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Abstract. In Bayesian networks, prior knowledge has been used in the
form of causal independencies between random variables or as quali-
tative constraints such as monotonicities. In this work, we extend and
combine the two different ways of providing domain knowledge. We de-
rive an algorithm based on gradient descent for estimating the param-
eters of a Bayesian network in the presence of causal independencies in
the form of Noisy-Or and qualitative constraints such as monotonicities
and synergies. Noisy-Or structure can decrease the data requirements
by separating the influence of each parent thereby reducing greatly the
number of parameters. Qualitative constraints on the other hand, allow
for imposing constraints on the parameter space making it possible to
learn more accurate parameters from a very small number of data points.
Our exhaustive empirical validation conclusively proves that the synergy
constrained Noisy-OR leads to more accurate models in the presence of
smaller amount of data.

1 Introduction

Human advice or input is generally provided in learning Bayesian networks using
the structure of the Bayesian network [1]. Given this network structure, most
methods use some form of optimization to learn the parameters of the models.
Initially, advice giving methods simply served to constrain the structure of the
network. While the use of prior structure does reduce the number of examples
required to learn a reasonable network, learning parameters can still require cer-
tain amount of examples to converge to a reasonable estimate. However many
domains, such as medicine, can be data poor (for example, number of positive
examples of a disease can possibly be quite low) but knowledge rich due to sev-
eral decades of research. This domain knowledge is mostly about the influential
relationships between the random variables of interest in the domain.

One of the most prominent methods of providing domain knowledge to a
probabilistic learner is to provide the set of causal independencies that exist in
the domain [2]. Also called as Independence of Causal Influences (ICI) [3–6], this
form of knowledge identifies sets of parents that are independent of each other



when affecting the target random variable. The effects of these sets of random
variables can typically then be combined using a function such as Noisy-Or. The
key advantage of such knowledge is that these lead to a drastic reduction in the
number of parameters associated with the conditional distributions (from expo-
nential in the total number of parents to exponential in the size of these sets).
This reduction can greatly affect the number of examples required for training
an accurate model. While this is very attractive, ICI can be very restrictive and
easily violated in many domains.

An equally alternative and more recent method of providing advice to learn-
ers is based on qualitative influences [7–11]. Qualitative influence (QI) statements
essentially outline how the change of one variable affects the change of another
variable. A classic example of such QI statements is monotonicity [7, 8, 12] where
an increase in value of one random variable (say cholesterol) increases the prob-
ability that another variable (say risk of heart attack) takes a higher value. An-
other direction has been in combining context-specific independencies [13] with
QI statements [9] and showing that learning with such constraints is a special
case of isotonic regression [14].

In this work, we extend and combine these different methods of specifying
domain knowledge. More precisely, we extend the research in two directions –
First, current methods for QI can handle monotonicity statements while we ex-
tend these directions by allowing for synergistic interactions [7] between random
variables. While monotonicities model the qualitative dependency between two
random variables, synergistic interactions allow for richer influence relationships.
For instance, with synergies, it is possible to specify statements such as “Increase
in blood sugar level increases the risk of heart attack in high cholesterol level
patients more than it does in low cholesterol level patients”. This statement
explains how sugar level and cholesterol level interact when influencing heart at-
tack. Second, we use such synergistic and monotonicity statements and combine
them with the concept of ICI i.e., we treat each “set” of monotonicity and syner-
gistic interaction as independent of each other and their influences are combined
with a combining rule. In this work we employ Noisy-Or [5] for combining the
independent influences. While previous work has used context-specific indepen-
dences, we generalize them to using ICI.

Following prior work [8], we convert the monotonicity and synergy statements
to constraints on the parameter space of the conditional distributions. We then
combine the different conditional distributions using Noisy-Or and derive the
overall objective function. We adopt a gradient descent algorithm with exterior
penalty method to optimize the objective function and outline the algorithm for
learning in the presence of qualitative and conditional influences.

To summarize, we make the following contributions: first, we extend the
qualitative influences to include synergies. Second, we combine these qualitative
influences with the independence of causal influence (ICI) such as Noisy-Or and
derive a new objective function that includes these influences as constraints on
the parameter space. Third, we derive an algorithm for parameter learning in
the presence of sparse data by exploiting these influences. Finally, we perform



an exhaustive evaluation in 11 different standard domains to understand the
impacts and influences of the different types of influence statements. Our results
show clearly that the use of such influences helps the learning algorithm improve
its performance in the presence of sparse data.

