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Abstract. In this paper, we are interested in the label ranking problem. We are
more specifically interested in the recent trend consisting in predicting partial but
more accurate (i.e., making less incorrect statements) orders rather than complete
ones. To do so, we propose a ranking method based on pairwise imprecise scores
obtained from likelihood functions. We discuss how such imprecise scores can
be aggregated to produce interval orders, which are specific types of partial or-
ders. We then analyse the performances of the method as well as its sensitivity to
missing data and parameter values.
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1 Introduction

In recent years, learning problems with structured outputs have received a growing
interest. Such problems appear in a variety of applications fields requiring to deal with
complex data: natural language treatment [6], biological data [32], image analysis. . .

In this paper, we are concerned with the problem of label ranking, where one has
to learn a mapping from instances to rankings (complete orders) defined over a finite
number of labels. Different methods have been proposed to perform this task. Ranking
by pairwise comparison (RPC) [25] transforms the problem of label ranking into binary
classification problems, combining all results to obtain the final ranking. Constraint
classification and log-linear models [23,15] intend to learn, for each label, a (linear)
utility function from which the ranking is deduced. Other approaches propose to fit a
probabilistic ranking model (Mallows, Placket-Luce [28]) using different approaches
(instance-based, linear models, etc. [29,10]).

Recently, some authors [13] have discussed the interest, in label ranking and more
generally in preference learning problems, to predict partial orders rather than complete
rankings. Such an approach can be seen as an extension of the reject option imple-
mented in learning problems [3] or of the fact of making partial predictions [14]. Such
cautious predictions can prevent harmful decisions based on incorrect predictions. In
practice, current methods [13] consist in thresholding a pairwise comparison matrix
containing probabilistic estimates. More recently, it was shown [12] that probabilities
issued from Placket-Luce and Mallows models are particularly interesting in such a



thresholding approach, as they are guaranteed to produce consistent orders (i.e., with-
out cycles) that belong to the family of semi-orders.

In this paper, we adopt a different approach in which we propose to use imprecise
probabilities and non-parametric estimations to predict partial orderings. As making
partial predictions is one central feature of imprecise probabilistic approaches [14], it
seems interesting to investigate how one can use such approaches to predict partial
orders. In addition, these approaches are also well-designed to cope with the problem
of missing or incomplete data [33].

More precisely, we extend the proposal of [25] to imprecise estimates, and propose
to get these estimates from a method based on instance-based learning and likelihood
functions. The paper is organized as follows: Section 2 discusses the basics of label
ranking and of label ranking evaluation when predicting complete and partial orders.
Section 3 then presents the method. It first provides a means to obtain imprecise esti-
mates from a likelihood-based approach, before discussing how such estimates can be
aggregated to produce interval orders (a sub-family of partial orders including semi-
orders) as predictions. Finally, Section 4 ends up with experiments performed on vari-
ous data sets.

2 Preliminaries

This section introduces the necessary elements concerning label ranking problems.

2.1 Label Ranking Problem

The usual goal of classification problems is to associate an instance x coming from
an instance space X to a single (preferred) label of the space Λ = {λ1, . . . ,λm} of
possible classes. Label ranking problems correspond to the case where an instance x
is no longer associated to a single label of X but to a total order over the labels, that
is a complete, transitive, and asymmetric relation �x over Λ ×Λ , or equivalently to
a complete ranking over the labels Λ = {λ1, . . . ,λm}. Hence, the space of prediction
is now the whole set L (Λ) of complete rankings of Λ . It is equivalent to the set of
permutations of Λ and contains |L (Λ)| = m! elements. We can identify a ranking �x
with a permutation σx on {1, . . . ,m} such that σx(i) < σx( j) iff λi �x λ j, as they are
in one-to-one correspondence. In the following, we will use the terms rankings and
permutations interchangeably.

