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Abstract. While recent supervised dictionary learning methods have
attained promising results on the classification tasks, their performance
depends on the availability of the large labeled datasets. However, in
many real world applications, accessing to sufficient labeled data may
be expensive and/or time consuming, but its relatively easy to acquire a
large amount of unlabeled data. In this paper, we propose a probabilistic
framework for discriminative dictionary learning which uses both the
labeled and unlabeled data. Experimental results demonstrate that the
performance of the proposed method is significantly better than the state
of the art dictionary based classification methods.
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1 Introduction

In the recent decade, Sparse Representation (SR), and Dictionary Learning (DL)
have gained much interest in the computer vision and pattern recognition areas
[5]. This attention is due to the fact that many natural signals (like natural im-
ages) are sparse in their nature and can be approximated or even fully recovered
by their sparse codes. A common SR formulation consists of a sparsity term and
a reconstructive term as shown in the following expression

[Â, D̂] = argmin
A,D

N∑
i=1

∥xi −Dαi∥22 + γ∥αi∥1, (1)

where xi is the i-th input signal, D is the dictionary, A = [α1, ..., αN ] represents
the sparse codes and γ is a regularization term. This problem is not fully convex,
but by fixing A or D, and minimizing the other one, the problem can be treated
as a convex problem. Methods such as K-SVD [1] can be used to find a proper
dictionary and a sparse code simultaneously.
Recently, Supervised Dictionary Learning (SDL) methods [6],[23], [2], [3] have
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used DL for classification tasks by adding discriminative terms to the objective
function of Eq. 1. [6] added a Fisher Discriminant Analysis (FDA) term to its
objective function to make the sparse codes more discriminative. The method
proposed in [23] incorporated a logistic loss function into the problem definition
and learned a classifier and a dictionary simultaneously. Zhang et al. [2] modified
the original K-SVD method by using the classification error as a part of objec-
tive function, allowing it to apply as a sparse coding classifier. Wright et al. [3]
used the training signals as dictionary atoms (basis). Using this dictionary, new
signals can be represented as a sparse linear combination of the training signals.
The discrimination will be performed based on the representation error caused
by considering only coefficients corresponding to atoms related to each class and
ignoring all other atoms.
Despite their merits, SDL methods have two main drawbacks. Firstly, the regu-
larization parameters are usually set using cross-validation technique, which bi-
ases their cost functions toward data points that are poorly represented. Hence,
they are easily affected by noisy, outlier, and mislabeled training data. Secondly,
the performance of the SDL methods is highly dependent on the number of the
training samples. Unfortunately, in many pattern classification problems, acces-
sibility to a large set of the labeled data may not be possible due to the fact that
labeling data is expensive and time consuming. On the other hand, unlabeled
data points are easily available in abundance which have motivated machine
learning researchers to develop semi-supervised learning methods which utilize a
large amount of unlabeled data, along with the limited number of labeled data,
to build better models for classification tasks.
One of the most well-known methods for semi-supervised classification (SSL) is
Semi-Supervised Support Vector Machine (S3VM) [4], which regards the class
label of unlabeled samples as extra unknowns and optimizes the classifier pa-
rameters and unknown labels simultaneously. Another popular algorithm for
semi-supervised learning is Co-training [8], which assumes that features (data
points) have multiple views. Based on this assumption, this algorithm utilizes
the confident samples in one view to update the other view. However, in many
applications such as image classification, each image has only one feature vector
and hence it is difficult to apply Co-Training.
Recently, Shrivastava et al. [9] have proposed a semi-supervised dictionary learn-
ing (SSDL) algorithm for classification tasks. This algorithm uses an iterative
process which goes as follows. In the first iteration, the dictionaries (one dictio-
nary for each class) are learned using only the labeled data. Then, the class labels
of the unlabeled data points are roughly inferred based on how well they are re-
constructed by the dictionaries of the different classes. In the next iterations,
the confident unlabeled data points are used to further refine the dictionaries.
In order to improve the discrimination power of the dictionaries, this method
imposes some constraints on the DL task, in which the data samples belonging
to some particular classes with high confidence, should be well represented by
the corresponding dictionaries and poorly represented by other dictionaries. The
Fisher Discriminant Analysis (FDA) is also used to enhance the discrimination
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of the sparse codes for the labeled data.
Although the results of this method is better than the state of the art discrim-
inative DL methods, it has several shortcomings. Firstly, due to the learning
one dictionary for each class, it cannot scale to problems with large number of
classes. Secondly, using FDA only for labeled data may result in overfitting due
to the fact that the number of the labeled data is much smaller than that of the
unlabeled data. Third, it does not consider the underlying geometrical structure
of both the labeled and unlabeled data.
To overcome these shortcomings, in this paper, we propose a novel algorithm
to learn discriminative dictionaries for semi-supervised classification tasks. More
specifically, a single dictionary is learned jointly with a classifier in a MAP set-
ting, by which sharing features among different classes is allowed and it leads
to less computational cost and less risk of overfitting. We also introduce a new
discriminative term in our probabilistic framework by combining the methods of
Local Fisher Discriminant Analysis (LFDA) [7] and Locally linear Embedding
(LLE) [11] which preserves the global structure of all samples in addition to
enhancing the discrimination power of the dictionary. The contributions of this
paper are summarized as follows:

– Our method combines the LFDA, and LLE algorithms to increase the dis-
crimination power of the dictionary as well as preserving the geometrical
structure of both labeled and unlabeled data points, by which overfitting to
the labeled data is prevented.

– Our method furthermore integrates a multinomial Logistic regression clas-
sifier into the proposed probabilistic dictionary learning framework, which
improves the discrimination in the sparse codes of signals, and the discrimi-
nation in the classifier construction.

– The free parameters are estimated using the MAP estimation technique
which allows to avoid parameter tuning based on the cross-validation.

– The MAP parameters are efficiently estimated via the well-known feature-
sign search algorithm [12].

– Our approach is validated on various well-known digit recognition, face recog-
nition, and spoken letter classification benchmarks.

The remainder of this paper is organized as follows: The proposed probabilistic
model (MAP setup) for dictionary learning is introduced in Section 2. The op-
timization procedure for estimating MAP parameters is discussed in Section 3.
Experimental results are presented in Section 4. We conclude and discuss future
work in Section 5.

2 Proposed Method

In this section, we present our probabilistic framework for dictionary learning
which takes into account both the labeled and unlabeled data. Here, the in-
tuition is to improve the discriminativeness in the dictionary and to prevent
overfitting the (small-size) labeled data points by adding a classifier error term
and a geometrical preserving term into the proposed MAP setting respectively.
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2.1 Problem Formulation

Let XL = {(xi, yi), i = 1, ..., Nl} be the set of labeled data, and XU = {xj , j =
Nl + 1, ..., N} be the set of unlabeled data available for learning the dictionary,
where Nl and N are the number of labeled and total samples, respectively. Here,
xj ∈ RM denotes the j-th sample, yi ∈ {1, 2, ..., C} is the corresponding class
label of the i-th data point, C is the number of classes, and Nu = N −Nl is the
number of the unlabeled data points. Let D = [d1, ..., dK ] ∈ RM×K be the dic-
tionary with K atoms and A = [AL, AU ]K×N be the matrix of the sparse codes,
where AL = [α1, ..., αl]K×Nl

and AU = [αNl+1, ..., αN ]K×Nu
show the matrices

of the sparse codes of the labeled and unlabeled data respectively.
Here, we assume that each data point xi(i = 1, ..., N) can be represented as a
sparse linear combination of K dictionary atoms with additive zero-mean Gaus-
sian noise ϵi (ϵi ∼ N (0, σ2

i I)). Using this assumption, sparse codes can be consid-
ered as latent variables of the representation model. Consequently, the likelihood
of observing a specific sample x, given the dictionary (D) and its sparse code
(α) is modeled as a Gaussian:

P (x | D,α, σ2) ∼ N (Dα, σ2I). (2)

To model the classification process, we use the multinomial logistic regression
classifier which is defined as

P (y = i | α,w1, ..., wC) =
exp(wT

i α)∑C
j=1 exp(w

t
jα)

, i = 1, ..., C, (3)

where α and y are the sparse code of an ordinary sample x and its label respec-
tively, and W = [w1, ..., wC ] shows the parameter of the classifier.
In order to further enhance the discriminative power of the dictionary, some of
the previous DL methods [6], [9] have utilized the FDA algorithm, by which the
trace of the within-class scatter matrix of AL is minimized and the trace of the
between-class scatter matrix of AL is maximized.
However, in situations where the number of labeled data is small, the FDA may
overfit the labeled samples. Moreover, in cases where a large set of unlabeled sam-
ples is available, FDA cannot make use of unlabeled data. Another drawback of
the FDA algorithm is that its performance may be degraded if the samples in a
class form several separate clusters [10]. To circumvent these shortcomings, we
propose a new discrimination term based on a smooth combination of LFDA
algorithm and LLE algorithm, by which the topological structure of all the data
is preserved in addition to enhancing the discrimination power of the dictionary.
Precisely speaking, using LFDA algorithm, within-class scatter can be computed
locally, and so the within-class multimodality can be resolved. Using LLE, re-
liance on the global structure of all samples and information brought by labeled
samples is controlled.
In LFDA method, the local between-class scatter matrix SlB and the local