2 Background

We provide a brief background on qualitative and conditional influences. First,
we introduce some basic notations used throughout the paper. In a Bayesian
network with n discrete valued nodes, we denote the parameters by θijk (i ∈
{1, 2, ..., n}, j ∈ {1, 2, ..., vi}, k ∈ {1, 2, ..., ri}) which means the conditional prob-
ability of Xi to be its k-th value given the j-th configuration of its parents (i.e.
P (Xk

i |pa
j
i )). ri denotes the number of states of the discrete variable Xi; Pai

represents the parent set of node Xi; the number of configurations of Pai is
vi =

∏
Xt∈Pai rt; j is the index of a particular configuration of node Xi’s parents

paji .

2.1 Qualitative Influences - Monotonic Constraints

Qualitative influence, specifically monotonicity has been explored extensively in
previous work [7–9]. Specifically, Altendorf et al. [8] used monotonicities in the
context of learning Bayesian networks. Monotonic influence means that stochas-
tically, higher values of a random variable, say X result in higher (or lower)
values of another variable Y , and is denoted as XM+

� Y (or XM−
� Y ). The in-

terpretation is that increasing values of X shifts the cumulative distribution
function of Y to the right (i.e., higher values of Y are more likely). This means
that P (Y ≤ y|X = x1) ≤ P (Y ≤ y|X = x2) (where x1 ≥ x2). Note that the
same definition can be extended in the presence of multiple parents by fixing the
values of the other parents. If one of Xi’s parents (denoted by Xc) has monotonic
constraint on Xi, this relationship still stands given the same configuration of
other parents, the general form of monotonic constraints of Xc on Xi is

P (Xi 6 kc|Xm
c , C

n
i ) > P (Xi 6 kc|Xm+1

c , Cni ) (1)

where kc ∈ {1, 2, ..., ri−1},m ∈ {1, 2, ..., rc−1}, Xm
c 6 Xm+1

c , Cni represents all
possible configurations of Xi’s parents other than Xc, n is the index.

Altendorf et al. [8] used these qualitative constraints to learn the parameters
of a Bayes net by introducing a penalty to the objective function when the con-
straints are violated. Assume there is a monotonic constraint: P (Xi ≤ kc|paj2i ) ≤
P (Xi ≤ kc|paj1i ). The constraint function δ with margin ε is defined as:

δ = P (Xi ≤ kc|paj2i )− P (Xi ≤ kc|paj1i ) + ε (2)

The corresponding penalty function is P i,kcj1,j2
= I(δ>0)δ

2 (where I=1 when δ > 0
and I=0 when δ 6 0). In order to rule out the need for the simplex constraints



(
∑ri
k=1 θijk = 1), Altendorf et al. defined µijk such that

θijk =
exp(µijk)∑ri

k′=1 exp(µijk′)
(3)

They then derived the gradient of the objective function wrt µ and used exterior
penalty method to learn from data. We refer to their work for more details. Tong
et al. [11] and de Campos et al. [10], considered the problem of facial recognition
from images and applied qualitative constraints to learning for recognizing these
faces. They took an EM approach for learning the parameters of these qualitative
constraints (that possibly could include synergy). We on the other hand, take a
gradient descent approach that allows for including conditional influences such
as Noisy-Or.

2.2 Noisy-Or

The term independence of causal influence was first used by Heckerman and
Breese [3] to model the situation where there are several variables that influence
a random variable independently but their collective influence can be computed
using some deterministic or stochastic combination function. Typical examples
of ICI include Noisy-Or, Noisy-And, Noisy-Min, Noisy-Max, Noisy-Add etc. Rep-
resenting and learning with such ICI relationships have long been explored in
the context of Bayes nets [3–6]. In this work, we consider a particular type of
ICI, the most popular one – Noisy-Or. Simply put, if there are n independent
causes {X1, ..., Xn} for a random variable Y and assuming for simplicity that Y
is binary, then the target distribution P (Y = 1|X1 = x1, ..., Xn = xn) is given
by

P (Y = 1|X1 = x1, ..., Xn = xn) = 1−
∏
i

P (Y = 0|Xi = xi) (4)

The interpretation is that if any parent, say Xi takes value xi, Y will take the
value 1, unless there is an effect of inhibition. This inhibition has a probability of
P (Y = 0|Xi = xi) [6] and these inhibitory effects are assumed to be independent
(1− qi for ithparent).

3 Qualitative Constraints - Synergies

In this section, we extend the previous work on montonicities [8] by allowing for
synergistic interactions. After presenting the definition of synergies, we derive
the gradient for learning with such knowledge from data.

