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Abstract. In recent years, clustering has been extended to constrained
clustering, so as to integrate knowledge on objects or on clusters, but
adding such constraints generally requires to develop new algorithms.
We propose a declarative and generic framework, based on Constraint
Programming, which enables to design clustering tasks by specifying an
optimization criterion and some constraints either on the clusters or on
pairs of objects. In our framework, several classical optimization crite-
ria are considered and they can be coupled with different kinds of con-
straints. Relying on Constraint Programming has two main advantages:
the declarativity, which enables to easily add new constraints and the
ability to find an optimal solution satisfying all the constraints (when
there exists one). On the other hand, computation time depends on the
constraints and on their ability to reduce the domain of variables, thus
avoiding an exhaustive search.

1 Introduction

Clustering is an important task in Data Mining and many algorithms have been
designed for it. It has been extended to semi-supervised clustering, so as to
integrate previous knowledge on objects that must be or cannot be in the same
cluster, and most algorithms have been adapted to handle such information.
Other kinds of constraints could be specified by the user, as for instance the
sizes of the clusters or their diameters, but classical frameworks are not designed
to integrate different types of knowledge. Yet, in the context of an exploratory
process, it would be important to be able to express constraints on the task
at hand, tuning the model for getting finer solutions. Constrained clustering
aims at integrating constraints in the clustering process, but the algorithms are
usually developed for handling one kind of constraints. Developing general solvers
with the ability of handling different kinds of constraints is therefore of high
importance for Data Mining. We propose a declarative and generic framework,
based on Constraint Programming, which enables to design a clustering task by
specifying an optimization criterion and some constraints either on the clusters
or on pairs of objects.

Relying on Constraint Programming (CP) has two main advantages: the
declarativity, which enables to easily add new constraints and the ability to find
an optimal solution satisfying all the constraints (when there exists one). Recent



progress in CP have made this paradigm more powerful and several work [1–3]
have already shown its interest for Data Mining.

In a recent work[4], we have proposed a CP model for constrained clustering,
aiming at finding a partition of data that minimizes the maximal diameter of
classes. In this paper, we generalize the model with more optimization criteria,
namely maximizing the margin between clusters and minimizing the Within-
Cluster Sums of Dissimilarities (WCSD). Clustering with WCSD criterion is
NP-Hard, since one instance of this problem is the weighted max-cut problem,
which is NP-Complete. Recent work [5] has addressed the problem of finding
an exact optimum but the size of the database must be quite small, all the
more when k is high. We have developed propagation algorithms for the WCSD
problem, and experiments show that we are able of finding the optimal solution
for small to medium databases. Moreover, adding constraints allows to reduce
the computation time.

The main contribution of our paper is a general framework for Constrained
Clustering, which integrates different kinds of optimization criteria and finds a
global optimum. Moreover, we show that coupling optimization with some types
of constraints allows to handle larger databases and can be interesting for the
users.

The paper is organized as follows. In Section 2, we give background notions
on clustering, constrained clustering and Constraint Programming. Section 3
presents related work. Section 4 is devoted to the model and Section 5 to exper-
iments. A discussion on future work is given in Section 6.

2 Preliminaries

2.1 Clustering

Clustering is the process of grouping data into classes or clusters, so that objects
within a cluster have high similarity but are very dissimilar to objects in other
clusters. More formally, we consider a database of n objectsO = {o1, . . . , on} and
a dissimilarity measure d(oi, oj) between two objects oi and oj of O. Clustering
is often seen as an optimization problem, i.e., finding a partition of the objects
which optimizes a given criterion. Optimized criteria may be, among others: (the
first four criterion must be minimized whereas the last one must be maximized)
• Within-Cluster Sum of Dissimilarities (WCSD) criterion:

E =
∑k

c=1

∑
oi,oj∈Cc

d(oi, oj)
2

• Within-Cluster Sum of Squares (WCSS) criterion, also called the least square
criterion (mc denotes the center of cluster Cc):

E =
∑k

c=1

∑
oi∈Cc

d(mc, oi)
2

• Absolute-error criterion (rc denotes a representative object of the cluster Cc):

E =
∑k

c=1

∑
oi∈Cc

d(oi, rc)
• Diameter-based criterion: E = maxc∈[1,k],oi,oj∈Cc

(d(oi, oj)). E represents the
maximum diameter of the clusters, where the diameter of a cluster is the maxi-
mum distance between any two of its objects.