The task in label ranking is the same as the task in usual classification: to use the
training instances (xi,yi), i = 1, . . . ,n to estimate the theoretical conditional probability
measure Px : 2L (Λ)→ [0,1] associated to an instance x ∈X . Ideally, observed outputs
yi should be complete orders over Λ , however this is seldom the case and in this paper
we allow training instance outputs yi to be incomplete (i.e., partial orders over Λ ).

In label ranking problems the size of the prediction space quickly increases, even
when Λ is of limited size (for instance, |L (Λ)|= 3628800 for m = 10). This makes the
estimation of Px difficult and potentially quite inaccurate if only little data is available,
hence an increased interest in providing accurate yet possibly partial predictions. This
rapid increase in |L (Λ)| size also means that estimating directly the whole measure Px



is in general untractable except for very small problems. The most usual means to solve
this issue is either to decompose the problem into many simpler ones or to assume that
Px follows some parametric law. In this paper, we shall focus on the pairwise decompo-
sition approach, recalled and extended in Section 3. To simplify notations, we will drop
the subscript x in the following when there is no possible ambiguity.

2.2 Evaluating Partial Predictions

The classical task of label ranking is to predict a complete ranking ŷ ∈ L (Λ) of la-
bels as close as possible to an observed complete ranking y. When the observed and
predicted rankings y and ŷ are complete, various accuracy measures [25] (0/1 accuracy,
Spearman’s rank, . . . ) have been proposed to measure how close ŷ is to y. In this pa-
per, we retain Kendall’s Tau, as it will be generalized to measure the quality of partial
predictions. Given y and ŷ, Kendall’s Tau is

Aτ(y, ŷ) =
C−D

m(m−1)/2
(1)

where C = |{(λi,λ j)|(σ(i)< σ( j))∧ (σ̂(i)< σ̂( j))}| is the number of concording pairs
of labels in the two rankings, and D = |{(λi,λ j)|(σ( j)< σ(i))∧ (σ̂(i)< σ̂( j)))}| the
number of discording pairs of labels. Aτ(y, ŷ) has value 1 when y = ŷ and −1 when ŷ
and y are reversed rankings.

Aτ(y, ŷ) assumes that the prediction ŷ is a complete ranking and that the model
can compare each pair of labels in a reliable way. Such an assumption is quite strong,
especially if the information in the training samples is not complete (e.g., incomplete
rankings). When we allow the prediction ŷ to be a partial order, Aτ(y, ŷ) needs to be
adapted.

[13] propose to decompose the usual accuracy measures into two components: the
correctness (CR) measuring the quality of the predicted comparisons; and the complete-
ness (CP) measuring the completeness of the prediction. They are defined as

CR(y, ŷ) =
C−D
C+D

and CP(y, ŷ) =
C+D

m(m−1)/2
, (2)

where ŷ is a partial order and where C and D have the same definitions as in Eq. (1).
When the predicted order ŷ is complete (C +D = m(m−1)/2), CR(y, ŷ) = Aτ(y, ŷ) and
CP(y, ŷ) = 1, while CP(y, ŷ) = 0 and by convention CR(y, ŷ) = 1 if no comparison is
done (as all orders are then considered possible).

To summarize, the following assumptions are made in this paper:

– the theoretical model we seek to estimate is a probability measure P defined on the
space L (Λ) of complete rankings;

– training instance outputs yi, i = 1, . . . ,n are allowed to be incompletely observed
(i.e., partial orders), while test instances are assumed to be fully observed (i.e. com-
plete rankings);

– the predictions ŷ are allowed to be partial orders.



3 Partial Orders Prediction Method

This section describes our likelihood pairwise comparison (LPC) method. It first re-
calls the principle of pairwise decomposition (Section 3.1). It then details the proposed
likelihood-based method used to obtain imprecise estimates (Section 3.2) before dis-
cussing how such estimates can be aggregated to obtain partial orders (Section 3.3).