In the presence of a small amount of training data, the parameters in condi-
tional probability tables (CPT) estimated only based on the data are most likely
inaccurate, and in some cases can result in even uniform distributions due to the
lack of data about certain configurations of the parents. Fortunately, in many of
the real world problems, domain experts can provide sufficient prior knowledge
about the influences that exist in the domain. We consider a particular type of
the domain knowledge namely, qualitative influence statements that allow us to



apply some constraints on the CPTs. These constraints aid in obtaining more
accurate estimates of the parameters of the CPTs. More specifically, we propose
to exploit the monotonicity and synergy constraints and combine them with a
rule such as Noisy-Or when learning the parameters.

When multiple parents influence the resultant independently, we can sim-
ply employ monotonicities as presented in the previous section. Synergies on
the other hand, allow for richer interactions between the parents where the set
of parents can influence the resultant variable dependently. We use Wellman’s
definition on qualitative synergy [7]. Assume that two variables X1 and X2 af-
fect a third variable Y synergistically (where each of them has the XM+

1 � Y and

XM+
2 � Y relationship with the target). This is denoted as X1, X

S+
2 �Y (sub-synergy

is denoted as S-)1. In simple terms, this means that increasing X1 has a greater
(lesser for sub-synergy) effect on Y for high values of X2 than low values of X2;
likewise for increasing X2 with fixed X1. Note that two causes having the same
monotonic influence is the premise of their synergistic interaction, which means
by our definition, there cannot be a synergy or sub-synergy relation between
X1 and X2 if XM+

1 � Y while XM−
2 � Y i.e., the parents in the synergy relationship

cannot have different types of monotonic influences to the target.

Consider for example a medical diagnosis problem and assume that the target
of interest is heart attack. An example of a synergistic statement in the domain
is, cholesterol and blood pressure interact synergistically when influencing heart
attack. In simpler terms, the above statement simply means that hypertension
increases the risk of heart attack in high cholesterol level patients more than
it does in low cholesterol level patients. This defines how the two risk factors
(cholesterol and blood pressure) interact with heart attack. Note that each of
the cholesterol level and blood pressure has a monotonic relationship with heart
attack when considered individually (i.e. ChlM+

� HA and BPM+
� HA). A classic

example of a sub-synergy in medical research is that coronary heart disease
(CHD) is markedly more common in men than in women; CHD risk increases
with age in both sexes, but the increase is sharper in women [15]. Hence gender
and age interact sub-synergistically when influencing CHD.

Formally, based on the definition above, assume xji 6 xj+1
i where xji is the jth

value of variable Xi. Since P (Y ≤ kc|Xi
1, X

j
2) > P (Y ≤ kc|Xi+1

1 , Xj
2) (implied

by XM+
1 � Y ), X1’s effect on Y at low level of X2 is

P (Y ≤ kc|Xi
1, X

j
2)− P (Y ≤ kc|Xi+1

1 , Xj
2)

and similarly, at high level of X2 is

P (Y ≤ kc|Xi
1, X

j+1
2 )− P (Y ≤ kc|Xi+1

1 , Xj+1
2 )

1 Note that what we use the terminology of sub-synergy due to Wellman. This same
concept is also called as anti-synergy in the literature



The synergistic constraint on conditional probability distribution can be math-
ematically represented as:

P (Y ≤ kc|Xi
1, X

j
2)− P (Y ≤ kc|Xi+1

1 , Xj
2) ≤

P (Y ≤ kc|Xi
1, X

j+1
2 )− P (Y ≤ kc|Xi+1

1 , Xj+1
2 )

where i ∈ {1, 2, ..., r1 − 1} and j ∈ {1, 2, ..., r2 − 1}. Note the above inequation
is essentially X1’s effect on Y with fixed X2. Similarly the synergistic constraint
of X2 on Y with fixed X1is

P (Y ≤ kc|Xi
1, X

j
2)− P (Y ≤ kc|Xi

1, X
j+1
2 ) ≤

P (Y ≤ kc|Xi+1
1 , Xj

2)− P (Y ≤ kc|Xi+1
1 , Xj+1

2 )

Note that by definition, both of the above inequations need to be satisfied to
make X1 and X2 a synergistic pair. We can generalize the above two inequalities
into one inequality constraint by simply moving the subtractors to the other side
of the inequality, which is the general form of synergy that we consider.

