
Anomaly Detection in Vertically Partitioned
Data by Distributed Core Vector Machines

Marco Stolpe1, Kanishka Bhaduri2, Kamalika Das3, and Katharina Morik1

1 TU Dortmund, Computer Science, LS 8, 44221 Dortmund, Germany
2 Netflix Inc., Los Gatos, CA 94032, USA
3 UARC, NASA Ames, CA 94035, USA

Abstract. Observations of physical processes suffer from instrument
malfunction and noise and demand data cleansing. However, rare events
are not to be excluded from modeling, since they can be the most inter-
esting findings. Often, sensors collect features at different sites, so that
only a subset is present (vertically distributed data). Transferring all data
or a sample to a single location is impossible in many real-world applica-
tions due to restricted bandwidth of communication. Finding interesting
abnormalities thus requires efficient methods of distributed anomaly de-
tection.
We propose a new algorithm for anomaly detection on vertically dis-
tributed data. It aggregates the data directly at the local storage nodes
using RBF kernels. Only a fraction of the data is communicated to a cen-
tral node. Through extensive empirical evaluation on controlled datasets,
we demonstrate that our method is an order of magnitude more commu-
nication efficient than state of the art methods, achieving a comparable
accuracy.

Keywords: 1-class learning, core vector machine, distributed features,
communication efficiency

1 Introduction

Outlier or anomaly detection [8] refers to the task of identifying abnormal or
inconsistent patterns in a dataset. It is a well studied problem in the literature
of data mining, machine learning, and statistics. While outliers are, in general,
deemed as undesirable entities, their identification and further analysis can be
crucial to many tasks such as fraud and intrusion detection [7], climate pattern
discovery in Earth sciences [29], quality control in manufacturing processes [15],
and adverse event detection in aviation safety applications [11].

Large amounts of data are accumulated and stored in an entirely decentral-
ized fashion. In cases where storage, bandwidth, or power limitations prohibit
the transfer of all data to a central node for analysis, distributed algorithms are
needed that are communication efficient, but nevertheless accurate. For exam-
ple, the high amount of data in large scale applications such as Earth sciences
makes it infeasible to store all the data at a central repository. Communication



2 M. Stolpe, K. Bhaduri, K. Das, K. Morik

is one of the most expensive operations in wireless networks of battery-powered
sensors [3] and mobile devices [6].

Research has focused on horizontally partitioned data [24], where each node
stores a subset of all observations. In contrast, many applications such as the
detection of outliers in spatio-temporal data have the observations vertically par-
titioned, i.e. each node stores different feature sets of the (same set of) observa-
tions. For instance, at the NASA’s Distributed Active Archive Centers (DAAC),
all precipitation data for all locations on the earth’s surface can be at one data
center while humidity observations for the same locations can be at another
data center. Another example are oceanic water levels and weather conditions
recorded by spatially distributed sensors over one day before a Tsunami. Only
few communication efficient algorithms have been proposed for the vertically par-
titioned scenario. This task is particularly challenging, if the analysis depends
on a combination of features from more than a single data location.

In this paper, we introduce a distributed method for 1-class learning which
works in the vertically partitioned data scenario and has low communication
costs. In particular, the contributions of this paper are:

– A new method for distributed 1-class learning on vertically partitioned data
is proposed, the Vertically Distributed Core Vector Machine (VDCVM).

– It is theoretically proven and empirically demonstrated that the VDCVM
can have an order of magnitude lower communication cost compared to a
current state of the art method for distributed 1-class learning [10].

– The anomaly detection accuracy of VDCVM is systematically assessed on
synthetic and real world datasets of varying difficulty. It is demonstrated
that VDCVM can have similar accuracy as the state of the art [10] while
reducing communication cost.

The rest of this paper is organized as follows. In the next section (Section 2)
we discuss some work related to the task of outlier detection. Relevant back-
ground material concerning traditional and distributed 1-class learning is dis-
cussed in Section 3. Details about the core algorithmic contribution of VDCVM
are presented in Section 4. We demonstrate the performance of VDCVM in
Section 5. Finally, we conclude the paper in Section 6.