• Margin-based criterion: E = minc<c′∈[1,k],oi∈Cc,oj∈Cc′
(d(oi, oj)). E is the min-

imal margin between clusters, where the margin between two clusters Cc, Cc′ is
the minimum value of the distances d(oi, oj), with oi ∈ Cc and oj ∈ Cc′ .

We do not detail here well-known classical clustering algorithms, such as k-
means that finds a local optimum of the WCSS criterion, or k-medoids for the
absolute-error criterion. The FPF (Furthest Point First) method introduced in
[6] is a very efficient method (complexity O(kn)) for finding a local optimum of
the maximum diameter criterion. Moreover theoretical bounds are given and we
show in Section 4 how such bounds can be used to reduce the complexity, when
modeling the problem in CP.

Some algorithms do not rely on an optimization algorithm, as for instance
DBSCAN [7], based on the notion of density. Parameters are needed to adjust
the notion of density. Although our model does not currently allow to simulate
the behavior of DBSCAN, the notion of density can be integrated as a constraint
on the clustering task.

2.2 Constraint-based Clustering

Most clustering methods rely on an optimization criterion, and because of the
inherent complexity search for a local optimum. Several optima may exist, some
may be closer to the one expected by the user. In order to better model the
task, but also in the hope of reducing the complexity, user-specified constraints
are added, leading to Constraint-based Clustering that aims at finding clusters
that satisfy user-specified constraints. User constraints can be classified into
cluster-level constraints, specifying requirements on the clusters, or instance-
level constraints, specifying requirements on pairs of objects.

Most of the attention has been put on instance-level constraints, first intro-
duced in [8]. Commonly, two kinds of constraints are used. A must-link con-
straint specifies that two objects oi and oj have to appear in the same cluster:
∀c ∈ [1, k], oi ∈ Cc ⇔ oj ∈ Cc. A cannot-link constraint specifies that two
objects must not be in the same cluster: ∀c ∈ [1, k], ¬(oi ∈ Cc ∧ oj ∈ Cc).

Cluster-level constraints impose requirements on the clusters. We give some
examples of such constraints that have been integrated to our model.

The minimum capacity constraint requires that each cluster has a number
of objects greater than a given threshold α: ∀c ∈ [1, k], |Cc| ≥ α, whereas the
maximum capacity constraint requires each cluster to have a number of objects
inferior to a predefined threshold β: ∀c ∈ [1, k], |Cc| ≤ β.

The maximum diameter constraint specifies an upper bound on the diameter
of the clusters: ∀c ∈ [1, k],∀oi, oj ∈ Cc, d(oi, oj) ≤ γ (γ is a given parameter).
The minimum margin constraint, also called the δ-constraint in [9], requires the
distance between any two points of different clusters to be superior to a given
threshold δ: ∀c ∈ [1, k],∀c′ 6= c,∀oi ∈ Cc, oj ∈ Cc′ , d(oi, oj) ≥ δ.

The ε-constraint introduced in [9] requires for each point oi to have in its
neighborhood of radius ε at least another point of the same cluster:

∀c ∈ [1, k],∀oi ∈ Cc,∃oj ∈ Cc, oj 6= oi and d(oi, oj) ≤ ε.



This constraint tries to capture the notion of density, introduced in DBSCAN.
We propose a new density-based constraint, stronger than the ε-constraint: it
requires that for each point oi, its neighborhood of radius ε contains at least
MinPts points belonging to the same cluster as oi.

In the last ten years, many works have been done to extend classical algo-
rithms for handling must-link and cannot-link constraints, as for instance an
extension of COBWEB [8], of k-means [10, 11], hierarchical non supervised clus-
tering [12] or spectral clustering [13, 14], etc. This is achieved either by modify-
ing the dissimilarity measure, or the objective function or the search strategy.
However, to the best of our knowledge there is no general solution to extend
traditional algorithms to different types of constraints. Our framework relying
on Constraint Programming allows to add directly user-specified constraints.