Lecture Notes in Computer Science: Authors’ Instructions 5

within-class scatter matrix SlW are defined as [7]

S(LB) =
1

2

N∑
i,j=1

W
(lb)
i,j (αi − αj)(αi − αj)

T , (4)

S(LW ) =
1

2

N∑
i,j=1

W
(lw)
i,j (αi − αj)(αi − αj)

T , (5)

where W
(lb)
i,j and W

(lw)
i,j are the N ×N matrices which are defined as

W
(lb)
i,j =

Pi,j(1/Nl − 1/Nlyi) if yi = yj
1/Nl if yi ̸= yj
0 otherwise,

(6)

W
(lw)
i,j =

{
Pi,j/Nlyi if yi = yj

0 otherwise,
(7)

where Nlyi denotes the number of the labeled samples in the class yi. In the
above equations, Pi,j shows the affinity value between xi and xj which is defined
as [7]

Pi,j = exp
(
− ∥xi − xj∥2

γiγj

)
, (8)

where the parameter γi represents the local scaling around xi as

γi = ∥xi − xk
i ∥, (9)

and xk
i is the k-th nearest neighbor of xi (a heuristic choice of k = 5 was shown

to be useful through experiments).
Using LLE, we try to preserve the intrinsic topological structure of the data
based on the notion of affinity preserving. In other words, by employing LLE,
the geometric structure of the data is retained by maintaining locally linear
relationships between sparse codes of close data points.
Given the set of the both labeled and unlabeled data points, LLE assumes that
each data point in the original space can be recovered using a linearly weighted
average of its neighbors. Based on this assumption, an optimal weight matrix
S∗ = [s∗ij ] is reconstructed by solving the following problem:

S∗ = argmin
S

N∑
i=1

∥xi −
∑

xj∈Nk(xi)

sijxj∥2, s.t. ∀i,
∑

xj∈Nk(xi)

sij = 1, (10)

where Nk(xi) demonstrates the set of k nearest neighbor of xi. The above opti-
mization problem can be solved as a constrained least-squares problem [18].
In order to utilize the information of the unlabeled data points more efficiently,
we consider certain assumptions about the general geometric properties of the
data. More precisely, in many applications, high dimensional data points are
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Fig. 1. Left: part of a one dimensional manifold, showing the deficiency of the Euclidian
distance (purple edges are shortcut edges), right: Geodesic curve between two points on
a manifold (solid line shows the geodesic curve and the dashed line shows the Euclidean
curve).

actually samples from a low-dimensional subspace of the actual feature space.
In these cases, we can make use of the Manifold assumption which is among the
most practical assumptions in semi-supervised learning tasks [19].
In the original LLE and LFDA algorithms, Euclidean distance is considered as
a measure of evaluating distance between data points. However, by considering
the manifold assumption, Euclidean distance measure may be misleading, since
two samples having a small Euclidean distance may be located far apart on the
underlying manifold of the data points (Fig. 1).
To circumvent this problem, we make use of geodesic distance as a distance mea-
sure between data points which enables us to determine the neighborhood of a
data point more precisely. The geodesic distance between two sample xi and xj

is defined as the length of shortest curve between xi and xj lying on the manifold
of the data points (Fig. 1).
Since the underlying manifold of the samples is unknown (we only have data
which are finite samples of the manifold), we cannot find the exact geodesic dis-
tance between each two data points. Hence, in this paper, we use the idea of [20]
to approximate the geodesic distance between both labeled and unlabeled data
points. In [20], first, a k nearest neighborhood graph of all data is constructed
based on the Euclidean distance. Then, an iterative process is done to remove
the shortcut edges (shortcut edges connect those points of the graph which are
close to each other according to the Euclidean distance, but have large geodesic
distance on the manifold [20]). After refining the constructed graph based on
the idea of [20], we use an efficient shortest path algorithm to find the k near-
est neighbor of each data point. After computing the optimal weight matrix S∗

based on the geodesic distance, we try to minimize the following objective func-
tion in order to preserve the global structure of data in the sparse representation
space.