2 Related Work

Several researchers have developed methods for parallelizing or distributing the
optimization problem in SVMs. This is particularly useful when the datasets
are large and the computation cannot be executed on a single machine. The
cascade SVM by Graf et al. [14] uses a cascade of binary SVMs arranged in an
inverted binary tree topology to train a global model. This method is guaranteed
to reach a global optimum. In a different method, Chang et al. [9] present a
parallel SVM formulation which reduces memory use through performing a row-
based, approximate matrix factorization, and which loads only essential data to
each machine to perform parallel computation. The solution to the optimization
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problem is achieved using a parallel interior point method (IPM) which computes
the update rules in a distributed fashion. Hazan et al. [16] presents a method for
parallel SVM learning based on the parallel Jacobi block update scheme derived
from the convex conjugate Fenchel duality. Unfortunately, this method cannot
guarantee optimality. In a related method, Flouri et al. [12] and Lu et al. [22]
have proposed techniques in which the computation is done by the local nodes
and then the central node performs aggregation of the results. In their method,
SVMs are learned at each node independently and then the SVs are passed onto
the other nodes for updating the models of the other nodes. This process has
to be repeated for a few iterations to ensure convergence. Another interesting
technique is the ADMM-based consensus SVM method proposed by Forero et al.
[13] where the authors build a global SVM model in a sensor network without any
central authority. The proposed algorithm is asynchronous in which messages are
exchanged only among the neighboring nodes.

The aforementioned methods distribute the SVM problem, but do not fo-
cus on outlier detection. Those can be detected using unsupervised, supervised,
or semi-supervised techniques [17, 8]. In the field of distributed anomaly detec-
tion, researchers have mainly focused on the horizontally distributed scenario.
In the PBay algorithm by Lozano and Acuna [21], a master node first splits the
data into separate chunks for each processor. Then the master node loads each
block of test data and broadcasts it to each of the worker nodes. Each worker
node then executes a distance based outlier detection technique using its local
database and the test block. Hung and Cheung [18] present a parallel version of
the basic nested loop algorithm which is not suitable for distributed computation
since it requires all the dataset to be exchanged among all the nodes. Otey et
al. [24] present a distributed algorithm for mixed attribute datasets. Angiulli et
al. [1] present a distributed distance-based outlier detection algorithm based on
the concept of solving set which can be viewed as a compact representation of
the original dataset. The solving set is such that by comparing any data point
to only the elements of the solving set, it can be concluded if the point is an
outlier or not. More recently, Bhaduri et al. [2] have developed a distributed
method by using an efficient parallel pruning rule. For the vertically partitioned
scenario, Brefeld et al. [4] use co-regularisation and block coordinate descent for
least squares regression. Lee et al. [20] have proposed a separable primal formu-
lation of the SVM training local SVM models and combining their predictions.
While their algorithm can be extended to anomaly detection, their main focus is
on supervised learning. A technique more focused on anomaly detection in the
vertically partitioned scenario is proposed by Das et al. [10] for Earth science
datasets. It trains local 1-class models and reduces communication by a pruning
rule. This technique is used for comparisons and discussed in details in Sec. 3.3.

3 The Problem of 1-class Learning

The next sections introduce important notations by giving some background
information on 1-class learning and the problem of vertically partitioned data.
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3.1 Support Vector Data Description

The task of data description, or 1-class classification [23], is to find a model that
well describes a training set of observations. The model can then be used to check
whether new observations are similar or dissimilar to the previously seen data
points and mark dissimilar points as anomalies or outliers. It has been shown
by Tax and Duin [27] that instead of estimating the data distribution based on
a training set, it is more efficient to compute a spherical boundary around the
data. This method, called the Support Vector Data Description (SVDD), allows
for choosing the diameter of an enclosing ball in order to control the volume of
the training data that falls within the ball. Observations inside the ball are then
classified as normal whereas those outside the ball are treated as outliers.

