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Abstract. Low-rank matrix completion is an important theme both theoretical-
ly and practically. However, the state-of-the-art methods based on convex opti-
mization usually lead to a certain amount of deviation from the original matrix.
To perfectly recover a data matrix from a sampling of its entries, we consider a
non-convex alternative to approximate the matrix rank. In particular, we mini-
mize a matrix y-norm under a set of linear constraints. Accordingly, we derive a
shrinkage operator, which is nearly unbiased in comparison with the well-known
soft shrinkage operator. Furthermore, we devise two algorithms, non-convex soft
imputation (NCSI) and non-convex alternative direction method of multipliers
(NCADMM), to fulfil the numerical estimation. Experimental results show that
these algorithms outperform existing matrix completion methods in accuracy.
Moreover, the NCADMM is as efficient as the current state-of-the-art algorithms.

1 Introduction

Applications of low-rank matrix completion become increasingly popular in machine
learning and data mining. For instance, in the system of collaborative filtering, we aim
to predict the unknown preference of a user on a set of unrated items, only according to
a few submitted rating. In image inpainting problems, large amount of missing pixels
should be estimated by exploiting the known content.

Typically, matrix completion is formed as minimizing the rank of matrix when giv-
en a few known entries. However, the rank minimization problem is often numerically
prohibitive. Thus, many approximation strategies are encouraged. One principled ap-
proach is to replace the matrix rank by the nuclear norm, because the nuclear norm is
the best convex relaxation of the matrix rank. In the literature [1-3], the authors proved
that under certain assumptions on the proportion of the missing entries and locations,
most low-rank matrices can be completed exactly by minimizing the nuclear norm un-
der the linear constraints (the completed matrix must be consistent with the observed
matrix for the few known entries).

Based on the nuclear norm, Cai et al. [4] devised a singular value thresholding
(SVT) algorithm for this convex optimization problem. Mazumder et al. [5] formed
a unconstrained convex optimization problem and developed a soft-impute algorith-
m. Ma et al. [6] devised a fixed point iterative algorithm inspired from the work of
Hale ef al. [7] in the ¢ regularization problem. Lin et al. [8,9] proposed an alterna-
tive direction algorithm based on the augmented Lagrangian multipliers. Other efficient
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algorithms based on convex relaxation include [3, 10, 11]. There are also some other
matrix norms that have been considered, e.g., the max-norm which is also a convex
approximation of the matrix rank [12].

However, convex relaxation often makes the resulting solution deviate from the o-
riginal matrix [13]. To address this problem, non-convex approximation to the matrix
norm has been also exploited recently. Such treatments include the Schatten ¢,-norm
(0 < p < 1) used by Nie et al. [13], the truncated nuclear norm proposed by Hu et
al.[14] and a so-called matrix y-norm studied by Wang et al. [15]. Note that matrix
~-norm is not really a norm, since it does not satisfy triangle inequality.

The matrix y-norm is a matrix extension of the MC+ function studied by Mazumder
et al. [16] and Zhang [17] for variable selection. The y-norm is characterized by a pos-
itive factor +, and is tighter than the nuclear norm to the matrix rank. Wang et al. [15]
employed the ~y-norm, giving a non-convex approach to robust principle componen-
t analysis (RPCA). In this paper we introduce the y-norm into the matrix completion
problem. We develop a shrinkage operator which is nearly unbiased from non-convex
rank approximation and put forward two effective algorithms called NCSI and NCAD-
MM.

The remaining parts of the paper are organized as follows. Section 2 reviews the
preliminaries for matrix completion. Section 3 presents the NCSI and NCADMM al-
gorithms. Section 4 gives the convergence analysis of our NCSI algorithm. Section 5
conducts the experimental analysis. Finally, we conclude our work in Section 6.

2 Preliminaries

We are given a matrix M = [m;;] € R™ ™ with missing entries. Without loss of
generality, we assume m < n. Let X = [z;;] € R"*™ be an unknown low-rank
matrix. The matrix completion problem is to address the following rank minimization
problem:

min rank(X)
X
st @i =mgj, V(i j) € £,

in which 2 C {1,...,n} x {1,...,m} is the set of indices of observation entries of
M. We denote the indices of the missing entries by 2 = {1,...,n} x {1,...,m}\ £2.