3.1 Pairwise Decomposition

Pairwise decomposition is a well-known procedure used in classification to simplify the
initial problem [27,20], which is divided into several binary problems then combined
into a final prediction. A similar approach can also be used in preference learning and
label ranking problems: it consists in estimating, for each pair of labels λi,λ j, the proba-
bilities P({λi � λ j}) or P(λ j � λi) and then to predict an (partial) order on Λ from such
estimates. In practice, this can be done by decomposing the data set into (m−1)m/2 data
sets, one for each pair. This decomposition is illustrated in Figure 1 on an imaginary
label ranking training data set with four input attributes.

X1 X2 X3 X4 Y
107.1 25 Blue 60 λ1 � λ3 � λ2
−50 10 Red 40 λ2 � λ3

200.6 30 Blue 58 λ2 � λ1 � λ3
107.1 5 Green 33 λ1 � λ2
. . . . . . . . . . . . . . .

pair λ1,λ2

X1 . . . X4 Y
107.1 60 λ1 � λ2
200.6 58 λ2 � λ1
107.1 33 λ1 � λ2
. . . . . . . . .

pair λ1,λ3

X1 . . . X4 Y
107.1 60 λ1 � λ3
200.6 58 λ1 � λ3
. . . . . . . . .

pair λ2,λ3

X1 . . . X4 Y
107.1 60 λ3 � λ2
−50 40 λ2 � λ3

200.6 58 λ2 � λ3
. . . . . . . . .

Fig. 1. Pairwise decomposition of rankings

From a data perspective, working with pairwise comparisons is not very restric-
tive, as almost all models working with preferences can be decomposed into such
pairwise preferences: complete rankings, top-t preferences where only the first t la-
bels σ(1), . . . ,σ(t) are ordered [8], rankings of subsets A of Λ where only labels in A
are ordered [22], rankings over a partition of Λ (or bucket orders) [21]. Pairwise pref-
erences are even more general, as most of the previous models cannot model a unique
preference λi � λ j [7].



For each pair λi,λ j, the data (xk,yk) is retained if it contains the information λi � λ j
or λ j � λi, and is forgotten otherwise. Using all data for which λi,λ j are compared, the
goal is then to estimate the probability

P({λi � λ j}) = 1−P({λ j � λi}). (3)

Any probabilistic binary classifier can be used to estimate this probability once the data
set has been decomposed (possibly by mapping λi � λ j to value 1 and λi ≺ λ j to 0 or
−1). We will denote by P̂({λi� λ j}) the obtained estimate of the theoretical probability
P({λi � λ j}).

Rather than using only a precise estimate P̂({λi � λ j}) as score, we propose in
this paper to learn an imprecise estimate of P({λi � λ j}) in the form of an interval
[P̂({λi � λ j})] = [P̂({λi � λ j}), P̂({λi � λ j})] and to use such imprecise estimates
to predict partial orders. The next section introduces a method inspired from imprecise
probabilistic approaches that provides a continuous range of nested imprecise estimates,
going from a precise one (P̂({λi � λ j}) = P̂({λi � λ j})) to a completely imprecise one
([P̂({λi � λ j})] = [0,1]).

3.2 Pairwise Imprecise Estimates by Contour Likelihood

One of the goal of imprecise probabilistic methods is to extend classical estimation
methods to provide imprecise but cautious estimates of quantities. Some of them extend
Bayesian approaches by considering sets of priors [4], while others extend maximum
likelihood approaches [9]. One of the latter is retained here, called contour likelihood
method [9], as it will allow us to go from a totally precise to a totally imprecise estimate
in a smooth way.

Given a parameter θ taking its values on a space Θ (e.g., P({λi � λ j}) on [0,1]) and
a positive likelihood function L : Θ → R+, we call contour likelihood L∗ the function

L∗(θ) =
L(θ)

maxθ∈Θ L(θ)
. (4)

Using this function as an imprecise probabilistic model (and more specifically as a
possibility distribution) has been justified by different authors [17,31,9], and we refer
to them for a thorough discussion. Historically, the use of relative likelihood to get
estimates of parameters dates back to Fisher [24] and Birnbaum [5].