N∑
i=1

∥αi −
∑

xj∈NG
k (xi)

s∗ijαj∥2 = tr
(
AEAT

)
, (11)
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where NG
k (xi) demonstrates the set of k nearest neighbors of xi based on the

geodesic distance, and E = (I − S∗)T (I − S∗).
Now, we define SRLW and SRLB as the regularized local within-class scatter
matrix and the regularized local between-class scatter matrix respectively:

SRLW = (1− ϑ)ALLWAT + ϑAEAT (12)

SRLB = (1− ϑ)ALLBAT + ϑIK×K (13)

where ϑ ∈ [0, 1] is a trade-off parameter, and LLW and LLB are the graph
Laplacian matrix of the local within-scatter (SLW ) and the local between-class
scatter (SLB) matrices which are defined as

LLW = DLW −W (lw), LLB = DLB −W (lb), (14)

where DLW and DLB are diagonal N ×N matrices with

DLW
i,i =

N∑
j=1

W
(lw)
i,j , DLB

i,i =
N∑
j=1

W
(lb)
i,j . (15)

Another constraint that the sparse codes should satisfy is the sparsity constraint.
In order to enforce sparsity on A, we put a well-known Laplacian prior distribu-
tion on each sparse code which is shown as

αi ∼ Lap(αi | b) =
1

2b
exp

(
− ∥αi∥1

b

)
, (16)

where b is the scale parameter of the laplacian distribution. In order to encode
the sparsity constraint, the discriminative constraint by LFDA, and the global
constraint by LLE into our probabilistic model, we use Gibbs Random Field
(GRF). A set of random variables {αi}Ni=1 is said to be a GRF, if and only if
their joint distribution follows a Gibbs distribution. Hence, the joint distribution
must take the form

P (α1, ..., αN ) =
1

Z
exp

(
− 1

T
U(α1, ..., αN )

)
, (17)

where Z is the normalizing constant called the Partition Function, T is a constant
called the temperature (in this paper its assumed to be 1), and U(α1, ..., αN ) is
the energy function which in this paper is defined as

U(α1, ..., αN ) = N log 2b+
1

b

N∑
i=1

∥αi∥1 + tr
(
SRLW (A)

)
− tr

(
SRLB(A)

)
. (18)

For simplicity, we also put a Gaussian prior distribution on the dictionary and
the classifier parameters. Hence we have

P (D | σ2
d) ∝

K∏
i=1

N (di; 0, σ
2
dIM ), P (W | σ2

w) ∝
C∏

j=1

N (wj ; 0, σ
2
wIK). (19)
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To model the prior of the parameter Ξ = {σi(i = 1, ..., N), b, σd, σw}, we choose
the objective non-parametric Jeffreys prior, which has been demonstrated to
perform well for regression and classification tasks [21]. So, we have

P (Ξ) ∝
N∏
i=1

1

σ2
i

× 1

b
× 1

σ2
d

× 1

σ2
w

. (20)

The prior over σi encourages a low variance representation which means the
training data should properly fit the proposed representation model. The prior
over b encourages a sparser solution for the sparse codes which is the main aim of
the sparse representation based methods, and the prior over σd and σw decreases
the risk of overfitting the dictionary and the classifier respectively.
After defining the prior and the likelihood distributions, the posterior distribu-
tion of the latent variables (W,D,A,Ξ) given the observations (XL, XU , {yi}Ni=1)
can be computed as

P (W,D,A,Ξ | XL, XU , {yi}Nl
i=1) ∝

N∏
i=1

1

σ2
i

× 1

b
× 1

σ2
d

× 1

σ2
w

× e

(
−U(α1,...,αN )

)
×

N∏
i=1

N (xi;Dαi, σ
2
i )

Nl∏
j=1

exp(wT
yj
αj)∑C

c=1 exp(w
T
c αj)

K∏
i=1

N (di; 0, σ
2
dIM )

C∏
j=1

N (wj ; 0, σ
2
wIK).

(21)

In order to determine the most probable point estimate for the latent variables,
we compute the MAP estimation of the above posterior distribution which is
easy to show that it is equal to the following minimization problem.