P (Y ≤ kc|Xi
1, X

j
2) + P (Y ≤ kc|Xi+1

1 , Xj+1
2 ) ≤

P (Y ≤ kc|Xi+1
1 , Xj

2) + P (Y ≤ kc|Xi
1, X

j+1
2 ) (5)

Assume Y is binary, X1 and X2 are both ternary. Now, the synergy con-
straints between X1 and X2 that affect Y are as presented in Table 1.

Table 1: Synergy constraints.

Synergy Constraints of X1 and X2 on CPT of Y

P (Y = 0|x11, x12) + P (Y = 0|x21, x22) 6 P (Y = 0|x11, x22) + P (Y = 0|x21, x12)

P (Y = 0|x11, x22) + P (Y = 0|x21, x32) 6 P (Y = 0|x11, x32) + P (Y = 0|x21, x22)

P (Y = 0|x21, x12) + P (Y = 0|x31, x22) 6 P (Y = 0|x21, x22) + P (Y = 0|x31, x12)

P (Y = 0|x21, x22) + P (Y = 0|x31, x32) 6 P (Y = 0|x21, x32) + P (Y = 0|x31, x22)

The key difference to monotonicity is that the constraints are on a set of
parents (two in our example) rather than a single parent.

3.1 Derivation of the Gradient for the Synergy Qualitative
Influence

We now derive the gradients by extending the prior work [8]. Let us redefine the
parameters of the conditional distributions as shown in Equation 3. This allows
us to define a constraint function δ for the synergistic constraints:

P (Xi ≤ kc|paj1i ) + P (Xi ≤ kc|paj4i ) ≤ P (Xi ≤ kc|paj2i ) + P (Xi ≤ kc|paj3i )

The constraint function for the above definition is:

δ = P (Xi ≤ kc|paj1i ) +P (Xi ≤ kc|paj4i )−P (Xi ≤ kc|paj2i )−P (Xi ≤ kc|paj3i ) + ε
(6)



The above definition is similar to the monotonicity case. Then the gradient of
the penalty function can be computed as:

∂

∂µijk
P i,kcj1,j2,j3,j4

=
∂

∂µijk
I(δ≥0)δ

2

= 2I(δ≥0)δ(
∂

∂µijk

Zij1kc
Zij1

+
∂

∂µijk

Zij4kc
Zij4

− ∂

∂µijk

Zij2kc
Zij2

− ∂

∂µijk

Zij3kc
Zij3

+
∂

∂µijk
ε)

= 2I(δ≥0)δ[
Zij1I(j=j1∧k≤kc)exp(µijk)− Zij1kcI(j=j1)exp(µijk)

(Zij1)2

+
Zij4I(j=j4∧k≤kc)exp(µijk)− Zij4kcI(j=j4)exp(µijk)

(Zij4)2

−
Zij2I(j=j2∧k≤kc)exp(µijk)− Zij2kcI(j=j2)exp(µijk)

(Zij2)2

−
Zij3I(j=j3∧k≤kc)exp(µijk)− Zij3kcI(j=j3)exp(µijk)

(Zij3)2
]

= 2I(δ≥0)δ exp(µijk)(I(j=j1) + I(j=j4) − I(j=j2) − I(j=j3))
I(k≤kc)Z

i
j − Zijkc

(Zij)
2

(7)

where I is the indicator function, Zijkc =
∑kc
k=1 exp(µijk), and Zij = Zijri . This

gradient is very similar to the one obtained by Altendorf et al. [8]. The key
difference is that in their formalism, every constraint inequality applied to two
parameters, but our constraint inequality is applied to four parameters (assuming
two parents of a random variable and all the variables are binary valued). This
is due to the fact that monotonicities are associated with a single parent but
synergies exist in a set of parents where each of the parents has a monotonic
relationship with the target. Note that while we define these gradients with only
two parents for brevity, they can be easily extended to sets of variables.

It should be mentioned that the definition of synergy we focus in this paper
is different from the definition of Xiang and Jia [16]. It can be easily proved that
the reinforcement in their work is equivalent with the positive monotonicity we
defined in our paper and as defined by Altendorf et al. [8]. We clearly show this
relationship in the appendix A. While their work focuses on the representation
of monotonicities using ICI, we go further and combine synergies with Noisy-
Or. In addition, we also derive the gradient for this combination and develop a
learning algorithm in the next section.

4 Learning Parameters in Presence of Qualitative and
Independence Knowledge

In the previous section, we presented the idea of using monotonicities and syn-
ergies as domain knowledge that makes it possible to learn from sparse data.



Fig. 1: Noisy-Or Bayesian network with qualitative constraints.