Given a vector space X and a set S = {x1, . . . ,xn} ⊆ X of training instances,
the primal problem is to find a minimum enclosing ball (MEB) with radius R
and center c around all data points xi ∈ S:

min
R,c

R2 : ||c− xi||2 ≤ R2, i = 1, . . . , n

When the input space is not a vector space or the decision boundary is non-
spherical, observations may be mapped by ϕ : X → F to a feature space F
for which an inner product is defined. The explicit computation of this mapping
to an (possibly) infinite dimensional space can be avoided by use of a kernel
function k : X × X → R, which computes the inner product in F between
the input observations. The dual problem after the kernel transformation then
becomes

max
α

n∑
i=1

αik(xi,xi)−
n∑

i,j=1

αiαjk(xi,xj) (1)

s.t. αi ≥ 0, i = 1, . . . , n,

n∑
i=1

αi = 1

Here α = (α1, . . . , αn)T is a vector of Lagrange multipliers and the primal vari-
ables can be recovered using

c =

n∑
i=1

αiϕ(xi), R =
√
αTdiag(K)− αTKα

where Kn×n = (k(xi,xj)) is the kernel matrix. After optimal αs are found, the
model consists of all data points for which αi > 0, called the support vectors
(set SV ), and the corresponding αs. An observation x is said to belong to the
training set distribution if its distance from the center c is smaller than the
radius R, where the distance is expressed in terms of the support vectors and
the kernel function as

||c− ϕ(x)||2 = k(x,x)− 2

|SV |∑
i=1

αik(x,xi) +

|SV |∑
i,j=1

αiαjk(xi,xj) ≤ R2
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It can be shown [28] that for kernels k(x,x) = κ (κ constant), that map all input
patterns to a sphere in feature space, (1) can be simplified to the optimization
problem

max
α
−αTKα : α ≥ 0, αT1 = 1 (2)

where 0 = (0, . . . , 0)T and 1 = (1, . . . , 1)T .
Whenever the kernel satisfies k(x,x) = κ, any problem of the form (2) is an

MEB problem. For example, Schölkopf [25] proposed the 1-class ν-SVM that,
instead of minimizing an enclosing ball, separates the normal data by a hyper-
plane with maximum margin from the origin in feature space. If k(x,x) = κ, the
optimization problems of the SVDD and the 1-class ν-SVM with C = 1/(νn)
are equivalent and yield identical solutions.

3.2 Core Vector Machine (CVM)

Bǎdoiu and Clarkson [5] have shown that a (1+ε)-approximation of the MEB can
be computed with constant time and space requirements. Their algorithm only
depends on ε, but not on the dimension m or the number of training examples n.
Tsang et al. [28] have adopted this algorithm for kernel methods like the SVDD.

Let S be the training data as described in Section 3.1. For an ε > 0, the
ball B(c, (1 + ε)R) with center c and radius R is an (1 + ε)-approximation of
the MEB(S), the minimum enclosing ball that contains all data points of S. A
subset Q ⊆ S is called the core set of S if the expansion of MEB(Q) by the
factor (1 + ε) contains S.

The Core Vector Machine (CVM) algorithm shown in Figure 1 starts with
an empty core set and extends it consecutively by the furthest point from the
current center in feature space until all data is contained in an approximate MEB.
The algorithm uses a modified kernel function k̃ for the reason that optimization
problem (1) yields a hard margin solution, but can be transformed into a soft
margin problem [19] by introducing a 2-norm error on the slack variables, i.e. by
replacing C

∑n
i=1 ξi with C

∑n
i=1 ξ

2
i , and replacing the original kernel function

k with a new kernel function k̃ : ϕ̃→ F̃ , where

k̃(xi,xi) = k(xi,xj) +
δij
C
, δij =

{
1 : i = j

0 : i 6= j
(3)