2.3 Constraint Programming

Constraint Programming is a powerful paradigm to solve combinatorial prob-
lems, based on Artificial Intelligence or Operational Research methods. A Con-
straint Satisfaction Problem (CSP) is a triple 〈X,D,C〉 where X = {x1, x2, . . . ,
xn} is a set of variables, D = {D1, D2, . . . , Dn} is a set of domains (xi ∈ Di),
C = {C1, C2, ..., Ct} is a set of constraints where each constraint Ci expresses
a condition on a subset of X. A solution of a CSP is a complete assignment of
values from Di to each variable xi that satisfies all the constraints of C. A Con-
straint Optimization Problem (COP) is a CSP with an objective function to be
optimized. An optimal solution of a COP is a solution of the CSP that optimizes
the objective function. In general, solving a CSP is NP-hard. Nevertheless, the
methods used by the solvers enable to efficiently solve a large number of real
applications. They rely on constraint propagation and search strategies.

Constraint propagation operates on a constraint c and removes all the values
that cannot be part of a solution from the domains of the variables of c. A set of
propagators is associated to each constraint, they depend on the kind of consis-
tency required for this constraint (e.g. arc consistency removes all the inconsis-
tent values, while bound consistency modifies only the bounds of the domain).
Consistency is chosen by the programmer when the constraint is established.
Let us notice that a formula or a mathematic relation can be a constraint in CP
only if a set of propagators can be defined on it.

In a CP solver, two steps, constraint propagation and branching, are repeated
until a solution is found. Constraints are propagated until a stable state, in which
the domains of the variables are reduced as much as possible. If the domains of all
the variables are reduced to singletons then a solution is found. If the domain of
a variable becomes empty, then there exists no solution with the current partial
assignment and the solver backtracks. In the other cases, the solver chooses a
variable whose domain is not reduced to a singleton and splits its domain into
different parts, thus leading to new branches in the search tree. The solver then
explores each branch, activating constraint propagation since the domain of a
variable has been modified.



The search strategy can be determined by the programmer. When using a
depth-first strategy, the solver orders branches, following the order given by the
programmer and explores in depth each branch. For an optimization problem,
a branch-and-bound strategy can be integrated to depth-first search: each time
a solution, i.e. a complete assignment of variables satisfying the constraints, is
found, the value of the objective function for this solution is computed and a
new constraint is added, expressing that a new solution must be better than this
one. This implies that only the first best solution found is returned by the solver.
The solver performs a complete search, pruning only branches that cannot lead
to solutions and therefore finds an optimal solution. The choice of variables and
of values at each branching is very important, since it may drastically reduce
the search space and therefore computation time. For more details, see [15].

Example 1. Let us illustrate by the following COP: find an assignment of letters
to digits such that SEND +MOST = MONEY , which maximizes MONEY .
This problem can be modeled by a COP with eight variables S,E,N,D,M,O, T, Y ,
of the domain the set of digits {0, . . . , 9}. Constraints for this problem are:

– the digits for S and M are different from 0: S 6= 0, M 6= 0
– the values of the variables are pairwise different: alldifferent(S,E,N,D,
M,O, T, Y ). Let us notice that instead of using a constraint 6= for each pair
of variables, the constraint alldifferent on a set of variables is used. This is
a global constraint in CP, as the following linear constraint.

– (1000× S + 100×E + 10×N +D) + (1000×M + 100×O+ 10× S + T ) =
10000×M + 1000×O + 100×N + 10× E + Y

– maximize(10000×M + 1000×O + 100×N + 10× E + Y ).

The initial constraint propagation leads to a stable state, with the domains:
DS = {9}, DE = {2, 3, 4, 5, 6, 7}, DM = {1}, DO = {0}, DN = {3, 4, 5, 6, 7, 8}
and DD = DT = DY = {2, 3, 4, 5, 6, 7, 8}. Since some domains are not reduced
to singletons, branching is then performed. At the end of the search, we get the
optimal solution with the assignment S = 9, E = 7, N = 8, D = 2,M = 1, O =
0, T = 4, Y = 6, leading to MONEY = 10876.

Strategies specifying the way branching is performed are very important.
When variables are chosen in the order S,E,N,D,M,O, T, Y and when values
are chosen following an increasing order, the search tree is composed of 29 nodes
and 7 intermediary solutions (solutions satisfying all the constraints, better than
the previous ones found but not optimal). When variables are chosen in the order
S, T, Y,N,D,E,M,O, the search tree has only 13 nodes and 2 intermediary
solutions.

