]. SMRS merely selects exemplars in the original
space, and LASERC simultaneously learns the projection and adaptive dictionaries for
each class. Both SMRS and LASERC use SRC framework for classification. For all
experiments, we simply set α = β = 1 for EMLSC and K-EMLSC. As for K-EMLSC,
we choose Gaussian kernel with σ = 1.7.

6.1 Experiments with Synthetic Data

We first evaluate K-EMLSC for its ability of discriminating class-specific manifolds in
the learned latent space. We synthesize two datasets of two-dimensional data points,
and each set includes two classes of data. These two datasets consist of circle-like and
parabola-like distributed data as illustrated by Fig. 1. We can easily see there are highly
nonlinear manifold structures in the data. Our K-EMLSC jointly learns a latent space
and selects exemplars, therefore, we can draw the mapped data points of the two classes
in the learned latent space. Among the compared methods, only LASERC can jointly
learn a latent space, but learns dictionary for each class individually. Therefore, we
focus on the comparison of K-EMLSC and LASERC, and choose Gaussian kernel with
σ = 1.7 for both of the methods.

Fig. 2 displays the mapped data of the synthetic datasets in the latent space by
LASERC and K-EMLSC. (a) to (d) are the mapped data from the circle-like and parabola-
like datasets by LASERC and K-EMLSC, respectively; as well, we also plot the learned
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(a) (b)

(c) (d)

Fig. 2. Synthetic example: circle-like distributed data in the original 2D space and the latent space
with the learned dictionary atoms or selected exemplars are presented in (a) and (b), respectively;
circle-like distributed data in the original 2D space and the latent space with the learned atoms or
selected exemplars are illustrated by (c) and (d), respectively.

dictionary atoms of LASERC and the selected exemplars of our K-EMLSC. Since
LASERC learns the class-specific dictionaries and projection matrices of each class
individually, we plot the data points of the two classes in one figure, as illustrated in
(a) and (c). Then, we can see the data are mixed up, as well as the dictionary atoms.
This means the dictionary atoms cannot represent the data points well. This observation
coincides with what we analyze previously — dictionary atoms act bases to reconstruct
data points, and thus the atoms cannot be directly used to represent the data. On the
contrary, our K-EMLSC separates the two classes and preserves the class-specific man-
ifolds clearly as expected as demonstrated in (b) and (d), because K-EMLSC considers
the discrimination power and representation power of the selected exemplars in the
mapped space. Moreover, the selected exemplars can fully represent the data of each
class, specifically, the exemplars in the learned latent space can reflect the class-specific
data manifolds clearly.

6.2 Experiments with Real Data

Now, we examine the classification performances of the proposed method on two real-
world datasets, USPS digit database [21] and Extended-YaleB face database [22]. We
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Table 1. USPS digit recognition accuracy (%) with different reduced feature-space dimension.

10 20 40 60 80

rSRC 89.3± 0.6 90.1± 0.7 92.5± 0.4 93.8± 0.4 95.6± 0.5

pSRC 93.2± 0.4 95.9± 0.5 97.3± 0.6 98.1± 0.3 98.6± 0.4

LASERC 85.6± 1.6 86.3± 1.3 86.9± 1.2 87.2± 1.1 87.9± 0.9

lSRC 93.6± 0.6

SRC 98.9± 0.7

SMRS 91.7± 0.6

EMLSC 95.8± 0.7 96.2± 0.6 97.1± 0.7 97.8± 0.5 98.2± 0.4
K-EMLSC 96.1± 0.3 96.5± 0.4 97.3± 0.8 97.9± 0.4 98.4± 0.5

Table 2. Extended-YaleB face recognition accuracy (%) with different reduced feature-space
dimension.

30 60 100 150 200

rSRC 82.7± 1.3 91.6± 1.4 94.6± 1.1 95.8± 1.2 96.4± 0.9

pSRC 86.4± 0.7 91.8± 0.7 93.4± 0.9 93.8± 0.8 94.6± 0.6

LASERC 83.3± 1.8 87.5± 1.5 89.8± 1.4 91.4± 1.6 92.1± 1.3

lSRC 87.4± 0.6

SRC 98.2± 0.8

SMRS 93.1± 0.7

EMLSC 93.6± 0.8 95.5± 0.6 96.3± 0.5 97.9± 0.5 98.5± 0.3
K-EMLSC 94.2± 0.3 95.9± 0.4 96.7± 0.4 98.2± 0.6 98.7± 0.5

show that class-specific manifolds commonly exist in real-world data sets, and our (K-
)EMLSC can achieve very promising classification results by simultaneously learning
the latent space and selecting the exemplars with consideration of the class-specific
manifolds.