The new kernel again satisfies k̃(z, z) = κ̃ with κ̃ being constant.
The furthest point calculation in step 2 takes O(|St|2 + n|St|) time for the

tth iteration. However, as is mentioned by Schölkopf [26], the furthest point
obtained from a randomly sampled subset S ′ ⊂ S of size 59 already has a
probability of 95% to be among the furthest 5% points in the whole dataset S.
By using this probabilistic speed-up strategy, i.e. determining the furthest point
on a small sampled subset of points in each iteration, the running time for the
furthest point calculation can be reduced to O(|St|2). As shown by Tsang et
al. [28], with probabilistic speed-up and a standard QP solver, the CVM reaches
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Core Vector Machine (CVM)

S: training set, consisting of n examples
St ⊆ S: core set of S at iteration t
ct: center of the MEB around St in feature space
Rt: radius of the MEB

1. Initialization: Uniformly at random choose a point z ∈ S. Determine a point
za ∈ S that is furthest away from z in feature space, then a point zb ∈ S that is
furthest away from za. Set S0 := {za, zb} and the initial radius

R0 :=
1

2

√
2κ̃− 2κ̃(za, zb)

2. Furthest point calculation: Find z ∈ S such that φ̃(z) is furthest away from
ct. The new core set becomes St+1 = St ∪ {z}. The squared distance of any point
from the center in F̃ can be calculated using the kernel function

||ct − φ̃(z`)||2 =
∑

zi,zj∈St

αiαj k̃(zi, zj)− 2
∑
zi∈St

αik̃(zi, z`) + k̃(z`, z`)

3. Termination check: Terminate if all training points are inside the (1 + ε)-ball
B(ct, (1 + ε)Rt) in feature space, i.e. ||ct − φ̃(z)|| ≤ Rt(1 + ε).

4. MEB calculation: Find a new MEB(St+1) by solving the QP problem

max
α
−αT K̃α : α ≥ 0, αT1 = 1, K̃ = [k̃(zi, zj)]

on all points of the core set. Set Rt+1 :=
√
κ̃− αT K̃α.

5. t := t+ 1, then go to step 2.

Fig. 1. Core Vector Machine (CVM) algorithm by Tsang et al. [28]

a (1+ε)2-approximation of the MEB with high probability. The total number of
iterations is bounded by O(1/ε2), the running time by O(1/ε8), and the space
complexity by O(1/ε4). The running time and resulting core set size are thus
constant and independent of the size of the whole dataset.

The CVM already seems to be better suited for a network setting than the
1-class ν-SVM, as it works incrementally and could sample only as much data as
needed from the storage nodes. However, it is no distributed algorithm. Section 4
discusses how the CVM can be turned into a distributed algorithm that is even
more communication efficient.

3.3 Vertically Distributed 1-class Learning

In the vertically partitioned data scenario, each data site has all observations,
but only a subset of the features. Let P0, ..., Pk be a set of nodes where P0 is des-
ignated as the central node and the others are denoted as the data nodes. For the
rest of the paper, it is assumed that all nodes can also be used for computations.

Let the dataset at node Pi (∀i > 0) be denoted by Si = [x
(i)
1 . . . x

(i)
n ]T consisting
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Fig. 2. Components of the VDCVM

of n rows where x
(i)
j ∈ Rmi and mi is the number of variables in the ith site.

Here, each row corresponds to an observation and each column corresponds to
a variable (feature). There should be a one-to-one mapping between the rows
across the different nodes. There exist crossmatching techniques that can be used
to ensure that. The global set of features A is the vertical concatenation of all
the m =

∑k
i=1mi features over all nodes and is defined as A = [A1A2 . . . Ak]

(using Matlab notation). Hence, the global data S is the n ×m matrix defined
as the union of all data over all nodes, i.e. S = [x1 . . . xn]T with xj ∈ Rm. The
challenge is to learn an accurate 1-class model without transferring all data to
a central node.