However, it is a tedious work to list all constraints inequalities when there are a
large number of parents and unnecessary when the qualitative constraint sets are
independent with each other. If there are totally n parents and one of them (say
Xc) has monotonic constraints on the resultant CPT, then the number of the
constraints inequalities is proportional to

∏
Xj∈Pai\Xc

rj , which is exponential
in the number of total parents. The Noisy-Or structure, however, can make the
number of constraints linear in the number of parent sets. In this work, we pro-
pose to use Noisy-Or to separate the influence of the different sets of qualitative
constraints. So the inherent assumption is that the different sets of influences
are independent of each other and the final structure is simply a Noisy-Or of
the resulting distributions. It can be shown that introducing an extra layer of
hidden nodes can still preserve the qualitative constraints of the features on the
output, which exist between them in the original BN (see appendix B).

An example scenario is presented in Figure 1 where xji represents the jth

nodes in ith constraint set. As can be seen the sets of parents can have a syner-
gistic effect (S+), sub-synergistic effect (S-), monotonic (M+) or anti-monotonic
(M-) effect. Each of these parent sets yields a distribution over the target (which
is essentially a hidden node Yi that is not observed in the data). These different
distributions are then combined using the Noisy-Or combining rule where each
of these can have an inhibition probability (1 − qi). In this work, we learn the
parameters of the conditional distributions and the inhibition parameters.

Algorithm 1 presents the process of learning the parameters of conditional
distributions and inhibitions given these qualitative statements and conditional
influences (where α and β indicate the descent step size of CPT parameter
and Noisy-Or parameter). The qualitative constraints are only applied on the
CPTs of hidden node. So, the objective function of Noisy-Or parameters qi is
the log-likelihood function while the objective function J of CPT parameters is
log-likelihood function minus the sum of all involved penalty functions times a
penalty weight ω. It is an iterative procedure where we first learn the inhibition
probabilities of the different combinations. Then using these estimated probabil-
ities, we estimate the parameters of the conditional distributions subjected to
the appropriate qualitative influences. This procedure is continued till conver-
gence. It is possible that the algorithm sometimes may not converge to a feasible



Algorithm 1 Parameter Learning in Noisy-Or BN Combining Qualitative Con-
straints
1. Initialize the parameters µijk and qi randomly
2. Repeat untill convergence:

for i = 1→ rl do
Noisy-Or Parameter Gradient Step:

Compute the gradient of Noisy-Or parameters
∂LL

∂qi
for all the qi.

Noisy-Or Parameter Update Step:

Update each qi by qi = qi + β
∂LL

∂qi
for j = 1→ vi do

CPT Parameter Gradient Step:
Compute the gradient of CPT parameters

∂J

∂µijk
=

∂LL

∂µijk
− ω

∑ ∂P i,kc
j

∂µijk

for each hidden node Yi given every possible configuration of its parents
CPT Parameter Update Step:

Update each µijk by µijk = µijk + α
∂J

∂µijk

end for
end for

3. If outside the feasible region, increase the penalty weight ω and repeat step 2

solution that satisfies all the constraints. In such cases, we increase the weight of
the penalty so that the solution does not go outside the feasible region. It must
be mentioned that we are not learning the qualitative relationships but assume
that these are given.

We use el to indicate the lth training example, rl to denote the number of
qualitative constraints sets the lth instance have, Xl,i to represent the input vec-
tor of ith constraints set in lth training example, qi as the conditional probability
P (Y = 1|Yi = 1). The loglikelihood function in Noisy-Or BN combining multiple
constraints sets is given by LL =

∑
l log(P (yl|el)) where P (y = 1|el) is

P (y = 1|el) = 1−
rl∏
i=1

[Pi(y = 0|Xl,i) + (1− qi)Pi(y = 1|Xl,i)]

= 1−
rl∏
i=1

[Pi(y = 0|Xl,i) + (1− qi)(1− Pi(y = 0|Xl,i))]

= 1−
rl∏
i=1

[1− qi + qiPi(y = 0|Xl,i)] (8)

Substitute Equation 3, we get:

P (y = 1|el) = 1−
rl∏
i=1

[1− qi + qi
exp(µij0)

exp(µij0) + exp(µij1)
] (9)



Taking the derivative of the loglikelihood function with respect to µijk, we
get

∂LL

∂µijk
=

∑
l

1

P (yl|el)
∂P (yl|el)
∂µijk

=
∑
l

[
1

P (yl|el)
(−1)y(−1)kϕ(el)] (10)

Where,

ϕ(el) = qi[
∂

∂µij0
(

exp(µij0)

exp(µij0) + exp(µij1)
)]
∏
i′ 6=i

[1− qi′ + qi′Pi′(y = 0|Xl,i′)]