[Ŵ , D̂, Â, Ξ̂] = argmin
W,D,A,Ξ

N∑
i=1

∥xi −Dαi∥22
2σ2

i

+

N∑
i=1

log σM+2
i −

Nl∑
j=1

wT
yj
αj

+

Nl∑
j=1

log

( C∑
c=1

exp(wT
c αj)

)
+

1

2σ2
w

C∑
j=1

∥wj∥22 + C log σK+2
w

+
1

2σ2
d

K∑
j=1

∥dj∥22 +K log σM+2
d + (N + 1) log b+

1

b

N∑
i=1

∥αi∥1

+ tr
(
SRLW (α1, ..., αN )

)
− tr

(
SRLB(α1, ..., αN )

)
. (22)

3 Optimization Procedure

In this section, we describe the optimization procedure for the proposed objec-
tive function (Eq. 22). Solving (22) is a challenging task because of two reasons.
Firstly, the objective function is not convex respect to W,D,A and Ξ simultane-
ously. Secondly, the log-sum-exp term (log(

∑C
c=1 exp(w

T
c αj))) in the objective

function prevents us using efficient methods such as feature search sign algorithm
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[12] to compute the sparse codes efficiently. To address the first problem, we can
easily observe that the objective function is convex with respect to each of the
parameters when the others are fixed. Hence, we resort to a coordinate descent
method (alternating optimization), in which unknown parameters are updated
through an iterative process which updates each parameter by fixing the other
parameters in each step. To circumvent the second problem, we utilize a suitable
upper bound to the log-sum-exp function proposed by [22] which states that for
any β ∈ R and ξk ∈ [0,∞), k = 1, ...,K

log(

K∑
k=1

egk) ≤ β+

K∑
k=1

(
gk − β − ξk

2
+λ(ξk)

(
(gk−β)2−ξ2k

)
+log(1+eξk)

)
, (23)

where

λ(ξ) =
1

2ξ

( 1

1 + e−ξ
− 1

2

)
, (24)

where β and {ξk}Kk=1 are the variational parameters which can be optimized to
get the tightest possible bound. So, by replacing the log-sum-exp term of the
objective function with the upper bound of Eq. 23, we have

[Ŵ , D̂, Â, Ξ̂, Θ̂] = argmin
W,D,A,Ξ,Θ

N∑
i=1

∥xi −Dαi∥22
2σ2

i

+

N∑
i=1

log σM+2
i −

Nl∑
j=1

wT
yj
αj

+

Nl∑
j=1

βj +
1

2

Nl∑
j=1

C∑
c=1

(wT
c αj − βj − ξjc) +

Nl∑
j=1

C∑
c=1

λ(ξjc)
(
(wT

c αj − βj)
2 − ξ2jc

)
+

Nl∑
j=1

C∑
c=1

(log(1 + eξjc)) +
1

2σ2
w

C∑
j=1

∥wj∥22 + C log σK+2
w +

1

2σ2
d

K∑
j=1

∥dj∥22

+K log σM+2
d + (N + 1) log b+

1

b

N∑
i=1

∥αi∥1 + tr
(
ATAΓ

)
, (25)

where Θ = {βj , ξjc}j=Nl,c=C
j=1, c=1 is the set of variational parameters, and Γ is a

N ×N matrix which is defined as

Γ = (1− ϑ)LLW + ϑE − (1− ϑ)LLB . (26)

Its obvious from Eq. 25 that it is convex in one parameter when the other
parameters are fixed. Using the upper bound of Eq. 23, we are able to solve the
above optimization problem by an efficient feature-sign search algorithm [12]
which goes as follows.

Computing Sparse Codes A with Fixed W,D,Ξ and Θ: We optimize
each sparse code αi(i = 1, ..., N) by fixing sparse codes αj(j ̸= i) of other signals.
Hence, for each sparse code αi, if xi ∈ XL, we must solve

α̂i = argmin
αi

FL(αi), (27)
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and if xi ∈ XU , we must solve

α̂i = argmin
αi

FU (αi), (28)

where

FL(αi) =
1

2σ2
i

∥xi −Dαi∥22 − wT
yi
αi +

1

2

C∑
c=1

wT
c αi +

C∑
c=1

λ(ξic)(w
T
c αi − βi)

2

+ 2αT
i (AΓi)− αT

i αiΓi,i +
1

b
∥αi∥1, (29)

FU (αi) =
1

2σ2
i

∥xi −Dαi∥22 + 2αT
i (AΓi)− αT

i αiΓi,i +
1

b
∥αi∥1, (30)

where Γi is the i-th column of Γ and Γi,i is the (i, i) element of Γ .
The functions in Eqs. 29 and 30 are exactly the objective functions that the
feature-sign search algorithm can minimize. This algorithm iteratively searches
for the coefficient sign vector θi of xi, hence (27) and (28) reduce to a standard,
unconstrained quadratic optimization problem (QP). Precisely speaking, after
finding the optimal coefficient sign of the sparse code αi, ∥αi∥1 can be replaced
by θiαi, by which αi can be computed analytically by setting the derivative
of FL(αi) and FU (αi) respect to αi equal to zero. The gradient of FL(αi) and
FU (αi) can be calculated as