Das et al. [10] have proposed a synchronized distributed anomaly detection
algorithm (called VDSVM in this paper) for vertically partitioned data based on
the 1-class ν-SVM. At each data node Pi, a local 1-class model is trained. Points
identified as local outliers are sent to the central node P0, together with a small
sample of all observations. At the central node, a global model is trained on the
sample and used to decide if the outlier candidates sent from the data nodes are
global outliers or not. The VDSVM cannot detect outliers which are global due
to a combination of attributes. However, the algorithm shows good performance
if global outliers are also local outliers. Moreover, in the application phase, the
algorithm is highly communication efficient, since the number of outlier candi-
dates is often only a small fraction of the data. A major drawback is that the
fixed-size sampling approach gives no guarantees or bounds on the correctness of
the global model. For a user, it is therefore difficult to set the sampling size cor-
rectly, in advance. Moreover, during training, no other strategies than sampling
are used for reducing communication costs. We address these issues in this pa-
per by developing a distributed version of the Core Vector Machine (VDCVM)
which is more communication-efficient in the training phase and samples only
as many points as needed, with known bounds for the correctness of the global
model.

4 Vertically Distributed CVM (VDCVM)

In this section, we introduce the Vertically Distributed Core Vector Machine
(VDCVM). It consists of the components shown in Figure 2. The Coordinator
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communicates with Worker components that reside locally on the data nodes
and can access the values of the local feature subsets directly, without any net-
work communication. While the termination check and the QP optimization
(steps 3 and 4 of the CVM algorithm in Figure 1) are still done centrally by
the Coordinator, the sampling and furthest point calculations are combined in a
single step and done in parallel by the Worker components, as described in the
next sections.

4.1 Distributed Furthest Point Calculation

In any iteration t, the original CVM algorithm (Figure 1) with probabilistic
speedup draws a fixed-sized sample of data points from the whole dataset. Let Vt
denote the sample drawn at iteration t and |Vt| denote its size. From the sample,
the CVM determines the point zt furthest away from the current center ct in
feature space by calculating the squared distance ||ct − φ̃(z`)||2 for each sample
point z` ∈ Vt. Since k̃(z`, z`) = κ̃ is constant and the sum

∑
zi,zj∈St αiαj k̃(zi, zj)

does not depend on the sampled points, the furthest point calculation at iteration
t can be simplified to

zt = argmaxz`∈Vt

− ∑
zj∈St

αj k̃(zj , z`)

 (4)

Let z[i] denote the ith component of vector z. With the linear dot product
kernel k(zi, zj) = 〈zi, zj〉, the sum in (4) could be written as

zt = argminz`∈Vt

∑
zj∈St

αj〈zj , z`〉 = argminz`∈Vt

m∑
i=1

∑
zj∈St

αjzj [i]z`[i] (5)

Since the dot product kernel multiplies each component i of the z` and zj
vectors independently, we only need the index i of the vector component and all
α values for calculating the partial inner sums separately on each node

v
(p)
` =

mp∑
i=1

∑
z
(p)
j ∈St

αj z
(p)
j [i] z

(p)
` [i] (6)

over its subset of attributes Ap for all random indices ` ∈ It and send these
partial sums back to the coordinator. The coordinator then aggregates the sums
and determines the index `max ∈ It of the furthest point:

`max = argmin`∈It

k∑
p=1

v
(p)
` (7)

Each data node thus only transmits a single numerical value for each point
of the random sample, instead of sending all attribute values of the sampled
points to the central node.
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VDCVM Coordinator

on workerInitialized():
if received message from all workers then

Determine random index set I0 for data points.
Send getPartialSums( I0 ) to all workers.

on getPartialSumsAnswer( v
(p)
` ∀` ∈ It ):

Store partial sums received from worker p.
if received message from all workers then

`max = argmin`∈It
∑k
p=1 v

(p)
`

Send getData( {`} ) to all repositories.

on getDataAnswer( {zt[1 . . .mp]} ):
Store attribute values received from Data Repository p.
if received message from all repositories then

Construct furthest point zt from attribute values.
if ||ct − φ(zt)|| ≤ (1 + ε) ·Rt then

Broadcast stop and return model.
else
S := S ∪ {zt}.
Calculate new MEB(St+1). (Solve QP problem.)