This rank minimization problem is generally NP-hard. However, it can be relaxed
to a feasible optimization problem via rank approximation. That is, we consider the
following alternative:

m)én P(X;0) (H
s.t. Ty = myj, V(L]) e, 2

where P(X; 0) represents the approximation of rank(X).

It is well known that the nuclear norm, the sum of singular values, is the tightest
convex relaxation of the matrix rank. Candes and Tao [2] proved that most low rank ma-
trices can be completed from (1) with P(X; 6) as the nuclear norm || X|| if the number
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of given entries is greater than nrpolylog(n) up to a positive constant C. Meanwhile,
some researchers developed efficient algorithms to solve the above problem such as
singular value thresholding SVT [4].

In order to accommodate the small noise in observation, it is better to relax the
constraints in (1) by adding a square loss to the objective function, forming an uncon-
strained problem [5]:

min 3[[Pe(X = M) + AP(X;0), (3)

where |A|p = />, a2 = \/tr(AAT) = />, 02(A) is the Frobenius norm of
A = [a;], and P (A) is such an nxm matrix that its (4, j)th entry is a;; if (¢, j) € 2
and zero otherwise. P(X; 6) is usually called a regularization or penalty term.

In order to solve problem (3), a key step is to solve a subproblem of the form:

. 1
min {5\\X—45||%+)\P(X;6)}. )

First of all, we introduce a so-called shrinkage operator.

Definition 1 (Shrinkage operator). Sy o(®) = argming {3 | X — @[|% + AP(X;6)}
is a shrinkage operator if it shrinks the small singular value of @ to 0.

In this paper, we would like to consider the special penalty P(X;#) which is con-
structed from a single variable function. Suppose p(x;6) is a function of single vari-
able function with domain R, then P(X;6) = 3. p(c;(X)). We can construct many
penalty on matrix by this way. In this case we define the overloading of shrinkage op-
erator on R as Sy g(2) = argmin, {3 (z — 2)? + Ap(x; 6)}.

For example, the popular used nuclear norm P(X;60) = ||X]||« is derived from
function p(z) = x. And Sx(z) = argmin, {3 (z — 2)* + Az} for z > 0.

Let ® = UXVT be the thin SVD of &. It has been proved that in the case of
P(X;0) = ||X]|« the shrinkage operator has a simple form which is given by Sy (®) =
UX, VT with ¥, = diag(Sx(01),...,Sx(0m)) [4-6], where Sy(-) defined for a
single variable is the overloading operator which is given by

z—XA if  z> A,
i) == = {0 it z< A

We call S)(+) the soft shrinkage operator.

Observe that problem (4) can be viewed as the extreme case of (3), when {2 is the
set of subscript indices of all entries of matrix. We find that soft shrinkage operator
derived from the nuclear norm may lead to deviation for large A, since a same positive
number is subtracted from all the singular values of a matrix. This encourages us to use
a non-convex penalty which results in a shrinkage operator keeping the large singular
values unchanged while shrinking the small ones to zero. We establish this thought the
following definition.

Definition 2 (Nearly unbiasedness). We say that the operator S o(®P) is nearly unbi-
ased, if it keeps the sufficiently large singular value of € unchanged.
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The non-convex penalty has been mentioned in [5] and further explored by some re-
searchers in matrix recovery as well as matrix completion problems [14, 15]. Here we
employ the treatment of Wang et al. [15] who devised a so-called y-norm in their work
of matrix recovery problem. We will show that this non-convex penalty can make a
nearly unbiased estimator for the matrix completion problem.

3 Methodology

For a matrix X € R"*™ with m < n, X = UXV is the SVD factorization with
X = diag{o1, ..., o }. According to Wang et al. [15], y-norm is defined as

X[l = ploi;),
i=1
where p(z;7) = [y(1— 2)ydu = (z — £)I(x < 7) + F(z > 7). A key step
to construct an algorithm is an optimization problem whose solution is summarized as
below.