∂FL(αi)

∂αi
=

1

σ2
i

DT (Dαi − xi)− wyi +
1

2

C∑
c=1

wc − 2βi

C∑
c=1

λ(ξic)wc

+ 2
( C∑
c=1

λ(ξic)wcw
T
c

)
αi + 2AΓi +

θi
b
, (31)

∂FU (αi)

∂αi
=

1

σ2
i

DT (Dαi − xi) + 2AΓi +
θi
b
. (32)

Finally, the analytic solution of αi can be obtained when we have ∂FL(αi)
∂αi

= 0,

if xi ∈ XL and ∂Fu(αi)
∂αi

= 0, if xi ∈ XU :

α̂i =

(
1

σ2
i

DTD + 2
( C∑
c=1

λ(ξic)wcw
T
c

)
+ 2Γi,iI

)−1(
1

σ2
i

DTxi + wyi −
1

2

C∑
c=1

wc

+ 2βi

C∑
c=1

λ(ξic)wc − 2
∑
j ̸=i

Γj,iαj −
θi
b

)
, if xi ∈ XL, (33)

α̂i =

(
1

σ2
i

DTD+2Γi,iI

)−1(
1

σ2
i

DTxi−2
∑
j ̸=i

Γj,iαj−
θi
b

)
, if xi ∈ XU . (34)
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In practice, the Hessian matrices of FL (Eq. 35), and FU (Eq. 36) may not be
positive semidifinite. So, a very small η (ηI) is added to the Hessian matrices to
make them positive semidifinite, hence FL and FU are convex.

HFL
=

1

σ2
i

DTD + 2
( C∑
c=1

λ(ξic)wcw
T
c

)
+ 2Γi,iI, (35)

HFU
=

1

σ2
i

DTD + 2Γi,iI. (36)

Updating Dictionary D with Fixed A,W,Ξ and Θ: Given A,W,Ξ and
Θ, the optimization problem for D can be formulated as

D̂ = argmin
D

N∑
i=1

∥xi −Dαi∥22
2σ2

i

+
1

2σ2
d

∥D∥2F . (37)

The above problem is an unconstrained quadratic programming, for which D
can be computed analytically as

D̂ = XΣAT (AΣAT +
1

σ2
d

I)−1, (38)

where Σ is a diagonal N ×N matrix with

Σi,i =
1

σ2
i

, i = 1, 2, ..., N. (39)

Updating the Classifier parameter W with Fixed A,D,Ξ and Θ: With-
out loss of generality, we assume that the first N c

L labeled samples belong to the
c-th class. So, given A,Ξ,D and Θ, the optimization problem for wc can be
formulated as

ŵc = argmin
wc

1

2
(

NL∑
j=1

αT
j

)
wc −

( Nc
L∑

j=1

αT
j

)
wc +

NL∑
j=1

λ(ξjc)(α
T
j wc − βj)

2 +
1

2σ2
w

wT
c wc.

(40)
By setting the derivative of the objective function of the above equation respect
to wc equal to zero, we can compute wc analytically as

ŵc =

(
2

NL∑
j=1

λ(ξjc)αjα
T
j +

1

σ2
w

I

)−1( Nc
L∑

j=1

αj +

NL∑
j=1

(
2λ(ξjc)βj −

1

2

)
αj

)
. (41)

Updating the free Parameter Ξ with Fixed A,W,D and Θ: Given
A,W,D and Θ, each parameter can be computed analytically as:

σ̂i
2 = (

1

M + 2
)∥xi −Dαi∥22, i = 1, 2, ..., N, (42)
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σ̂d
2 = (

1

K(M + 2)
)∥D∥2F , (43)

σ̂w
2 = (

1

C(K + 2)
)∥W∥2F , (44)

b̂ = (
1

N + 1
)

N∑
i=1

∥αi∥1. (45)

Updating the Variational parameter Θ with Fixed A,W,D and Ξ:
Given A,W,D and Ξ, we first compute the updates for {βj}NL

j=1 by fixing other

variational parameters ({ξjc}NL,C
j=1,c=1) which leads to the following solution.