Imprecise estimates are then obtained by using the notion of β -cut. Given a value
β ∈ [0,1], the β -cut L∗

β
of L∗ is the set such that

L∗
β
= {θ ∈Θ |L∗(θ)≥ β}. (5)

Given Eq. (4), we have L∗1 = argmaxθ∈Θ L(θ) (the precise maximum likelihood esti-
mator) and L∗0 = Θ (the whole set of possible parameter values). In between, we have
that L∗

β1
⊆ L∗

β2
for any values β1 > β2, that is the lower the value of β , the more impre-

cise and cautious is our estimate L∗
β

. Such estimates are usually simple to obtain and
have the advantage (e.g., over frequentist confidence intervals) to follow the likelihood



principle, that is to say they depend on the sampling model and data only through the
likelihood function (they do not require extra information such as prior probabilities).

In a binary space where θ ∈ [0,1] is the probability of success, Eq. (4) becomes

L∗(θ) =
θ s(1−θ)n−s

(s/n)s(1− s/n)n−s (6)

with n the number of observations, s the number of success and argmaxθ∈Θ L(θ) = s/n.
Once they are decomposed into pairwise preferences, we can use training examples

(xk,yk), k = 1, . . . ,n and Eq. (6) to estimate P({λi � λ j}) for any pair λi,λ j and for a
new instance x. To do so, we assume that a metric d is defined (or can be defined) on
X and we propose a simple instance-based strategy.

For a given upper distance d, let Nd,x = {xi : d(x,xi) ≤ d} the set of training in-
stances whose distance from x is lower than some (upper) distance d. In this set of
training examples, let us denote by

– Nd,x(i, j) = {xk : xk ∈Nd,x,(λi � λ j)∨ (λ j � λi) ∈ yk} the set of all instances that
provides a comparison for the labels λi and λ j;

– Nd,x(i > j) = {xk : xk ∈Nd,x(i, j)∧ (λi � λ j) ∈ yk} the set of items where λi is
preferred to λ j.

Using these information, interval estimates [P̂({λi � λ j})]β are then simply obtained
using Eq. (6) with |Nd,x(i, j)| the number of observations, |Nd,x(i > j)| the number of
successes and β a fixed level of confidence.

Figure 2 pictures two contour likelihoods together with estimates obtained for a
given β . As can be seen from the picture, for a given β the imprecision of the estimate
[P̂({λi � λ j})]β will depend on the amount of data used to compute L∗(θ).

As other instance-based methods (e.g., k-nearest neighbour ), this approach is based
on the assumption that Px is constant around the instance x. In practice, this means that
d should not be too high, but also not too small (otherwise there may be no data in
the neighbourhood). As we fix d rather than the number of neighbours, the presence of
missing data will lead to a lower value of |Nd,x(i, j)| and to a more imprecise estimate
(for a given β ). The amount of missing data is therefore automatically considered by
the method.

Once precise or imprecise estimates [P̂({λi � λ j})] are obtained, the next step is to
combine them to obtain a predicted (partial) order ŷ. In this paper, we extend the voting
approach detailed in [25]. Note that the values that (theoretical) probabilities

P({λi � λ j}) = ∑
y∈L (Λ),λi�λ j

P({y})

can assume are constrained, as they are linked by the following weak transitivity relation
for any three labels λi,λ j,λk [25]:

P({λi � λ j})≥ P({λi � λk})+P({λk � λ j})−1. (7)

This relation may not be satisfied by all estimates [P̂({λi� λ j})]. Luckily, post-processing
methods of estimates [P̂({λi � λ j})] (such as the voting approach) usually do not re-
quire this relation to be satisfied to predict a consistent order.