Theorem 1. Suppose ® = UXV | is the SVD factorization. The minimizer of p(X) =
1@ — X% + | X withy > Xis Sx (@) = UX\ , VT, where X ., =
diag(Sxay(01),- -+ , Say(om)) is a diagonal matrix with the diagonal elements
) i if oi=>n,
Sxq(0:) = argf(l)in{i(x —0)? + Mp(z;7)} = Z:%)\ if A<o; <7,
B 0 if o; <A

Proof. Let the thin SVD ofX be of X = UAVT, where U = [uy,...,u,,] has or-
thonormal columns, V = [vy,...,v,,] is orthogonal, and A = diag(A1,..., Ay) is
arrangedas Ay > Ao > -+ > A, > 0.

1 U U
o) = 518 -XIE+AY [T a
=1

1 U U
=5I% - UsvT|Z + AZ/O (1- ;)+ du
=1

m

1 1, & e i u
= 518l + 500N —2 3 T av Y [T -2 du
=1 =1 =1

Fixing u; and v;, and then differentiating ¢(X) with respect to \; yields

Ai
i —ul v + A1 — 7)+ =0.

Denoting &; = u?@v,—, we obtain
& if v <&,
X =S, (&) =452 if A< <y,
0 if & <A
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Substituting the \; back into g(X) yields

600 = L@ty S AT Reta Y [
i=1 i=1 i=1

We now see that minimizing ¢(X) w.r.t. X is equivalent to the minimization of ¢) w.r.t.
the &;. Here

I < 7)%1(& > 7)}.

A<Eily &>y A<Ei <y &>y
2 2
(& — A Ay
AL <y v &>y

where 1 = —x = P —15. Since the &; are partitioned into the three parts, we consider

the corresponding terms of 1) separately. The term of 1 corresponding to A < &; < v is

A (& — N)? }

Y1 = Z {%;ﬂ(& — N2 = (& = NE (& —N) — >

ALEi<y
— N He

The term of 1) corresponding to &; > vy is

15 Ay
&>y
Recall that &; = u? @v;. In order to minimize ¢ w.r.t. &;, u; and v; should be the sin-

gular vectors corresponding the singular values of @ and &; = o;. Thus, it is necessary
that the optimal solution to min ¢(X) is X = Sy ,(®). O

Now we have introduced a so-called non-convex soft shrinkage operator S (-).
Compared to the popular soft shrinkage operator, it has an advantage of nearly unbi-
asedness, since it keeps large singular values of a matrix unchanged, see Figure 1. It
is expected that our algorithms have higher accuracy compared to the state-of-the-art
algorithms.

Based on this non-convex soft shrinkage operator, we develop two algorithms. One
is to directly solve an unconstrained problem and the other is to solve an equivalent
form but with explicit constraints.

3.1 The Non-convex Soft Imputation Algorithm

The ~-norm regularization problem is

1
m}én{J(X) = §HP9(X—M)||§:+)\HXH7}. >
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soft shrinkage
y=1.2
V=15
25 ——y=18
—y=21
—y=24

Shrunk value

Fig. 1. Non-convex soft shrinkage operator vs. soft shrinkage operator (A = 1)

We now derive an iterative process to minimize .J(X). Suppose we have obtained X*
at iteration k for a fixed A, we bound J(X) from above by

1 1
Q(X|X*) = 5IIPn(Xk—M)II%HPn(Xk—M)aX—Xk>+>\IIXHv+%IIX—X’“H%,

where 0 < o < 1. It is obvious that J(X) < Q(X|X*), and the equality hold only
when X = X*. Then we set

X*+ = argmin Q(X|XF)
X

!
= arg)rgun{5\|X — (X + aPo(M = XF)) |5 + aX|X],}
= Sar~(XF + aPo(M — XF)).

The above described iterations constitute inner loop for a fixed A. In the outer loop,
we decrease A every time and use the previous solution as warm start for next iteration.
We call this algorithm as non-convex soft imputation (NCSI), see Algorithm 1.