β̂j =

(
2
( C∑
c=1

λ(ξjc)w
T
c

)
αj +

C

2
− 1

)/
2
( C∑
c=1

λ(ξjc)
)
, j = 1, ..., NL. (46)

Secondly, we fix {βj}NL
j=1, and update {ξjc}NL,C

j=1,c=1 by solving the following prob-
lem.

ξ̂jc = argmin
ξjc

λ(ξjc)
(
(wT

c αj − βj)
2 − ξ2jc

)
− 1

2
ξjc + log(1 + eξjc). (47)

By setting the derivative of the objective function of the above equation respect
to ξjc equal to zero, we have

λ′(ξjc)
(
(wT

c αj − βj)
2 − ξ2jc

)
− 2λ(ξjc)ξjc −

1

2
+

1

1 + e−ξjc
= 0. (48)

Using the definition of λ(ξjc), the above equation can be simplified as

λ′(ξjc)
(
(wT

c αj − βj)
2 − ξ2jc

)
= 0. (49)

Since ξjc ∈ [0,∞], λ′(ξjc) ̸= 0, hence we can compute ξjc analytically as

ξ̂jc =| wT
c αj − βj |, j = 1, ..., NL, c = 1, ..., C, (50)

3.1 Class Label Prediction

After learning A,D,W and Ξ, classifying a new signal x with an unknown label
y is performed by solving the following optimization problem.

ŷ = argmax
y∈{1,...,C}

P (y | x,D,W,Ξ). (51)

Using the Bayes’ rule formula, the above problem can be expressed as

ŷ = argmax
y∈{1,...,C}

∫∫
P (y | α,W )P (x | D,α, σ2)P (α | b)P (σ) dα dσ. (52)
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Table 1. Classification accuracy of different methods.

dataset SVM S3VM FDDL SDL-G SDL-D S2D2 PM

MNIST 79.3 ± 1.9 83.3 ± 1.1 81.8 ± 1.8 82.1 ± 1.4 79.9 ± 2.1 86.1 ± 1.0 87.4 ± 1.2

USPS 80.7 ± 1.6 82.5 ± 0.9 81.1 ± 1.7 81.9 ± 1.3 80.1 ± 1.9 85.6 ± 0.9 86.9 ± 1.0

AR 70.4 ± 2.1 77.1 ± 1.7 74.2 ± 2.1 75.3 ± 1.5 74.1 ± 2.3 85.9 ± 1.4 86.7 ± 1.5

E-Yale B 72.1 ± 1.9 75.1 ± 1.7 65.9 ± 2.3 69.4 ± 1.8 67.9 ± 2.1 79.3 ± 1.8 80.8 ± 1.8

ISOLET 85.8 ± 1.7 87.3 ± 1.6 82.6 ± 1.9 83.4 ± 1.7 82.5 ± 1.9 89.9 ± 1.8 91.4 ± 1.1

where α is the sparse representation of x, and σ2 is the representation noise
variance of x (Eq. 2). By assuming that the posterior distribution over α and σ
(P (α, σ | x,D,Ξ)) can be approximated as a unit point measure at the MAP
value (αt, σt) of that distribution, the above problem can be replaced with the
following minimization problem.

ŷ = argmin
y∈{1,2,...,C}

[
min
αt,σt

∥x−Dαt∥22
2σ2

t

+ (M + 2) log σt +
1

b
∥αt∥1 − wT

y αt

+ log

( C∑
c=1

exp(wT
c αt)

)]
. (53)

Again, using the upper bound of Eq. 23, we can efficiently solve the above prob-
lem (details omitted due to space limitations).

4 Experimental Results

To illustrate the efficacy of our method, we present experimental results on appli-
cations such as Face Recognition (FR), Handwritten Digit Recognition (HDR),
and Letter Recognition (LR). For comparison purposes, we compare our method
with some state of the art SDL methods such as FDDL [6], SDL-G [23], SDL-
D [23], and two well-known classification methods SVM and S3VM [4]. We
also compare our method with S2D2 [9] which is a recently introduced semi-
supervised DL algorithm. In all of our experiments, the parameter ϑ is set equal
to 0.5 (the results of all experiments are almost unchanged for 0.1 ≤ ϑ ≤ 0.9). In
order to determine an appropriate number of dictionary atoms (K), and nearest
neighbors of data samples (k) for computing the LLE matrix (E), Five-fold cross
validation is performed to find the best pair (K, k). The tested values for K are
{64, 128, 256, 512} and for k, {3, 5, 7, 9, 11}.