3 Related work

Recent work [16, 17] has proposed to use Constraint Programming for conceptual
clustering. The problem is then formalized as the search of frequent, pairwise non
overlapping k-patterns that cover the whole dataset. Several optimization criteria



are considered as maximizing the minimal size of the clusters or minimizing the
difference between the sizes of classes. These approaches can only be applied
to qualitative databases, whereas our approach can handle all kinds of data, as
soon as a dissimilarity measure is defined on data. Another approach is based
on Integer Linear Programming [18, 19], where a set of candidate clusters must
be known beforehand and the model searches for the best clustering among
the subset of clusters. It has been experimented in the context of conceptual
clustering, based on frequent patterns. This framework is less convenient for
clustering in general since finding a good set of candidate clusters is difficult
as the number of candidate clusters is exponential in the number of objects.
A SAT framework [20] is proposed for constrained clustering, but only for a
2-class problem (k = 2). Several kinds of constraints are considered: must-link
and cannot-link constraints on instances, constraints on cluster diameters and
margins. Based on SAT, the algorithm allows to obtain a global optimum. Our
approach is more general, since the number of classes is not limited to 2, and
several optimization criteria as well as a larger class of constraints are considered.

Clustering with the presented criteria is NP-Hard, most algorithms are heuris-
tics. For instance, k-means finds a local optimum for the WCSS criterion. There
are few exact algorithms for the WCSD and WCSS criteria: they rely on lower
bounds, which must be computed in a reasonable time and finding such bounds
is a difficult subtask. The best known exact method for both WCSD and the
maximum diameter criterion is a repetitive branch-and-bound algorithm [5]. This
algorithm is efficient when the number k of groups is small; it solves the problem
first with k+ 1 objects, then with k+ 2 objects and so on, until all n objects are
considered. When solving large problems, smaller problems are solved for quickly
calculating good lower bounds. The authors give the size n of the databases that
can be handled: n = 250 for the minimum diameter criterion, n = 220 for the
WCSS criterion, and only n = 50 with k up to 5 or 6 for the WCSD criterion. For
the WCSS criterion, the best known exact method is a recent column generation
algorithm [21]. The method solves problems with n = 2300, however, the number
of objects per group (n/k) must be small, roughly equal to 10, in order to have
a reasonable computation time. To the best of our knowledge, there exists no
exact algorithm for WCSD or WCSS criterion that integrates user-constraints.

4 A CP framework for constrained clustering

We present a CP model for constrained clustering. As input, we have a dataset of
n points and a dissimilarity measure between pairs of points, denoted by d(i, j).
Without loss of generality, we suppose that points are indexed and named by
their index. The number of clusters is fixed by the user and we aim at finding a
partition of data into k clusters, satisfying a set of constraints specified by the
user and optimizing a given criterion.



4.1 A constraint-based model

Variables For each cluster c ∈ [1, k], the point with the smallest index is con-
sidered as the representative point of the cluster1. An integer variable I[c] is
introduced, its value is the index of the representative point of c; the domain
of I[c] is therefore the interval [1, n]. Assigning a point to a cluster becomes
assigning the point to the representative of the cluster. Therefore, for each point
i ∈ [1, n], an integer variable G[i] ∈ [1, n] is introduced: G[i] is the representative
point of the cluster which contains the point i.

Let us for instance suppose that we have 7 points o1, . . . , o7 and that we have
2 clusters, the first one composed of o1, o2, o4 and the second one composed of the
remaining points. The points are denoted by their integer (o1 is denoted by 1, o2
by 2 and so on). Then I[1] = 1 and I[2] = 3 (since 1 is the smallest index among
{1, 2, 4} and 3 is the smallest index among {3, 5, 6, 7}), G[1] = G[2] = G[4] = 1
(since 1 is the representative of the first cluster) and G[3] = G[5] = G[6] =
G[7] = 3 (since 3 is the representative of the second cluster).

A variable is introduced for representing the optimization criterion. It is
denoted by D for the maximal diameter, S for the minimal margin and V for the
Within-Cluster Sum of Dissimilarities. It is a real-valued variable, since distance
are real numbers. The domains of D and S are the interval whose lower (upper)
bound is the minimal (maximal, resp.) distance between any two points. The
domain of V is upper-bounded by the sum of the distances between all pairs of
points. The clustering task is represented by the following constraints.