In USPS/Extended-YaleB dataset, we randomly select 1000 (USPS) / 51 (YaleB)
samples of each class for training, and restrict our (K-)EMLSC to select 20 (USPS) / 7
(YaleB) exemplars in each class. As well, SMRS also selects the same number of ex-
emplars as (K-)EMLSC, and LASERC learns the same number of dictionary atoms for
each class. The recognition accuracy of each method is averaged over 10 runs. As for di-
mensionality reduction along the feature-space dimension, rSRC, pSRC, LASERC and
our (K-)EMLSC reduce the data to the same dimension; while lSRC reduces the data to
C − 1 dimension, where C is the number of classes; SRC and SMRS directly perform
on the original data without dimensionality reduction process. In this evaluation, only
K-EMLSC uses a Gaussian kernel.

Table 1 and Table 2 report the averaged classification accuracies with standard de-
viations for USPS and Extended-YaleB respectively, and the results are obtained from
each method after running 10 times. Fig.3 and Fig. 4 illustrate the two-dimensional
mapped images and exemplars of the two databases, respectively. From these results,
we make the following remarks:
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(a) (b) (c)

(d)
(d)

Fig. 3. Four digits from USPS are projected into the 2D latent space shown in (a). (b), (c) and (d)
are three digits zoomed in with the selected exemplars highlighted in red box (best seen in color).

(a) (b) (c)

(d) (f) (g)

Fig. 4. (a) Six individuals from Extended YaleB database are projected in the latent space. (b),
(c) and (d) present facial images of three persons, and the images in red box are the selected
exemplars (best seen in color).
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1. rSRC, pSRC and lSRC reduce the dimension in the feature space and then apply
SRC for classification in separate stages. As seen in the tables, these methods do
not generate favorable results compared to (K-)EMLSC. In contrast, (K-)EMLSC
jointly learns the latent space for reducing the feature-space dimension and selects
the exemplars to represent class-specific manifolds. Therefore, with lower feature-
space dimension and less training samples (exemplars) for classification, it can
still produce very promising results. When kernel tricks are adopted, K-EMLSC
achieves better results than EMLSC.

2. Even if LASERC jointly learns projection and dictionaries, the learned dictionary
atoms cannot represent the data points but act as bases for reconstructing the data
as argued previously. Moreover, LASERC learns the dictionary and projection for
each class individually, therefore, classification performance cannot be guaranteed.
On the contrary, (K-)EMLSC jointly considers the discrimination power and the
representation power of the exemplars in the class-specific manifold viewpoint.
Fig.3 and Fig. 4 clearly illustrate the merit of EMLSC on this respect.

3. Both SMRS and (K-)EMLSC select exemplars, but (K-)EMLSC obtains higher ac-
curacy, even with much lower feature-space dimension. This is because (K-)EMLSC
considers the discrimination power of the mapped exemplars in the latent space, and
these exemplars can better represent the class-specific manifolds in a discriminative
way.

4. SRC, which performs in the original space over all training data, produces decent
results in the two databases. But (K-)EMLSC, with much fewer and much lower di-
mensional exemplars as bases, achieves comparable performances to SRC on USPS
database, and even outperforms it in Extended-YaleB database. This observation
further demonstrates the merit of (K-)EMLSC.

5. From Fig.3 and Fig. 4, we can see the selected exemplars by EMLSC mainly reside
on the contour of the manifolds. This is a good result, because it is reasonable
to anticipate data which locate within the manifold can be well approximated by
linearly combining the exemplars. This phenomenon validates the effectiveness of
using exemplars to represent the data manifold structure.

7 Conclusion

In this paper, we propose an algorithm to simultaneously learn a latent space and find
exemplars from the mapped dataset for classification. The selected exemplars can natu-
rally represent the data manifolds, and our method analyze the manifold structure in
a discriminative way. Therefore, the exemplar-based class-specific manifolds of the
classes are driven to be discriminative in the mapped latent space. We further extend
this method to nonlinear version with kernel tricks, therefore, the kernelized method
can deal with highly nonlinear cases. Through experiments, we demonstrate the merit
of our proposed method. In face of big-data era, as a future work, it is worth extending
our method to online learning framework to deal with large-scale situations.
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Appendix A: Proof of Proposition 1

Denote the optimal solution of W by W∗. we show that W∗ must have the form
W∗ = XP, for some P ∈ RN×m.
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In advance, we rewrite the objective function into a compact form:

min
A,W

∥WTX−WTXA∥2F + α∥WTX−WTXÂ∥2F

+ β∥WTXÃ∥2F + λ∥A∥1,2
s.t. WTW = I.