3.2 The Non-convex Alternating Direction Method of Multipliers

The above NCSI algorithm is designed to iteratively minimize an unconstrained prob-
lem (5). We can equivalently reform it as a optimization problem with linear constraints:

. T 2
min [X]ly + 31 Pe(E)lF 6)
s.t. PQ(M) =X+E.

where 7 = % We employ alternating direction method of multipliers (ADMM) to solve
the optimization problem. ADMM was originally proposed in [18], and has been ap-
plied to a number of convex optimization problems [19]. Recently ADMM algorithm
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Algorithm 1 The NCSI algorithm

input: v, Po(M) and tolerance ¢, 0 < a < 1,0 < p < 1,7~
Initialize: Zo = 0, \g
while \; > v do

X0 =7,

repeat

X = Sy, 4 (XE + aPo(M — X*))
until 1P2XE-M)ip _

1Po (M)l F
Ziy = X"
Ak+1 = pAk
end while

output X,,; = Z;

have been used in the minimization of a non-convex function [13, 20]. Here we use AD-
MM to solve the non-convex problem (6). The derived algorithm is called non-convex
alternating direction method of multipliers (NCADMM). This algorithm is similar to
[8], while it has an advantage of taking noise into consideration. Thus it is expected to
have a higher accuracy.

The augmented Lagrangian function of problem (6) is

T M
LX,E, Y, p) = [ X[y +5 [ PeElE+(Y, Po(M)-X—~E)+[|Po(M)-X-E|.

The NCADMM optimize w.r.t. one variable while keeping the others fixed. Specifically
the optimization problem can be solved efficiently by the following iterations.

Xkt = arg}r{nin L(X,E*, Y* 1)

. 1k
= argmin [ X + 51X — (Po(M) ~ B + - YH)[;

7

1
=851 (Po(M) - E* + ;Yk),

EFL = argéninL(XkH, E, Y* 1)

. T+ g
— argmin || Po(B) % — (Po(Y* + u(Po(M) — X*1)), Po(E))
Po(E) 2
L
+ a}r)gr(%l)n §||PQ(E)II% — (Po(Y" + p(Po(M) — X*)), Po(E))
2

— P_(_)(Ek+1) +PQ(Ek+1),
and

YH =Y 4 p(Po(M) — XM - EF,
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where

1
PQ(Ek+1) — ﬁpﬂ(M*Xk+l)+FPQ(Yk)7

Po(E) = Po(—X*1) + L Po(Y").
1

Note that if we set Y? = 0, then during the iterations Py (Y*) = 0 for all k. Using
this property and eliminating the variable E leads to the iteration as follows

1

1
Po(M — XF) — — Po(YF! +Y’“>, 7
p o ) Py o ) p @)

T

Xk:+1 _ Si N <Xk +
[ T+

T

1
PQ(M _ Xk+1) _

Y =Yk 4 "
T+ W1 n+T

Po(Y ’f)) : ®)
In previously described process, the penalty parameter y is fixed. It is found that a
small constant ; may lead to slow convergence, while large ;» may make the algorithm

ill-conditioned. Thus a dynamic p is preferred in practice. Inspired by [9] we use the
following update rule for .

Phet1 = MIn(Lmaz, PHK), )

where [i,,4, 1S the upper bound on the penalty parameter i.. The value of p is determined
by

[XFH—XF)
{po, P PeeonE < 6 (10)

1, otherwise,

where pg > 1 and ¢ > 0 is a threshold fixed in advance. We summarize the entire
procedure in Algorithm 2.

Algorithm 2 The NCADMM algorithm
input: 7 = 1/X, Po(M), tolerance €, threshold ¢, timaz, po > 1,
Initialize: X(f =0,Y°=0,
repeat

XHt =g

1 1
X4 T py(M - XF) — Po(YF! +7Y’“>
7( T+ u 9( ) Lt Q( ) 1

Ykl — vk T
+pu p—

1 ,
PoM-Xhy_ _— p Yk)
M 2 ( ) e 2(Y")

Update px+1 according to (9) and (10)

o [[Po(XFH M) p
until =, <€

Output X ,,; = X"
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4 Convergence Analysis of NCSI Algorithm

We need to further explore the y-norm before proving the convergence property of
NCSI algorihtm. First we need a definition called absolutely symmetric function [21].

Definition 3 (Absolutely symmetric). Suppose f is a mapping from R™ to R. We say
that f is absolutely symmetric if f(x1,22,...,2m) = f(|Zz )]s [Tx@)]s -5 [Zaim)])
for any permutation .