X1

X2

x
λ1 � λ3

λ1 � λ3λ1 ≺ λ3
λ1 ≺ λ3

λ1 ≺ λ3

λ1 � λ3

L∗(Px({λ1 � λ3}))

Px({λ1 � λ3})

1

0 1

β
[P̂x({λ1 � λ3})]β

L∗

1/2

X1

X2

x
λ1 � λ2

λ1 ≺ λ2

L∗(Px({λ1 � λ2}))

Px({λ1 � λ2})

1

0 1

β
[P̂x({λ1 � λ2})]β

L∗

1/2

Fig. 2. Imprecise estimates through β -cut of relative likelihood: illustration

3.3 Aggregating Imprecise Estimates to Get Partial Orders

In [25], precise estimates P̂({λi � λ j}) are considered as (weighted) votes and aggre-
gated for each label λi into a global score

Ŝ(i) = ∑
j∈{1,...,m}\i

P̂({λi � λ j}). (8)

Labels are then ordered according to their scores Ŝ(i), that is λi � λ j if and only if
Ŝ(i)≥ Ŝ( j). It has been shown [25] that using this strategy provides optimal predictions
for the Spearman rank correlation in the sense that it maximizes its expected accuracy if
P̂({λi� λ j})=P({λi� λ j}) (Kendall Tau can also be optimized by using only P({λi�
λ j}), however it requires to solve the NP-hard minimum feedback arc set problem [1]).
We will denote by S( j) the (theoretical) scores that would have been obtained by using
the theoretical measure P.

Example 1. We consider the space of labels Λ = {λ1,λ2,λ3} with the following matrix
of estimates P̂({λi � λ j}) and scores Ŝ(i)

P̂({λi � λ j}) λ1 λ2 λ3 Ŝ(i)
λ1 0.6 0.6 1.2
λ2 0.4 0.3 0.7
λ3 0.4 0.7 1.1



The obtained prediction is λ2 ≺ λ3 ≺ λ1 (Note that estimates P̂({λi � λ j}) satisfy con-
straints (7) and could originate from a theoretical model P).

Let us now deal with the case where estimates [P̂({λi � λ j})] are imprecise (here,
originating from the method presented in Section 3.2). It is straightforward to extend
Eq. (8) to imprecise estimates by defining the imprecise score [Ŝ(i)] as

[Ŝ(i)] = ∑
j∈{1,...,m}\i

[P̂({λi � λ j})] (9)

= [ ∑
j∈{1,...,m}\i

P̂({λi � λ j}), ∑
j∈{1,...,m}\i

P̂({λi � λ j})].

There are multiple ways to compare intervals [Ŝ(i)] to get a partial or a complete
order. Let us denote ŷD the prediction obtained by a decision rule D and intervals [Ŝ(i)].
We think that decision rules producing partial orders from interval-valued scores should
obey at least the two following properties:

Definition 1 (Imprecision monotonicity). Consider two assessments [P̂] and [P̂∗] such
that, for every pair i, j ∈ {1, . . . ,m} we have [P̂({λi � λ j})]⊆ [P̂∗({λi � λ j})]. A deci-
sion rule D is said imprecision monotonic if

λi � λ j ∈ ŷ∗D⇒ λi � λ j ∈ ŷD

for any pair i, j and with ŷD, ŷ∗D the predictions produced using estimates [P̂] and [P̂∗],
respectively.

This property basically says that getting less information cannot make our predic-
tion more precise, in the sense that every label pair comparable according to estimates
[P̂∗] should also be comparable according to [P̂] under decision rule D. If we denote by
C (ŷ) the set of linear extensions (i.e., of completions into complete orders) of the partial
order ŷ, another way to formalise imprecision monotonicity is to ask C (ŷD) ⊆ C (ŷ∗D),
that is to require every possible completion of ŷD to be also a completion of ŷ∗D. The sec-
ond property is not related to imprecision, but to the coherence between the predicted
partial order and the complete order that would be obtained using the theoretical model
P.

Definition 2 (Model coherence). Let S( j) be the theoretical scores, y the associated
complete order and [P̂] an assessment with associated scores [Ŝ( j)]. Then, a decision
rule D is said model coherent if

S( j) ∈ [Ŝ( j)]∀ j ∈ {1, . . . ,m}⇒ y ∈ C (ŷD)

This property requires that if our estimates are consistent with the theoretical model
(i.e., include the true value), then the optimal complete ranking is an extension of our
prediction. That is, our prediction is totally consistent with the optimal solution, but is
possibly incomplete. In particular, satisfying model coherence ensures that the predic-
tion optimizing Spearman rank correlation is in C (ŷD), provided P ∈ [P̂].