= qi[
exp(µij0)exp(µij1)

(exp(µij0) + exp(µij1))2
]
∏
i′ 6=i

[1− qi′ + qi′Pi′(y = 0|Xl,i′)] (11)

The gradient of loglikelihood function with respect to qi is given by:

∂LL

∂qi
=

∑
l

1

P (yl|el)
∂P (yl|el)

∂qi
=

∑
l

[
1

P (yl|el)
(−1)yφ(el)] (12)

φ(el) = (Pi(y = 0|Xl,i)− 1)
∏
i′ 6=i

[1− qi′ + qi′Pi′(y = 0|Xl,i′)] (13)

Once this gradient is obtained, we perform the iterative update of the Noisy-
Or parameters and the CPT parameters as shown in Algorithm 1.

The natural question to ask is, where does the knowledge come from? We
believe that, in many domains such as medicine, obtaining this knowledge is nat-
ural – for instance, there exists published research in understanding interactions
of risk factors when predicting a disease, say heart attack. From this perspec-
tive, our proposed work here can be considered as enabling domain experts to
provide more information to guide the algorithms in their search through the
space of parameters. In addition, our algorithms can provide a method to eval-
uate the extent to which the domain knowledge is correct – it can determine
the violations of the constraints in the training data. So we provide a method
by which the domain experts can include some knowledge that is fully satisfied
by the data and their best guesses at other relationships. Our algorithms can
naturally fit the true knowledge and determine how much of the guesses are true.
As we show in our experiments, there are some cases, where the independence
between the sets of relationships may not be always true and in some cases, the
monotonicities are as valuable as synergies. We aim to understand the interplay
between the qualitative constraints and Noisy-Or and aim to determine if the
combination is indeed a powerful method to exploit prior knowledge.

5 Experimental Evaluation

In this section, we present the results of evaluating our algorithm on 11 different
standard machine learning domains from the UCI repository. The key questions
that we seek to ask in our experiments are:



Q1: How does the use of qualitative constraints compared to not using any
influence statements?

Q2: How valid is the independence assumption (i.e., how good is only using
Noisy-Or)?
Q3: How does synergy compare to monotonicity?
Q4: How does the addition of the conditional influences with qualitative
constraints help?
For each dataset, we learn the parameters by implementing six algorithms:

(i) learning merely from data, (ii) with monotonic constraints, (iii) with synergy
constraints, (iv) learning with Noisy-Or structure, (v) monotonic constraints
plus Noisy-Or and (vi) synergy constraints plus Noisy-Or. All used features are
discretized into two states under the following rules: i) nominal variables such
as sex, race are assigned a class based on their qualitative relationships with
their children nodes; ii) ordinal variables (e.g. {small, med, big}) are divided
into two classes based on their distributions; iii) continuous values such as blood
pressure, thyroxine are discretized according to practical thresholds in corre-
sponding domains. The AUC-ROC and P values are calculated to compare their
performances. We perform 10-fold cross-validation on all the domains for param-
eter selection and present the results on test set.

Table 2: Details of the experimental domains.

Domain Target Attribute
Num of Num of
Parents Samples

Heart Disease Diagnosis of HD 5 297

Breast Cancer BC recurrence 5 286

Credit Approval Card Approval 5 300

Car Evaluation Acceptable or not 6 300

Pima Indian Diabetes Diabetes status 4 300

Census Income > 50K or 6 50K 7 300

Iris Versicolour or Virginica 4 100

Glass Identification float or non float(Building windows) 5 146

Ecoli Protein localization 5 284

Thyroid Disease TD status 5 185

Hepatitis Death of hepatitis 5 144

Table 2 presents the target attribute of interest in each domain in the second
column. The third column lists the number of parents and the final column
presents the number of all instances (sum of training set and test set whose
proportion is about 10:1 in every domain). For the different domains, we provide
prior knowledge– synergies and monotonicities whenever applicable. An example
of such a network is presented in Figure 2. As can be seen, this is in the breast
cancer domain where the goal is to predict recurrence of breast cancer based on
5 different attributes {age, menopause, tumor-size, deg-malig, irradiation}. In its
Noisy-Or model, irradiation has a negative monotonic effect on the probability
of recurrence and the others have positive monotonic effects. Parent set {age,



menopause} has a synergistic interaction while {tumor-size, deg-malig} is sub-
synergistic.

Fig. 2: An example domain without (left) and with (right) qualitative influences and
Noisy-Or.