Lemma 1. The gamma-norm ||X||, of a n x m matrix X can be decomposed as the
difference of two convex functions f(o (X)) and g(o (X)) of matrix X, where

flo(X) =Y 0i(X), (11)
=1
B m O'ZQ(X) | 4 - 1 '
9(a(X)) = Z o Hoi(X) <7} + (04(X) 2)I[{oz(X) >} (12)

The above Lemma can be inferred from [22]: If a mapping f is absolutely symmet-
ric and convex on R™, then f(o (X)) is convex w.r.t. matrix X. In Lemma 1, both f (o)
and g(o) are absolutely symmetric and convex, so f(o (X)) and g(o (X)) are convex
functions on matrix X.

Definition 4. We say that two matrices X and Y in R™"*™ have a simultaneous ordered
singular value decomposition if there exist two orthonormal matrices U € R™"*™ and

V € R™ ™ such that X = Udiag(o(X))V',Y = Udiag(a(Y))V'.

Theorem 2. let a function f be absolutely symmetric and convex. Consider the corre-
sponding convex function f(o(X)). The matrix Y is a subgradient of f(o (X)) at X if
and only if 0(Y) is a subgradient of f at o(X) and the two matrices X and Y admit
simultaneous ordered singular value decomposition.

Detailed proof of this theorem can be found in [21]. We can compute the subgradient
of function f(o (X)) and g(o (X)) w.r.t. X by applying this theorem directly.

Corollary 1. (1) Let f(o (X)) and g(o (X)) be defined as Eqn. (11) and (12). Suppose
X € R™™.The matrix Y is a subgradient of f(o (X)) if and only if 0;(Ys) =
1 ifo; (X) >0
a ifoi(X)=0
singular value decomposition.
(2) Suppose hi(o(X)) = #H{m(X) <~} +Hoi(X) > ~}. Y, is a subgra-
dient of g(o(X)) if and only if 0,(Y,) = h;(o(X)) and the two matrices X and Y,
admit simultaneous ordered singular value decomposition.

where 0 < o < 1, and the two matrices admit simultaneous ordered

The following theorem shows that our algorithm NSCI decreases the objective func-
tion at every iteration.
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Theorem 3. For every fixed 0 < o < 1 and \ > 0, define a sequence X*
X = Soar (XF + aPo(M — X*)) (13)
with a starting point X°. The sequence X* satisfies
1 —

XM < J(XF) = — XA - X (14)

Proof. Suppose
1
L(X,Z) = 5||Po(Z = M)[[F + (Po(Z = M), X = Z) + \[|X]l,.

Since )
X ! = argmin L(X, X*) + X = X*Z, (15)
X «

then we have

1
J(Xk-l-l) < L(Xk+1,Xk) + 5||)(}’c-§-l o XkH%“

1 11—«

- I Xk:-‘rl Xk - Xk+1 _Xk 2 Xk-‘,—l _ Xk: 2

( , X5) + 2O[” 7 o | (2

1 11—«
<kaxk 7Xk—Xk2— Xk‘-i—l_ku
< LXEXH) | - 22 I
= J(XF) = E xR X
2

O

The inequality (14) tells us that J(X*) monotonously decrease to its limit point
since J(X) > 0. Meanwhile the sequence {||X**! — X*||2,} converges to 0.

The next theorem states that any limit point generated by Algorithm 1 is a critical
point of objective function (5).

Theorem 4. For every fixed 0 < o < 1, X\ > 0 and v > \. Each limit point of X*
generated by Eqn. (13) is a critical point of J(X).

Proof. Suppose there is a subsequence {X*},cx converging to X°°. According to the
minimization problem (15) and Lemma 1 we have

0 € Po(Xk —M) + é(x’“+1 — X5 + MOf(o(XEFL)) — 9g(o(XEFL))).

Suppose S¥*1 € 9f (o(XFH1)), THH! € 9g(o(XF+1)) satisfying

Po(XF — M) + é(x’“+1 — XF) £ \(SFF — Tk = 0. (16)
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Since S¥*1 and T**! are subgradient of f(o (X)) and g(o(X)) at X**+1, according
to Corollary 1, there exist a n X m orthonormal matrix Ukrtlandam x m orthogonal
matrix V#*1 such that

gk+1l _ Uk+1diag{a_(sl~c-‘r1)}‘/(k-‘rl)T7 A7)
TF! = UM ldiag{h(o(X*+1)) VDT (18)
XA = UM diag{o(X* )} vHHIT, (19)

Since orthogonal matrices U¥*! , V*+1 and the singular values o(S¥*1) are bounded,
without loss of generality we suppose they converging to U , V*° and o (5°°). Ac-
cording to (17), (18) and (19) we infer that S*°, the limit point of S**! is subgradient
of f(o(X°°)) and T, the limit point of T**! is subgradient of g(o"(X>°)).