Constraints on the representation

– Each representative belongs to its cluster: ∀c ∈ [1, k], G[I[c]] = I[c].
– Each point is assigned to a representative: ∀i ∈ [1, n],

∨
c∈[1,k](G[i] = I[c]).

This relation can be expressed by a cardinality constraint in CP:
∀i ∈ [1, n], #{c | I[c]=G[i]} = 1.

– The representative of a cluster is the point in this cluster with the minimal
index; in other words, the index i of a point is greater or equal to the index
of its representative given by G[i]: ∀i ∈ [1, n], G[i] ≤ i.

A set of clusters could be differently represented, depending on the order of
clusters. For instance, in the previous example, we could have chosen I[1] = 3
and I[2] = 1, thus leading to another representation of the same set of clusters.
To avoid this symmetry, the following constraints are added:

– Representatives are sorted in increasing order: ∀c < c′ ∈ [1, k], I[c] < I[c′].
– The representative of the first cluster is the first point: I[1] = 1.

Modeling different objective criteria When minimizing the maximal diameter:

– Two points at a distance greater than the maximal diameter must be in
different clusters: ∀i < j ∈ [1, n], d(i, j) > D → (G[i] 6= G[j]). (∗)

1 It allows to have a single representation of a cluster. It must not be confused with
the notion of representative in the medoid approach.



– The maximal diameter is minimized: minimize D.

When maximizing the minimal margin between clusters:

– Two points at a distance less than the minimal margin must be in the same
cluster: ∀i < j ∈ [1, n], d(i, j) < S → G[i] = G[j].

– The minimal margin is maximized: maximize S.

When minimizing the Within-Cluster Sum of Dissimilarities (WCSD):

– V =
∑

i,j∈[1,n](G[i] == G[j])d(i, j)2. (**)

– The sum value is minimized: minimize V .

Modeling user-defined constraints All popular user-defined constraints may be
straightforwardly integrated:

– Minimal size α of clusters: ∀c ∈ [1, k],#{i | G[i]=I[c]} ≥ α.

– Maximal size β of clusters: ∀c ∈ [1, k],#{i | G[i]=I[c]} ≤ β.

– A δ-constraint expresses that the margin between two clusters must be at
least δ. Therefore, for each i < j ∈ [1, n] satisfying d(i, j) < δ, we put the
constraint: G[i] = G[j].

– A diameter constraint expresses that the diameter of each cluster must be
at most γ, therefore for each i < j ∈ [1, n] such that d(i, j) > γ, we put the
constraint: G[i] 6= G[j].

– A density constraint that we have introduced expresses that each point must
have in its neighborhood of radius ε, at least MinPts points belonging to
the same cluster as itself. So, for each i ∈ [1, n], the set of points in its
ε-neighborhood is computed and a constraint is put on its cardinality:

#{j | d(i, j) ≤ ε,G[j]=G[i]} ≥MinPts.

– A must-link constraint on two points i and j is expressed by: G[i] = G[j].

– A cannot-link constraint on i and j is expressed by: G[i] 6= G[j].

Adding such constraints involves other constraints on D or S, as for instance
G[i] = G[j] implies D ≥ d(i, j) and G[i] 6= G[j] implies S ≤ d(i, j).

Search strategy Let us recall that a solver iterates two steps: constraint propa-
gation and branching when needed. In our model, variables I[c] (c ∈ [1, k]) are
instantiated before variables G[i] (i ∈ [1, n]). This means that cluster representa-
tives are first instantiated, allowing constraint propagation to assign some points
to clusters; when all the I[c] are instantiated, the variables G[i] whose domains
are not singletons are instantiated.

Variables I[c] are chosen from I[1] to I[k]. Since the representative is the
one with the minimal index in the cluster, values for instantiating each I[c] are
chosen in an increasing order. Variables G[i] are chosen so that the ones with
the smallest remaining domain are chosen first. For instantiating G[i], the index
of the closest representative is chosen first.



4.2 Model improvement

Using constraint propagation to reduce the search space by deleting values in
the domain of variables that cannot lead to a solution, CP solvers perform an
exhaustive search, allowing to find an optimal solution. In order to improve the
efficiency of the system, different aspects are considered.