The results of using the different algorithms are presented in Figure 3 where
the consolidated AUC-ROC over all the domains is presented. The first bar graph
of every domain is a simple inverted naive Bayesian network where every feature
is considered to be a parent of the target and the parameters are learned. The
subsequent ones are (in that order) – Noisy-Or, monotonicity constraints [8],
synergies, monotonicity with Noisy-Or and synergy with Noisy-Or. Hence, the
last three bar graphs are the algorithms presented in this work. As can be seen,
very clearly, in all the domains, the use of qualitative constraints and qualitative
constraints with Noisy-Or outperform simply learning the conditional distribu-
tions from data. Hence Q1 can be answered affirmatively.

Fig. 3: Performance of the different algorithmic settings in several domains. Best
viewed in color.

The interesting observation is that Noisy-Or assumption seems to be a strong
one in several domains. In many domains, the use of Noisy-Or is better than
assuming no knowledge in almost all the domains. But the use of only qualitative
statements such as monotonicity and synergy yield significantly better results
in 9 domains when compared to only using Noisy-Or. Hence, it is clear that



the answer to Q2 is that only using Noisy-Or is not sufficient for a majority
of domains. Comparing monotonicity and synergies, it is clear that there is not
much difference in several domains – except for breast cancer domain where
synergy seems to be significantly worse than monotonicity and Noisy-Or. Hence,
in answer to Q3, there is no significant difference between using monotonicity
and synergy constraints. It remains interesting to understand the situations in
which the use of synergy is more useful than the monotonicities.

Finally, the combination of qualitative and conditional influences seems to
perform the best in most of the domains. The results are comparable to or bet-
ter than simple qualitative constraints in all the domains. In 7 domains, the
use of conditional influences seems to improve upon the use of only qualitative
constraints. While in 3 others, there is no significant change in performance by
adding conditional influences. Only in one domain (Breast Cancer), there is a
very small dip (that is not statistically significant) in the AUC-ROC values.
Hence, to answer Q4, we can affirmatively state that the use of conditional
influences improves the performance of qualitative influence relationships in a
majority of domains. Interestingly, the use of Noisy-Or with synergies improves
upon Noisy-Or with monotonicity in three domains while in other domains the
results are comparable. This is very similar to the observation about Q3 where
synergies and monotonicities exhibit comparable performance in most domains.
All the significance results reported here are the results of using t-test with
p-values < 0.05. Figure 4 presents the learning curves comparing the use of
qualitative influence plus Noisy-Or against simple Noisy-Or and using no knowl-
edge in two sample domains. The performance using prior knowledge has a jump
start and faster convergence in both the domains, justifying the use of qualitative
and conditional influence statements in these domains.

Fig. 4: Learning Curve in two domains with no knowledge, Noisy-Or and qualitative
influences + Noisy-Or.

6 Conclusion

We presented a framework for combining qualitative and conditional influence
statements when biasing probabilistic learners. We formalized the notion of syn-



ergistic interactions and derived the gradients for learning in the presence of
such statements. We then extended our model to include conditional influences
such as Noisy-Or and derived an algorithm for learning in presence of these two
types of constraints. We evaluated our algorithms on 11 different domains and
the results conclusively proved that the use of qualitative influences when com-
bined with conditional influences yields a better performance in a majority of
the domains. Our goal is to next understand the different types of conditional
influences and their interactions with qualitative constraints. Exploring the use
of such constraints in learning the structure of a full Bayesian network remains
a very interesting direction for the future research.
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Appendix A: Equivalence of Reinforcement to Positive
Monotonicity

If variable Y is resulted from a set of causes X, the causes in X are said
to reinforce each other if for any subset X’ ⊂ X the following holds [16]:
P (Y is true|X’ is true) 6 P (Y is true|X is true)
Proof Assume variable Y has three parents {x1, x2, x3} all of which have pos-
itive monotonic influence on Y (xM+

1� Y , xM+
2� Y , xM+

3� Y )and all variables are

binary. The monotonic constraints of xM+
1� Y at the context of C=({x2 = 1, x3 =

1}, {x2 = 1, x3 = 0}, {x2 = 0, x3 = 1}) is

P (Y = 1|x11, x12, x13) > P (Y = 1|x01, x12, x13) (14)

P (Y = 1|x11, x12, x03) > P (Y = 1|x01, x12, x03) (15)

P (Y = 1|x11, x02, x13) > P (Y = 1|x01, x02, x13) (16)

xM+
2� Y at the context of C=({x1 = 1, x3 = 1}, {x1 = 1, x3 = 0}) is

P (Y = 1|x11, x12, x13) > P (Y = 1|x11, x02, x13) (17)