To produce a partial ranking from intervals [Ŝ( j)], we propose to use the following
decision rule, that we call strict dominance and denote I :

λi �I λ j⇔ Ŝ(i)≥ Ŝ( j).

That is, label λi is ranked before label λ j only when we are certain that the score of
λ j is lower than the one of λi. Partial orders obtained following this rule correspond to
so-called interval-orders [18], that have been widely studied in the literature. The next
proposition shows that such a procedure satisfies the properties we find appealing.

Proposition 1. The ordering �I is imprecision monotonic and model coherent.

Proof. Let �I ,�∗I be the interval orders obtained by estimates [P̂] and [P̂∗] with rule
I .

Imprecision monotonic: if for every pair i, j∈{1, . . . ,m}we have [P̂({λi� λ j})]⊆
[P̂∗({λi � λ j})], then [Ŝ(i)] ⊆ [Ŝ∗(i)] for any label λi and λi �∗I λ j implies λi �I λ j,
since the inequalities

Ŝ( j)≤ Ŝ∗( j)≤ Ŝ∗(i)≤ Ŝ(i)

hold. The second is due to λi �∗I λ j, while the first and third are due to [Ŝ(i)]⊆ [Ŝ∗(i)]
for any label λi. This is sufficient to show imprecision monotonicity.

Model coherence: assume that P({λi � λ j}) ∈ [P̂({λi � λ j})]. Then we can show
that λi �I λ j implies λi � λ j, where� is the ordering obtained from P. Simply observe
that inequalities

S( j)≤ Ŝ( j)≤ Ŝ(i)≤ S(i)

hold as λi � λ j and S( j)∈ [Ŝ( j)]∀ j ∈ {1, . . . ,m} by definition. This is sufficient to show
model coherence.

Example 2. Consider the following matrix of imprecise scores that include the matrix
of Example 1

P̂({λi � λ j}) λ1 λ2 λ3 S(i)
λ1 [0.4,0.6] 0.6 [1,1.2]
λ2 [0.4,0.6] [0.1,0.3] [0.5,0.9]
λ3 0.4 [0.7,0.9] [1.1,1.3]

Applying the I rule results in λ2 ≺I λ3 and λ2 ≺I λ1, without being able to compare
λ3 and λ1. This prediction is more cautious but coherent with the ordering obtained in
Example 1, which was λ2 ≺ λ3 ≺ λ1.

In summary, the likelihood pairwise comparison (LPC) method consists in the fol-
lowing steps:

1. decompose the training data set (xk,yk), k = 1, . . . ,n into pairwise data sets;
2. pick a distance d and a level β ∈ [0,1];
3. for each pair λi,λ j, take as estimate the interval [P̂({λi � λ j})]β from L∗;
4. compute [Ŝ( j)] and use strict dominance to predict an interval order �I .



By varying β , we can go smoothly from a precise ordering �I (β = 1) to an ordering
making no comparison at all (β = 0), similarly to what is done in [13] by varying the
threshold. Note, however, that this approach is quite different from [13,12]:

– we rely on aggregation of imprecise estimates to predict partial orders rather than
thresholding a precise model (in [13,12], the prediction λi � λi is made if P̂x({λi �
λ j})≥ α with α ∈ [0.5,1]);

– we always predict an interval order (a family of partial orders that includes semi-
orders, the type of orders predicted in [12]) and do not have to face issues related
to the presence of cycles [13];

– we use a non-parametric estimation method rather than parametric probabilities [12],
which makes our approach computationally more demanding. As the aggregation
methods presented in Section 3.3 applies to any imprecise estimates, it would be
interesting to study how confidence intervals can be extracted from estimated para-
metric models, or to which extent are the results affected by considering other im-
precise estimates (e.g., confidence intervals).