Improvement by ordering the points. To instantiate the variables I[c], the values
(which are point indices) are chosen in an increasing order. The way points
are indexed is therefore really important. Points are then ordered and indexed,
so that points that are probably representatives have small index. In order to
achieve this, we rely on FPF algorithm, introduced in Section 2. The algorithm
is applied with k = n (as many classes as points): a first point is chosen, the
second point is the furthest from this point, the third one is the furthest from
the two first and so on until all points have been chosen.

Improvement when minimizing the maximal diameter. Let us consider first the
case where no user-defined constraints are put in the model. In [6], it is proven
that if dFPF represents the maximal diameter of the partition computed by
FPF, then it satisfies dopt ≤ dFPF ≤ 2dopt, with dopt the maximal diameter of
the optimal solution. This knowledge gives bounds on D: D ∈ [dFPF /2, dFPF ].
Moreover, for each pair of points i, j :

– if d(i, j) < dFPF /2, the reified constraint (*) on i, j is no longer put,

– if d(i, j) > dFPF , the constraint (*) is replaced by: G[i] 6= G[j].

Such a result allows to remove several reified constraints, without modifying the
semantics of the model, and thus allows to improve the efficiency of the model,
since handling reified constraints requires to introduce new variables.

In the case where user constraints are added, this result is no longer true,
since the optimal diameter is in general greater than the optimal diameter dopt
obtained without user-constraints. The upper bound is no longer satisfied but
the lower bound, namely dFPF /2, still holds. Therefore for each pair of points
i, j, if d(i, j) < dFPF /2, the constraint (*) on i, j is not put.

Improvement when minimizing WCSD. Computing WCSD (**) requires to use
a linear constraint on boolean variables (G[i] == G[j]). However, a partial as-
signment of points to clusters does not allow to filter the domain of the remaining
values, thus leading to an inefficient constraint propagation. We have proposed
a new method for propagating this constraint and filtering the domain of re-
maining variables. It is out of the scope of this paper, for more details, see [22].
Experiments in Section 5 show that it enables to handle databases that are out
of reach of the most recent exact algorithms.



5 Experiments

5.1 Datasets and methodology

Eleven datasets are used in our experiments. They vary significantly in their
size, number of attributes and number of clusters. Nine datasets are from the
UCI repository [23]: Iris, Wine, Glass, Ionosphere, WDBC, Letter Recognition,
Synthetic Control, Vehicle, Yeast. For the dataset Letter Recognition, only 600
objects are considered from the 20.000 objects of the initial data set, they are
composed of the first 200 objects of each class. The datasets GR431 and GR666
are obtained from the library TSPLIB [24]; they contain coordinates of 431 and
666 European cities [25]. These two datasets do not contain information about
the number of clusters and we choose k = 3 for the tests. Table 1 summarizes
information about these datasets. There are few systems aiming at reaching a

Table 1. Properties of data sets used in the experimentation

Dataset # Objects # Attributes # Clusters

Iris 150 4 3
Wine 178 13 3
Glass 214 9 7
Ionosphere 351 34 2
GR431 431 2 not available
GR666 666 2 not available
WDBC 569 30 2
Letter Recognition 600 16 3
Synthetic Control 600 60 6
Vehicle 846 18 4
Yeast 1484 8 10

global optimum. In Subsection 5.2, our model without user-constraints is com-
pared to the Repetitive Branch-and-Bound Algorithm (RBBA) [5]2. To the best
of our knowledge, it is the best exact algorithm for the maximal diameter and
WCSD criteria but it does not integrate user-constraints. The distance between
objects is the Euclidean distance and the dissimilarity is measured as the squared
Euclidean distance. As far as we know, there is no work optimizing the criteria
presented in the paper and integrating user-constraints (with k > 2). In Subsec-
tions 5.3, 5.4 and 5.5, we show the ability of our model to handle different kinds
of user-constraints.

Our model is implemented with the Gecode 4.0.0 library3. In this version
released in 2013, float variables are supported. This property is important to
obtain exact optimal value. All the experiments (our model and RBBA) are

2 The program can be found in http://mailer.fsu.edu/˜mbrusco/
3 http://www.gecode.org



performed on a PC Intel core i5 with 3.8 GHz and 8 GB of RAM. The time limit
for each test is 2 hours.