Make k — o0, k € K and use limy,_, o X**! — X* = 0, the Eqn. (16) transfers to

Po(X% — M) + A(S® — T*) = 0.

So X is a critical point of J(X). O

5 Experiments

In this section, we conduct experiments on synthetic data, image data and three standard
collaborative filtering datasets. To show the effectiveness of NCSI and NCADMM, we
compare them with the following matrix completion solvers: ALM [8], SVT [4], Soft-
Impute [5], and OptSpace [3]. Particularly, ALM, SVT, and SoftImpute are based on
the nuclear norm, while OptSpace represent matrix as its factors and optimize a non-
convex objective function. Besides, in collaborative filtering experiment, we also add
PMF [23] and GECO [24] into our comparison list.

5.1 Synthetic Data

We generate synthetic data X by X = M+0Z, where X, M, Z = [z;;] € R™*"™. 2; ; is
Gaussian white noise with zero mean and standard deviation of one. And M is a matrix
with rank of  produced by M = LR.T, in which both L. € R™*" and R € R™*" have
i.i.d. Guassian entries. The set of observed entries (2 is uniformly sampled among the
m X n indices. Suppose that the degree of freedom of matrix with rank r is d,.. We fixed
the number of observed entries to 5d, and ¢ to 1075.

We only compare our methods with ALM since none of the algorithms mentioned
before claimed to outperform ALM in terms of accuracy or efficiency on large synthetic
matrices. Additionally, We set the parameter y to 4 in both NCSI and NCADMM. And
the same stop criterion is adopted for all algorithms:

IPo(X ~ M)e _
[Po(M)]|r ’

in which e is set to 0.30. We evaluate the accuracy of the solution X,; of our algorithm
by the relative error (RE), which is a widely used metric in matrix completion, defined
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”Xsol — MHF

Mg

We report the RE and #SVD (number of doing SVD) in Table 1. Experimental re-
sults demonstrate that NCSI and NCADMM consistently outperform ALM in accuracy;
NCADMM achieve higher accuracy with nearly the same time cost as ALM; and NCSI
and NCADMM have almost the same accuracy ( since they solve matrix completion
problem using same y-norm based scheme).

RE =

Table 1. Comparisons among NCSI, NCADMM, ALM on the synthetic data.

(rank ratio) RE(10™7) #SVD CPU-time(minutes)
(r, (T,LZ‘H)) NCSI NCADMM ALM [NCSI NCADMM ALM|NCSI NCADMM ALM
m = 10000, n = 10000
(10,0.012) |5.412 5412 6.230{1818 322 325 (1045  4.36 4.7
(20,0.024) [3.853  3.790  4.040| 850 179 180 |13.78  5.73 6.18
(30,0.035) {3.026  3.020  4.106| 522 149 150 |17.73 8.58 8.68
(50,0.057)(2.794  2.794  3.864| 313 122 115 126.58 11.32  14.78
m = 20000, n = 20000
(10,0.006) 5976 5963  6.410|3755 800 683 |48.41  37.02 32.28
(20,0.012) |4.428 4.416  5.246| 1606 283 246 |76.85 30.21  28.95
(30,0.018) {3.797  3.801  3.952/1034 199 201 [76.85 28.24  28.61
(50,0.030) |2.839  2.839 3.957| 613 173 164 [1143  60.13 5741

5.2 Experiment on Image Data

In the image inpainting experiment, we aim to estimate missing (or masked) pixels
by exploiting the known content. As colored image is commonly represented as three
matrices( containing red, green and blue components respectively) we simply deal with
each of three matrix and combine them together to obtain the final results.

Performance of different algorithms are evaluated by the PSN R (Peak Signal-to-
Noise Ratio) metric. Suppose that the total number of missing pixel is 7" and the total
squared error T'SE is defined by TSE = error? + error§ + errori, then the total
mean squared error M SE is defined by MSE = T'SE/3T. And the PSNR can be
evaluated as PSN R = 101log;, 2552 /M SE.