Rt+1 :=
√
κ̃− αT K̃α.

Determine random index set It for data points.
Send getPartialSums( It, αs ) to workers.
t := t+ 1.

Fig. 3. Operations of the VDCVM Coordinator

Splitting (4) into partial sums can be done for the linear kernel, but it is im-
possible or at least non-trivial for non-linear mappings. For example, the SVDD
is usually used with the RBF kernel k(zi, zj) = e−γ||zi−zj ||2 and the CVM re-
quires k(x,x) to be constant, which holds for the RBF kernel. One possible
choice for a kernel is the summation of kernels defined on the local attributes
only, like a combination of RBF kernels (see also Lee et al. [20]):

k(zi, zj) =

k∑
p=1

e−γp||z
(p)
i −z

(p)
j ||

2

(8)

In Section 5 it is empirically shown that such a combination yields a similar
accuracy as VDSVM on most of the tested datasets.

4.2 The VDCVM Algorithm

The Coordinator retrieves meta information attached to the datasets from all
Data Repository components. As initial point z, the algorithm takes the mean
vector of the minimum and maximum attribute values. Thereby, z does not
need to be sampled from the network. The constant κ̃ is calculated and all data
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VDCVM Worker

on initializeWorker( parameters, z, κ̃ ):
Store C, γ, z and κ̃.
Set S = ∅, t := 0.
Send workerInitialized to Coordinator.

on getPartialSums( It, αs ):
if t ≥ 2 then store new αs.
S := S ∪ {z`max [1 . . .mp]}.
Calculate v

(p)
` ∀` ∈ It — see (6) and (7)

on stop():
Free all resources.

Fig. 4. Operations of the VDCVM Worker

structures (the core set) are initialized. These are transmitted together with the
parameters C and γ1, . . . , γp to all Worker components.

The main part of the Coordinator is shown in Figure 3. The indices of |Vt|
random data points are sampled and sent to the workers in a request for the
partial sums v`. When the Coordinator has received all partial sums, it can
calculate the index `max of the furthest point zt and ask the repositories for
their feature values. If the termination criterion is not fulfilled, the coordinator
goes on with solving the QP problem and calculates the new radius Rt+1. It
then determines a new random index set It and requests the next partial sums
from the workers. It furthermore transmits all updated α values.

Based on the updated αs, each Worker gets the local components of points

zt by its furthest index `max. It then calculates v
(p)
` for all random indices ` ∈ It

received from the Coordinator, according to Equation (7). The partial sums are
then sent back to the Coordinator which continues with the main algorithm.

4.3 Analysis of Running Time and Communication Costs

The VDCVM performs exactly the same calculations as the original CVM al-
gorithm. It therefore inherits all properties of the CVM, including the constant
bound on the total number of iterations (see Section 3.2) and the (1 + ε)2-
approximation guarantee for the calculated MEB.

Regarding communication costs, we assume that messages can be broadcast
to all workers, that training point indices are represented by 4 bytes and real
numbers by 8 bytes. The total number of bytes transferred (excluding initializa-
tion and message headers) when sending all m attributes of n points in a sample
to a central server for training (as does VDSVM) is

Bcentral(n) = n · 4 + n ·m · 8
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Table 1. Numbers of iterations up to which VDCVM is more communication efficient
than VDSVM, for different numbers of nodes k and attributes m, s = 59.

m k=1 k=2 k=5 k=10 k=25

10 1,042 924 570 0 -
25 2,782 2,664 2,310 1,720 0
50 5,682 5,564 5,210 4,620 2,850

100 11,482 11,364 11,010 10,420 8,650

In contrast, the bytes transferred by VDCVM up to iteration T are

BVDCVM(T ) = [T · s · 4 + T · s · k · 8] + [T · 4 + T ·m · 8] +

[
T (T + 1)

2
· 8
]

The coordinator at the central node first broadcasts s index values to all
data nodes and receives partial kernel sums for each, from k workers (first term
in brackets). Then, the index value of the furthest point is broadcast to all data
nodes and the coordinator receives its m feature values (second term). The total
number of αs transmitted is quadratic in the number of iterations (last term).