P (Y = 1|x11, x12, x03) > P (Y = 1|x11, x02, x03) (18)

xM+
3� Y at the context of C = ({x1 = 1, x2 = 1}) is

P (Y = 1|x11, x12, x13) > P (Y = 1|x11, x12, x03) (19)

Inequ.18 and Inequ.19 ⇒ P (Y = 1|x11, x12, x13) > P (Y = 1|x11, x02, x03)
Inequ.15 and Inequ.19 ⇒ P (Y = 1|x11, x12, x13) > P (Y = 1|x01, x12, x03)
Inequ.16 and Inequ.17⇒ P (Y = 1|x11, x12, x13) > P (Y = 1|x01, x02, x13)

The inequalities above can be presented as the probability of Y is true given
all the causes {x1, x2, x3}are activated is no less than that of only part of the
causes ({x1}, {x2}, {x3}, {x2, x3}, {x1, x3}, {x1, x2}) is activated, which is the
definition of reinforce.

Appendix B: Sub-synergy and Synergy Constraints Can
Be Preserved in Noisy-Or Structure.

Assume variable Y has four parents {x1, x2, x3, x4}, all the variables are binary
and xM+

1� Y , xM+
2� Y sub-synergistically (as shown in Figure 5). Sub-synergy con-

straints of x1 and x2 on variable Y given the context {xi3, x
j
4} is given by:

P (Y = 0|x11, x12, xi3, x
j
4) + P (Y = 0|x01, x02, xi3, x

j
4) >

P (Y = 0|x11, x02, xi3, x
j
4) + P (Y = 0|x01, x12, xi3, x

j
4) (20)



In the Noisy-Or structure, we can introduce two hidden nodes Y1 and Y2 the
sub-synergy constraint of x1 and x2 on hidden node Y1 is given by:

P (Y1 = 0|x11, x12)+P (Y1 = 0|x01, x02) > P (Y1 = 0|x11, x02)+P (Y1 = 0|x01, x12) (21)

Based on Equation 8, we have

P (Y = 0|x11, x12, xi3, x
j
4) = [1− q1 + q1P (Y1 = 0|x11, x12)]× [1− q2 + q2P (Y2 = 0|xi3, x

j
4)]

P (Y = 0|x01, x02, xi3, x
j
4) = [1− q1 + q1P (Y1 = 0|x01, x02)]× [1− q2 + q2P (Y2 = 0|xi3, x

j
4)]

P (Y = 0|x11, x02, xi3, x
j
4) = [1− q1 + q1P (Y1 = 0|x11, x02)]× [1− q2 + q2P (Y2 = 0|xi3, x

j
4)]

P (Y = 0|x01, x12, xi3, x
j
4) = [1− q1 + q1P (Y1 = 0|x01, x12)]× [1− q2 + q2P (Y2 = 0|xi3, x

j
4)]

Since q1 is a probability which is no less than zero, multiply q1 to Inequality 21
we get

q1P (Y1 = 0|x11, x12)+q1P (Y1 = 0|x01, x02) > q1P (Y1 = 0|x11, x02)+q1P (Y1 = 0|x01, x12)

Add (1− q1) to every item,

[1− q1 + q1P (Y1 = 0|x11, x12)] + [1− q1 + q1P (Y1 = 0|x01, x02)] >

[1− q1 + q1P (Y1 = 0|x11, x02)] + [1− q1 + q1P (Y1 = 0|x01, x12)]

Since 1− q2 + q2P (Y2 = 0|xi3, x
j
4) = 1− q2P (Y2 = 1|xi3, x

j
4), which is no less than

zero, multiply it with the above inequality,

[1− q1 + q1P (Y1 = 0|x11, x12)][1− q2 + q2P (Y2 = 0|xi3, x
j
4)]

+ [1− q1 + q1P (Y1 = 0|x01, x02)][1− q2 + q2P (Y2 = 0|xi3, x
j
4)] >

[1− q1 + q1P (Y1 = 0|x11, x02)][1− q2 + q2P (Y2 = 0|xi3, x
j
4)]

+ [1− q1 + q1P (Y1 = 0|x01, x12)][1− q2 + q2P (Y2 = 0|xi3, x
j
4)]

which is equivalent with Inequality 20.
It is easy to prove the transitivity of monotonic constraints in the proposed

model. The process is similar as this one, which will not be shown here.

Fig. 5: Sub-synergy in one layer BN (left) and Noisy-Or BN (right).