5.2 Minimizing maximum diameter without user-constraint

Table 2 shows the results for the maximal diameter criterion. The first column
gives the datasets, the second column reports the optimal values of the diameter.
They are the same for both our model and the RBBA approach, since both
approaches find the global optimal. The third and fourth columns give the total
CPU times (in seconds) for each approach.

Table 2. Comparison of performance with the maximal diameter criterion

Dataset Optimal Diameter CP Framework RBBA

Iris 2.58 0.03s 1.4s
Wine 458.13 0.3s 2.0s
Glass 4.97 0.9s 42.0s
Ionosphere 8.60 8.6s > 2 hours
GR431 141.15 0.6s > 2 hours
GR666 180.00 31.7s > 2 hours
WDBC 2377.96 0.7s > 2 hours
Letter Recognition 18.84 111.6s > 2 hours
Synthetic Control 109.36 56.1s > 2 hours
Vehicle 264.83 14.9s > 2 hours
Yeast 0.67 2389.9s > 2 hours

The results show that RBBA finds the optimal diameter only for the first
three datasets. In [5], the authors mention that their algorithm is effective for
databases with less than 250 objects. Table 2 shows that our model is able to
find the optimal diameter for a data set with up to n = 1484 and k = 10.
The performance does not only depend on the number of objects n and on the
number of groups k, but also on the margin between objects and on the database
features. The behavior of our model differs from classical models: for instance,
when k increases, the search space is larger and in many approaches, solving such
a problem takes more time. Indeed, since there are more clusters, the maximum
diameter is smaller, and propagation of the diameter constraint is more effective,
thus explaining that in some cases, it takes less computation time. As already
mentioned, they may exist several partitions with the same optimal diameter;
because of the search strategy of Constraint Optimization Problem in CP, our
model finds only one partition with the optimal diameter.

5.3 Minimizing maximum diameter with user-constraints

Let us consider now the behavior of our system with user-constraints considering
the Letter Recognition dataset. Figure 1 presents the results we obtain when



must-link constraints (generated from the true classes of objects) and a margin
constraint δ (the margin between two clusters must be at least δ) is used. The
number of must-link constraints varies from 0.01% to 1% the total number of
pairs of objects where δ ranges from 3% to 12% the maximum distance between
two objects. Regarding to the results, both must-link and margin constraints
boost the performance for this data set.

Fig. 1. Must-link and margin constraints
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5.4 Minimizing Within-Cluster Sum of Dissimilarities

Minimizing the Within-Cluster Sum of Dissimilarities (WCSD) is a difficult task
since the propagation of the sum constraint is less efficient than the propaga-
tion of the diameter constraint. Without users-constraints, both our model and
the RBBA approach can find the optimal solutions only with the Iris dataset.
Our model needs 4174s to complete the search whereas the RBBA takes 3249s.
However, with appropriate user-constraints, the performance of our model can
be significantly improved.

WCSD and the margin constraint. Let us add a margin constraint δ, where
δ ranges from 0% (no constraint) to 12% of the maximum distance between
two objects. Table 3 (left) reports the WCSD value of an optimal solution and
the total computation time. It shows that when the margin constraint is weak,
the optimal WCSD value does not change. But the computation time decreases
significantly when this additional constraint becomes stronger. The reason is
that the total number of feasible solutions decreases and the search space is
reduced. When the margin constraint is weak, propagating this constraint is
more time-consuming than its benefits.
WCSD and must-link constraints. Let us now add must-link constraints, where
the number of must-link constraints, generated from the true classes of objects,
varies from 0.2 to 1% of the total number of pairs. Results are expressed in Table



Table 3. margin and must-link constraint with dataset Iris

Margin Constraint WCSD Total time # must-link WCSD Total time
no constraint 573.552 4174s no constraint 573.552 4174s
δ = 2% max Dist 573.552 1452s 0.2% 602.551 1275.1s
δ = 4% max Dist 573.552 84.4s 0.4% 602.551 35.6s
δ = 6% max Dist 573.552 0.3s 0.6% 617.012 16.1s
δ = 8% max Dist 2169.21 0.1s 0.8% 622.5 3.5s
δ = 10% max Dist 2412.43 0.04s 1% 622.5 1.6s
δ = 12% max Dist 2451.32 0.04s 100% 646.045 0.04s