The break even point Tworse, i.e. the iteration from when on the VDCVM has
worse communication costs than central sampling, can be calculated by setting
Bcentral(n) with n = Ts equal to BVDCVM(T ) and solving for T :

Tworse = 2 ·m · (s− 1)− 2 · k · s (9)

According to (9), the communication efficiency of VDCVM depends on the
number of attributes per node. Table 1 contains values of Tworse for different
numbers of data nodes k and attributes m. The number of iterations occuring
in practice is often much lower than those in Table 1 (cf. Section 5).

5 Experimental Evaluation

In this section we demonstrate the performance of VDCVM on a variety of
datasets and compare it to VDSVM and a single central model. In 1-class learn-
ing, the ground truth about the outliers is often not available. For a systematic
performance evaluation of the algorithms, synthetic data containing known out-
liers was therefore generated. In addition, the methods also have been evaluated
on three real world datasets with known binary class labels.

Synthetic Data Figure 5 visualizes the generated datasets for two dimensions.
The points were generated randomly in a unit hypercube of m dimensions (for
m = 2, 4, 8, 16, 32, 64). The different types of data pose varying challenges to the
algorithms when vertically partitioned among network nodes. The easiest sce-
nario is the one in which each attribute reveals all information about the label,
represented by SepBox. For Gaussian, the means µ+,− and standard deviations
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Fig. 5. Generated normal data (grey) and outliers (black) in two dimensions.

Table 2. Number of data points (total, training, test and validation set)

Dataset Total Training
Test Validation

normal outliers normal outliers

Random datasets 60,000 20,000 10,000 10,000 10,000 10,000
letter 1,000 400 150 150 150 150

kddcup-99 60,000 20,000 10,000 10,000 10,000 10,000
face 20,000 10,000 2,500 2,500 2,500 2,500

σ+,− of two Gaussians were chosen randomly and independently for each at-
tribute (with µ+,− ∈ [0.1, 0.9] and σ+,− ∈ [0, 0.25]). If the Gaussians overlap in
each single dimension, they may nevertheless become separable by a combination
of attributes. In the Box dataset, an outlier is a point for which ∃x[i] > ρ with
ρ = 0.5(1/m) (i.e. the normal data lies in half the volume of the m-dimensional
unit hypercube). Separation is only given by all dimensions in conjunction. The
same is true for the Linear dataset, where the normal data is separated from
the outliers by the hyperplane h = {x |x/||m|| − 0.5||m|| = 0}.

Real World Data All real world data was taken from the CVM authors’ web
site4. The letter dataset consists of 20,000 data points for the 26 letters of
the latin alphabet, each represented by 16 attributes. For the experiments, 773
examples of the letter G were taken as normal data and 796 of letter T extracted
as outliers. The KDDCUP-99 data consists of 5,209,460 examples of network
traffic described by 127 features. The task is to differentiate between normal
and bad traffic patterns. The extended MIT face dataset contains 513,455 images
consisting of 19x19 (361) grey scale values. The task is to decide if the image
contains a human face or not.

5.1 Experimental Setup

VDCVM was implemented in Java using the Spread Toolkit5. VDSVM was
implemented in Python using LibSVM.

Table 2 shows that 60,000 points were generated for each of the random
datasets. From each of the real-world datasets, only a random sample was taken

4 http://c2inet.sce.ntu.edu.sg/ivor/cvm.html
5 http://www.spread.org
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Fig. 6. Performance of VDCVM, VDSVM and a central model with standard RBF
kernel on the generated datasets.