In our experiments, the parameters of ALM, SVT, Soft-Impute, and OptSpace are
carefully chosen to achieve the best performance. For NCSI and NCADMM we fix
v = 100 and empirically set A = 0.001. Since large 1 in NCADMM will make the
minimization problem ill-conditioned, we set (4, = 1010,

Two experiments using different image masks are reported. The first is a relatively
easy matrix completion problem with random mask. We report the results in Fig. 2 and
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Fig. 3. We see that the ~-Norm minimization scheme always achieve larger PSN R
compared with other five methods from Fig. 2. Second experiment uses text mask. It
is generally agreed that image inpainting with text mask is more difficult since the
observed pixels are not randomly sampled and text mask may result in loss of important
image information. We report our results in Fig. 4. The results of NCSI and NCADMM
are also encouraging.

36

T T
—=6— Soft-Impute|
34H —+—SVT
—v— OptSpace
32H —&— NCSI
—<%— NCADMAP
o ALM

30

PSNR

16 L L L L L L
03 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8

Oberserved Ratio

Fig. 2. Comparison of matrix completion algorithms for recovery of a image under different ob-
served ratios

Original image Random masked image NCADMM PSNR = 24.56

ALM PSNR =2

w
[=3

.05 SVT PSNR =23.20 Soft-Impute PSNR = 22.25 OptSpace PSNR = 17.10

Fig. 3. Comparison of matrix completion algorithms for recovery of a image only 30% of its
pixels are observed.
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text masked image NCADMM PSNR = 26.13

ALM PSNR = 22.21 SVT PSNR = 23.43 Soft-Impute PSNR =24.43  OptSpace PSNR = 11.10

Fig. 4. Comparison of matrix completion algorithms for recovery of a image masked by text.

5.3 Collaborative Filtering

Collaborative filtering (CF) is a technique used by some recommender systems. One of
the CF’s main purposes is to predict the unknown preference of a user on a set of unrated
items, according to other similar users or similar items. In order to validate the perfor-
mance of our methods, we compare our NCSI and NCADMM with three algorithms
using nuclear norm: ALM, SVT and Soft-Impute, and three other non-nuclear-norm
algorithms: OptSpace, GECO and PMF.

We use three standard MovieLens Data Sets':

MovieLens-100K contains 100,000 ratings for 1682 movies by 943 users;
MovieLens-1M contains 1million ratings for 3,900 movies by 6,040 users;
MovieLens-10M contains 10 million ratings for 10,681 movies by 71,567 users.

For each data set, we randomly select 70% ratings as known samples, and use the rest
ratings to test the performance of the methods. Then, we run 5 repeats for each data set
and each method, and report the average results in table 2.

In our experiment, We fix v = ||Po(M)||r and use the commonly accepted CF
metric RM SFE (Root Mean Square Error) to evaluate the eight methods. RM SFE is
defined by

|7
1
RMSE = Tl > (X — My)?,
(ij)ET

where T’ is the test set.

Our results in Table 2 show that y-norm based algorithms outperform other matrix
completion algorithms and are competitive to the state-of-the-art collaborative filtering
method PMF.

! http://www.grouplens.org
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Table 2. Performance of deference matrix completion methods on real collaborative filtering data
sets.

Data set NCSI INCADMM| ALM | SVT |Soft-Impute|OptSpace| GECO| PMF
MovieLens-100k|0.9710{ 0.9710 |1.083 | 1.536 1.071 1.583 10.9810(0.9790
MovieLens-1M |0.8670| 0.8670 [0.9037/0.9498| 0.9185 1.007 ]0.8808]0.8683
MovieLens-10M|0.8250{ 0.8250 |0.8843|0.9731| 0.8854 | too long [0.8402|0.8247

6 Conclusion

In this paper we have employed the matrix y-norm as a non-convex relaxation to the
matrix rank and devised two algorithms: non-convex soft imputation (NCSI) and non-
convex alternative direction method of multipliers algorithm (NCADMM), to solve the
matrix completion problem. The algorithms are effective, because they can achieve high
accuracy in the simulated datasets and real world datasets. Moreover, the NCADMM is
quite efficient as its running CPU-time is comparable with the current state-of-the-art
algorithms.
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