(22)

where A = [A1, . . . ,Ac, . . . ,AC ], Â = [Q1Q
T
1 A1, . . . ,QcQ

T
c Ac, . . . ,QCQ

T
CAC ],

and Ã = [Q̃1Q̃
T
1 A1, . . . , Q̃cQ̃

T
c Ac, . . . , Q̃CQ̃

T
CAC ].

Using the orthogonal decomposition of W∗, we have:

W∗ =W∥ +W⊥, where W∥ = XP, and W⊥X = 0 (23)

for some appropriate P ∈ RN×m. Columns of W∥ and W⊥ are in and orthogonal to
the column subspace of X, respectively. Substituting Eq. 23 back into objective function
Eq. 8, we can rewrite the first term in the following:

∥WTX−WTXA∥2F =∥(W∥ +W⊥)
T (X−XA)∥2F = ∥WT

∥ (X−XA)∥2F
=tr

{
WT

∥ X(I−A)(I−A)TXTW∥
}
,

(24)

the second term as:

∥WTX−WTXÂ∥2F =∥(W∥ +W⊥)
T (X−XÂ)∥2F = ∥WT

∥ (X−XÂ)∥2F
=tr

{
WT

∥ X(I− Â)(I− Â)TXTW∥
}
,

(25)

and the third term as below:

∥WTXÃ∥2F =∥(W∥ +W⊥)
TXÃ∥2F = ∥WT

∥ XÃ∥2F
=tr

{
WT

∥ XÃÃTXTW∥
}
.

(26)

Let XTX = K, by putting Eq. 23, Eq. 24 , Eq. 25 and Eq. 26 together, and omitting
the unrelated term to W, we have:

min
W

tr
{
WT

∥ X(I−A)(I−A)TXTW∥
}

+ αtr
{
WT

∥ X(I− Â)(I− Â)TXTW∥
}
+ βtr

{
WT

∥ XÃÃTXTW∥
}
,

s.t. WTW = I.

(27)

Let the singular value decomposition (SVD) of K = USUT = US
1
2S

1
2UT , and

H = (I−A)(I−A)T + α(I− Â)(I− Â)T + βÃÃT , we have:

tr
{
WT

∥ XHXTW∥
}
=tr

{
PTUS

1
2S

1
2UTHUS

1
2S

1
2UTP

}
,

=tr
{
GT H̃G

}
,

(28)

where H̃ = S
1
2UTHUS

1
2 and G = S

1
2UTP. Therefore, we have:

tr
{
GT H̃G

}
≥

m∑
i=1

σi, (29)



16 Shu Kong and Donghui Wang

where σi is the ith smallest eigenvalue of H̃. In order for the objective function to
achieve its minimum, columns of G have to be the same with eigenvectors correspond-
ing to the smallest eigenvalues of H̃. Therefore we have GTG = I. Equivalently, we
have the constraint:

WTW = I =(W∥ +W⊥)
T (W∥ +W⊥)

=WT
∥ W∥ +WT

⊥W⊥

=PTKP+WT
⊥W⊥

=GTG+WT
⊥W⊥,

(30)

which means W⊥ = 0. In short, the optimal solution of W has the form:

W∗ = W∥ = XP. (31)

This completes the proof.

Appendix B: Proof of Proposition 2

When fixing A, by omitting unrelated terms, we derive from objective function Eq. 13
as below:

∥PTK(I−A)∥2F + α∥PTK(I− Â)∥2F + β∥PTKÃ∥2F

=tr
{
PTK

(
(I−A)(I−A)T + α(I− Â)(I− Â)T + βÃÃT )KP

}
=tr

{
PTKHKP

}
,

s.t. PTKP = I,

(32)

where H = (I − A)(I − A)T + α(I − Â)(I − Â)T + βÃÃT . Let SVD of K =

USUT = US
1
2S

1
2UT , then we have:

tr
{
PTKHKP

}
=tr

{
PTUS

1
2S

1
2UTHUS

1
2S

1
2UTP

}
=tr

{
(S

1
2UTP)TS

1
2UTHUS

1
2 (S

1
2UTP)

}
=tr

{
GT H̃G

}
s.t. (S

1
2UTP)T (S

1
2UTP) = I,

(33)

where G = S
1
2UTP and H̃ = S

1
2UTHUS

1
2 . And the constraint can also be simpli-

fied as GTG = I.
Now, we can see the equivalence of optimization in Eq. 13 and Eq. 33. And the

optimal solution P∗ can be recovered as in Eq. 14, i.e. P∗ = US− 1
2G∗.

Note that since K is a positive semidefinite matrix, the diagonal matrix S has non-
negative entries. S− 1

2 is obtained by setting non-zero entries along the diagonal of S to
the inverse of their square root and keeping zero elements the same.

This completes the proof.