Digit Recognition: We apply the proposed method on two HDR datasets
MNIST [24], and USPS [25]. The MNIST dataset consists of 70,000 28 × 28 im-
ages, 60,000 for training, 10,000 for testing, each of them containing one hand-
written digit. USPS is composed of 7291 training images and 2007 test images
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Fig. 2. Left: accuracy of the proposed method using the geodesic and the Euclidian
distance for MNIST and USPS datasets, right: the learned D (K=64) for USPS dataset.

of size 16 × 16. For these datasets, 25 samples per class are randomly chosen
from the training data as the labeled samples and the rest of the training data
is used as the unlabeled data (we use the whole image as the feature vector
in the digit datasets). The average recognition accuracies over 10 runs together
with the standard deviation is shown in Table 1, from which we can see that the
proposed method outperforms significantly the SDL methods. The improvement
in performance compared to SDL methods is because of two reasons. Firstly,
the number of labeled data is small, hence the SDL methods may overfit to the
labeled data. Secondly, these methods cannot utilize unlabeled data for learning
dictionary. Moreover, S3VM and S2D2 does not consider the topological struc-
ture of all data, hence both of them are less accurate than our method. We also
provide a visualization of the learned D for USPS dataset for K = 64 (Fig. 2).
In order to demonstrate the superiority of the geodesic distance over the Euclid-
ian distance, we compute the recognition performance of the proposed method
on MNIST, and USPS dataset, using both the geodesic and the Euclidian dis-
tances to find the k nearest neighbors of data points. The results are presented
in Fig. 2, for various number of k. The figure shows two major points. Firstly, it
is obvious that using the geodesic distance leads to better performance than the
Euclidian distance, because the Euclidian distance ignores the fact that the data
points lie on a low dimensional manifold. Secondly, when the number of nearest
neighbors grows, the recognition accuracy decreases for the Euclidian distance
and increases for the geodesic distance. This is due to the fact that using Euclid-
ian distance, by increasing k, samples from different classes are more likely to
be selected as the neighbors of data points. Hence, the matrix E which captures
the locality information of data points may be misleading. On the other hand,
the geodesic distance considers the underlying manifold of samples, by which the
neighbors of data points can be found more accurately, and hence the matrix E
encodes the locality of data points more precisely.

Face Recognition: We then perform the face recognition task on the widely
used E-Yale B [26], and AR [27], face databases. The E-Yale B database con-
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sists of 2,414 frontal-face images from 38 individuals (about 64 images per in-
dividual), and the AR database consists of over 4,000 frontal images from 126
individuals generated in two sessions, each of them consists of 14 images per
individual (seven image for training, and seven image for testing). The E-Yale
B and AR images are normalized to 54 × 48 and 60 × 40 respectively. We then
perform a Principal Component Analysis (PCA) on the images to obtain 300
dimensional feature vectors. For AR dataset, we randomly choose two samples
of the training session to form the labeled data and use the remaining five of
that session as the unlabeled data. For E-Yale B dataset, for each class, we ran-
domly select ten images as labeled data, twenty images as unlabeled data, and
the remaining ones for testing. The average recognition accuracies over 5 runs
together with the standard deviation are presented in the forth, and fifth rows
of Table 1. Again, due to the small number of the labeled data, SDL methods
have lower accuracy than SSDL methods. Moreover, because of considering the
geometrical structure of data, our method has better performance than S3VM
and S2D2 methods.

Letter Recognition: Finally, we apply our method on the ISOLET database
[28], from UCI Machine Learning Repository which consists of 6238 examples
and 26 classes corresponding to letters of the alphabet. We reduced the input
dimensionality (originally at 617) by projecting the data onto its leading 100
principal components. For each class, We randomly select 10 samples as labeled
data, 100 samples as unlabeled data, and the remaining ones for testing. The
average recognition accuracies over 5 runs together with the standard deviation
are presented in the last row of Table 1, from which we can see that the proposed
method performs significantly better than the other algorithms.

5 Conclusion

In this paper, we proposed a probabilistic method which uses the information of
unlabeled data as well as labeled data for learning discriminative dictionaries.
The proposed method improves the discrimination of the dictionary and the
sparse codes by incorporating a classifier error term and a discrimination term
based on LFDA into the model. The topological structure of all data is also
preserved based on LLE method which prevents overfitting the small labeled
data. Moreover, instead of Euclidian distance, we utilized the geodesic distance
which allows us to find the neighbors of data points more accurately. Experiments
using various benchmark datasets demonstrate the superiority of the proposed
method over the state-of-the-art SDL and SSDL methods.
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