(column Total). These sets were randomly splitted further into independent sets
for training, testing (i.e. parameter optimization) and validation, with sizes as
shown. The central and local VDSVM models were trained on the whole train-
ing set, while VDCVM was allowed to sample up to the same amount of data.
The methods require different parameters γ and ν (or C), since VDSVM uses a
standard RBF kernel and the 1-norm on its slack variables, while VDCVM uses
the 2-norm and a combination of local kernels. For VDSVM, 75 random param-
eter combinations were tested, and for VDCVM 100 combinations, alternatingly
conducting a local and global random search. All error rates shown in the next
section result from a single run on the validation set, with tuned parameters.

5.2 Results

The plots in Figure 6 compare the performance of VDCVM to a single central 1-
class model with standard RBF kernel and to VDSVM, i.e. local 1-class models
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Table 3. Results on real world datasets (m: attributes, k: nodes, err: error rate in %,
bytes: amount of bytes transferred).

Dataset m k
Central model VDSVM VDCVM

err Kbytes err Kbytes err Kbytes

letter 16 2 10.000 54 9.333 54 6.500 9
4 11.000 54 9.333 54 10.500 16

kddcup-99 127 2 0.285 20,401 0.220 20,401 0.000 1,206
4 0.450 20,401 0.290 20,401 0.002 1,526

face 361 2 6.220 29,006 7.900 29,006 4.940 808
4 5.580 29,006 6.880 29,006 5.100 969
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Fig. 7. Bytes transferred (log scale) by VDSVM and VDCVM with a growing number
of iterations (T), for 10 (left) and 500 (right) attributes, s = 59, k = 1.

which communicate only outlier candidates to the central model for testing. The
error rates are averaged over the results obtained for different numbers of nodes
(2, 4, 8, 16, 32).

All methods, including the central 1-class model, have difficulties to sepa-
rate the Linear and Box datasets in higher dimensions. In low dimensions, the
combined RBF kernel has worse error rates than a standard RBF kernel and
VDSVM’s ensemble of local classifiers. VDCVM shows similar or even slightly
better performance on the Gaussian and SepBox datasets, whose attribute val-
ues provide more information about the label locally. Even for the maximum
number of 20,000 points allowed to sample (VDCVM max), it already has much
lower communication costs than VDSVM in most cases. When the data is easy
to separate (Gaussian and SepBox), the real number of sampled points is often
lower, resulting in even less communication (see VDCVM real).

All methods achieve similar error rates on the real world datasets (see Ta-
ble 3), with VDCVM being more communication efficient. The central 1-class
model performing worse in some cases can be explained by VDSVM using an
ensemble of (local and global) classifiers, increasing chances by at least one of
them making the correct prediction. The better performance of VDCVM might
be explained by better parameters found with the random tuning strategy.
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The plots in Figure 7 show how the number of transmitted bytes grows with
the number of iterations, for a fixed number of features. As shown in the left
figure for 10 features, the crossover occurs at 1,000 iterations. The right figure
plots the transmitted bytes for 500 features. Here, the VDCVM is at least an
order of magnitude more communication efficient for all plotted iterations of the
algorithm. In general, the more attributes are stored at each data node, the more
can be saved in comparison to transmitting all data to the central node.

6 Conclusion

In this paper we have developed VDCVM – a distributed algorithm for anomaly
detection from vertically distributed datasets. VDCVM is based on the recently
proposed Core Vector Machine algorithm which uses a minimum enclosing ball
formulation to describe the data. The algorithm solves local problems which
are iteratively coordinated with the central server to compute the final solution.
The proposed algorithm can be as accurate as state of the art methods, with an
order of magnitude less communication overhead in the training phase. Extensive
experiments on datasets containing ground truth demonstrate the validity of the
claims. In future work, we want to explore other combinations of local kernels
and learning tasks such as distributed support vector clustering using VDCVM.
Moreover, an implementation on embedded devices remains to be done, together
with measuring real energy consumption.
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