4 Experiments

In this section, we first compare the performances of our approach with two other tech-
niques in the case of complete order predictions. We use the WEKA-LR [2] implemen-
tation. We also discuss the behaviour of our approach with respect to missing data.

The datasets used in the experiments come from the UCI machine repository [19]
and the Statlog collection [26]. They are synthetic label ranking data sets built either
from classification or regression problems. From each original data set, a transformed
data set (xi,yi) with complete rankings was obtained by following the procedure de-
scribed in [11]. A summary of the data sets used in the experiments is given in Table 1.

4.1 Comparative Experiments with Precise Predictions

To show that our approach performs satisfyingly, we apply our method to complete
data sets of Table 1 and compare its results with other label ranking approaches in the
case where predictions are complete (β = 1 in Eq. (5)). More precisely, we compare
the results of the proposed approach with the Ranking by Pairwise Comparison method
(RPC) using a logistic regression as base classifier [25] and the Label Ranking Tree
(LRT) method [11]. Note that if β = 1 in Eq. (5), LPC is equivalent to adopt a ranking
by pairwise comparison approach (RPC) with another base classifier.

Kendall tau is used to assess the accuracy of the classifiers, and reported results are
averages over a 10-fold cross validation. Concerning the LPC method, the Euclidean
distance d was used, with a maximum radius d = aEd where a > 0 multiplies the aver-
age distance

Ed = n(n−1)/2 ∑
xi,x j∈x1,...,xn

j 6=i

d(xi,x j)

between all training instances. As the goal of these experiments is to assess whether
our method provides satisfying results, we set a = 1.0 (the effect of modifying a when
preferences are missing is studied in the next section).



Table 1. Experimental data sets

Data set Type #Inst #Attributes #Labels
authorship classification 841 70 4

bodyfat regression 252 7 7
calhousing regression 20640 4 4
cpu-small regression 8192 6 5
elevators regression 16599 9 9

fried regression 40768 9 5
glass classification 214 9 6

housing regression 506 6 6
iris classification 150 4 3

pendigits classification 10992 16 10
segment classification 2310 18 7

stock regression 950 5 5
vehicle classification 846 18 4
vowel classification 528 10 11
wine classification 178 13 3

wisconsin regression 194 16 16

Table 2. Results on precise case

LPC RPC LRT
Data set accuracy rank accuracy rank accuracy rank

authorship 0.910 1 0.908 2 0.887 3
bodyfat 0.216 2 0.282 1 0.11 3

calhousing 0.273 2 0.244 3 0.357 1
cpu-small 0.421 2 0.449 1 0.423 3
elevators 0.701 3 0.749 2 0.758 1

fried 0.789 3 0.999 1 0.888 2
glass 0.853 3 0.887 2 0.893 1

housing 0.699 2 0.674 3 0.799 1
iris 0.92 2 0.893 3 0.947 1

pendigits 0.879 1 0.932 3 0.942 2
segment 0.880 3 0.934 2 0.956 1

stock 0.792 2 0.779 3 0.892 1
vehicle 0.843 2 0.857 1 0.833 3
vowel 0.805 1 0.652 3 0.795 2
wine 0.947 1 0.914 2 0.88 3

wisconsin 0.451 2 0.634 1 0.328 3
Average rank 1.8 2 2.2



To compare the different results, Demsar [16] approach is used on the results of Ta-
ble 2. Friedman test was used on the ranks of algorithm performances for each data-set,
finding a value 1.13 for the Chi-square test with 2 degree of freedom and a corre-
sponding p-value of 0.57, hence the null-hypothesis (no significant differences between
algorithms) cannot be rejected. The algorithms therefore display comparable perfor-
mances. It should be noted, however, that no optimisation was performed for the pro-
posed method (either on the value d or on the shape of the neighbourhood region).

4.2 Accuracy of Partial Predictions

In the previous section, we have shown that our method is competitive with other label
ranking methods in situations where complete orders are predicted (β = 1 in LPC). In
this section, we study the behaviour of LPC with respect to completeness and correct-
ness (2) when we allow for partial predictions, that is β ∈ [0,1] in Eq. (5) and we use
the strict dominance rule I to produce predictions. As in [11,12], we span a whole set
of partial orders by going from precise orders (β = 1) to completely imprecise ones
(β = 0). However we span a richer family of partial orders, namely interval orders.