3 (right), giving the WCSD value and the total computation time. In fact, the
optimal value of WCSD, with no information on classes, does not correspond
to the WCSD found when considering the partition of this dataset into the 3
defined classes. The more must-link constraints, the less computation time is
needed for finding the optimal value, and the closer to the value of WCSD,
when considering the 3 initial classes. The reduction of computation time can
be easily explained, since when an object is instantiated, objects that must be
linked to it are immediately instantiated too. Furthermore, with any kind of
additional constraint, the total number of feasible solutions is always equal or
less than the case without constraint.

Table 4. Example of appropriate combinations of user-constraints

Data set User constraints WCSD Total time

Wine margin: δ = 1.5% max Distance 1.40× 106 11.2s
minimum capacity: β = 30

GR666 margin: δ = 1.5% max Distance 1.79× 108 12.4s
diameter: γ = 50% max Distance

Letter Recognition # must-link constraints = 0.1% total pairs 5.84× 106 11.5s
# cannot-link constraints = 0.1% total pairs
margin: δ = 10% max Distance

Vehicle margin: δ = 3% max Distance 1.93× 109 1.6s
diameter: γ = 40% max Distance

WCSD and appropriate user-constraints. Finding an exact solution minimiz-
ing the WCSD is difficult. However, with appropriate combination of user-
constraints, the performance can be boosted. Table 4 presents some examples
where our model can get an optimal solution with different user-constraints,
which reduce significantly the search space.



5.5 Interest of the model flexibility

Our system finds an optimal solution when there exists one; otherwise no solution
is returned. Let us show the interest of combining different kinds of constraints.
Figure 2 presents 3 datasets in 2 dimensions, similar to those used in [7].

Fig. 2. Datasets

The first dataset is composed of 4 groups with different diameters. The second
one is more difficult, since groups do not have the same shape. The third one
contains outliers: outliers are not handled and are therefore integrated in classes.

When optimizing the maximal diameter, the solver tends to find rather ho-
mogeneous groups, as shown in Figure 3. Adding a min-margin constraint (with
δ = 5% of the maximum distance between pairs of points) improves the qual-
ity of the solution (see Figure 4). Let us notice that maximizing the minimum
margin allows also to find this solution.

Fig. 3. Max-diameter optimization

Concerning the third dataset, minimizing the maximum diameter or maxi-
mizing the minimum margin do not allow finding a good solution (see Figure 5).
The quality of the solution is improved when a density constraint is added with
MintPts = 4 and ε = 25% from the maximal distance between pairs of points.

6 Conclusion

We have proposed a declarative framework for Constrained Clustering based on
Constraint Programming. It allows to choose among different optimization cri-



Fig. 4. maximal diameter optimization + margin constraint

Fig. 5. Diameter opt. (left) Margin opt. (center) Margin opt. + density const. (right)

teria and to integrate various kinds of constraints. Besides the declarativity of
CP, one of its advantage is that it allows to find an optimal solution, whereas
most approaches find only local optima. On the other hand, complexity makes it
difficult to handle very large databases. Nevertheless, integrating constraints en-
ables to reduce the search space, depending on their ability to filter the domain
of variables. Moreover, working on search strategies and on constraint propaga-
tion enables to increase the efficiency and to deal with larger problems. We plan
to work on the search strategies and on the constraint propagators, thus being
able to address larger databases. We do believe that global constraints adapted
to the clustering tasks must be developed. From the Data Mining point of view,
more optimization criteria should be added.

References

1. De Raedt, L., Guns, T., Nijssen, S.: Constraint programming for itemset mining.
In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. (2008) 204–212

2. De Raedt, L., Guns, T., Nijssen, S.: Constraint Programming for Data Mining
and Machine Learning. In: Proc. of the 24th AAAI Conf. on Artificial Intelligence.
(2010)

3. Boizumault, P., Crémilleux, B., Khiari, M., Loudni, S., Métivier, J.P.: Discovering
Knowledge using a Constraint-based Language. CoRR abs/1107.3407 (2011)



4. Dao, T.B.H., Duong, K.C., Vrain, C.: Une approche en PPC pour la classification
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