To study how LPC behaves when some pairwise preferences are missing, we also
consider incomplete rankings in training instances. Missing preferences in the training
data sets are induced with the following strategy [11]: for a given training instance yk,
each label is removed with a probability γ (here, either 30 or 60%).

Intuitively, we may expect the predictions to be more accurate (i.e., predicted com-
parisons to be more often correct) as they become more partial. That is, as β decreases,
the average completeness CP decreases, with the hope that this decrease is counter-
balanced by an increase in correctness CR. To verify this intuition, we have compared
our approach with the following base-line: for a given β , we have considered the com-
plete ordering obtained with β ∗ = 1 in (5), and have randomly removed each pairwise
comparison induced by this ordering with a probability 1−β .

Figure 3 shows the evolution of completeness and correctness for two data sets (a
classification one, vowel, and a regression one, wisconsin) as β decreases for various
choices of d and for different percentages of missing data. As expected, the (average)
correctness is increasing as completeness decreases for our method, while the baseline
that performs random suppression of preferences does not show a significant increase of
correctness as completeness decreases. This confirms that our method provides cautious
yet more accurate predictions as β decreases.

There are other facts that we may notice from the graphs in Figure 3:

– the higher is the distance d, the more stable is the evolution of correctness/completeness,
showing that LPC with higher distances is less affected by missing preferences. In
particular, correctness for a level β = 1 (CP = 1) does not change significantly
when d is high, whether preferences are missing or not. On the contrary, the effect
of missing preferences is quite noticeable for lower values of d, particularly when
β is low. This is not surprising, as a higher d means using more training instances
to assess the model;

– when there are no missing preference, taking a lower d usually provides better cor-
rectness than a higher one. This can be explained by the fact that the instance-based



CP/CR trade-off for d = 0.5Ed

CP/CR trade-off for d = 1.0Ed

CP/CR trade-off for d = 1.5Ed

Fig. 3. Results for vowel (left column) and wisconsin (right column) data set



assumption (i.e. assuming Px constant around x) becomes less and less supported
when d increases. However, when the number of missing preferences is significant,
correctness is usually better for large d, as the model is then less sensible to such
missing preferences.

These experiments suggest that the choice of a good d heavily depends on the data: if
full rankings are given for each training instance, then d should be kept low, while if
the information is poor (many partial rankings with few preferences), a higher d should
be preferred.

5 Conclusion

In this paper, we have introduced the likelihood pairwise comparison (LPC) approach to
achieve label ranking by pairwise comparisons, which can be seen as an instance-based
non-parametric approach.

Although the method can produce complete rankings as predictions, one of its main
interest lies in the ability to produce partial but more accurate orders as predictions. This
is done by using the interpretation [17,9] seeing the normalised likelihood function as
an imprecise probabilistic model, and more precisely as a possibility distribution from
which are derived imprecise estimates. To build this normalised likelihood, we have
proposed a simple instance-based approach using the neighbours that are within a given
radius of the instance.

Our results indicate that the choice of the distance (i.e., radius) used to estimate our
model can be important: a higher distance will usually produce less accurate predic-
tions when preferences are complete and more accurate predictions when preferences
are missing, while a lower distance will produce more accurate predictions when pref-
erences are complete, but will be more sensible to missing data.

Compared to [12], our method also guarantees the consistency of predicted partial
orders while being potentially more expressive, as predicted partial orders are interval
orders (that include semi-orders). First experimental results show a good increase of
correctness when partial predictions are considered. In the future, it would be interest-
ing to compare the obtained results to other methods, or to study the problem of pre-
dicting partial orders from imprecisely specified parametric models (as non-parametric
instance-based methods are computationally costly), possibly combining them with
other decision rules of imprecise probabilistic approaches [30].
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