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Abstract. We address the practical problem of maximizing the number
of high-confidence results produced among multiple experiments shar-
ing an exhaustible pool of resources. We formalize this problem in the
framework of bandit optimization as follows: given a set of multiple
multi-armed bandits and a budget on the total number of trials allocated
among them, select the top-m arms (with high confidence) for as many
of the bandits as possible. To solve this problem, which we call greedy
confidence pursuit, we develop a method based on posterior sampling.
We show empirically that our method outperforms existing methods for
top-m selection in single bandits, which has been studied previously,
and improves on baseline methods for the full greedy confidence pursuit
problem, which has not been studied previously.

1 Introduction

Clinical and scientific teams often pursue multiple research objectives on a fixed
budget. To obtain as many significant results as possible, they must intelligently
allocate their limited resources among one or more concurrent experiments. The
machine learning community has developed ways to formulate and address varia-
tions on this problem. For example, budgeted learning [12] and subsequent work
considers the problem of active learning when a fixed budget is given for probing
which model among a collection of models is best for a given task.

In this paper, we adopt the framework provided by bandit problems [3] to
address resource allocation among multiple concurrent tasks. Bandits offer a
simple way of formalizing many decision problems, e.g. deciding which among a
set of drugs most effectively treats a particular disease. In the standard formu-
lation a bandit has multiple arms with unknown expected payoffs and one must
probingly pull the arms in order to find the best one. Most bandit optimization
problems focus on regret minimization, i.e. minimizing some measure of loss
incurred over the course of an experiment. The goal in practical experimental
settings, e.g. clinical trials, is often different: one typically has a fixed budget for
acquiring patients to be treated, and the goal is to identify the best treatment
option at the end of the experiment. Hence, payoffs during the experiment are
not counted, in contrast to regret minimization, and the objective is solely to
maximize the (statistical) confidence with which the best action can be selected
after the experiment is over. In a recent series of papers, this idea has been
developed under the label “pure exploration” in multi-armed bandits [4, 2, 8].
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The problem of selecting the best arm with high confidence using a minimum
number of trials has also been tackled by [13] and [7]. In [9], the authors extended
the approach of [7] to the case in which one wants to select not just the best
arm, but the m arms with highest payoffs. In recent work [10], the same authors
provided an alternative algorithm with stronger PAC guarantees. Note that best-
arm selection is the special case of top-m selection where m = 1.

In the clinical trial setting, significant interest is currently directed towards
personalized medicine based on treatments which only work for specific sub-
populations. For example, it is understood that diseases like cancer may evolve
differently based on certain genetic mutations, and thus any treatment for such
a disease may only benefit certain types of patients. In such cases, no budgeted
clinical trial can hope to show that a treatment is universally effective; instead,
one should try to identify sub-populations within which the treatment works with
high confidence. One can naturally describe this problem using multiple bandits
(i.e. sub-populations) each comprising multiple arms (i.e. available treatments).
Typically, a fixed total number of patients can be enrolled (corresponding to a
fixed total number of trials). Hence, patients should be recruited and allocated
among the sub-populations and treatments to maximize the number of sub-
populations for which an effective treatment is confidently identified.

We formalize this problem as multi-bandit top-m selection: given a set of n
multi-armed bandits, a trial budget T , and a target confidence τ , maximize the
number of top-m groups identified with confidence ρ > τ after performing T
trials. We refer to this general problem as greedy confidence pursuit, as it prefer-
entially directs resources (i.e. trials) towards experiments (i.e. bandits) in which
confident results are easiest to achieve. Work in [8] addresses a related problem
which focuses, roughly speaking, on minimizing the probability of incorrectly
identifying any top-m group. We will discuss the relation between [8] and our
own work in detail. Similarly, work in [6] considers a multi-bandit objective which
focuses on minimizing the maximum uncertainty among the estimated per-arm
returns. In contrast, we propose the more pragmatic objective of maximizing the
number of confident results achieved on a fixed budget1.

In Section 2 of this paper, we define greedy confidence pursuit and contrast it
with objectives previously considered in the multi-bandit setting. In Section 3 we
develop an algorithm for intra-bandit top-m selection in bandits with Bernoulli-
distributed returns. In Section 5 we develop an algorithm for inter-bandit trial
allocation which completes our approach to greedy confidence pursuit. In Sec-
tions 4 and 6, we compare the performance of our algorithms with existing
algorithms across a range of problems, illustrating the power of our approach
and highlighting the differences between greedy confidence pursuit and other
objectives previously considered in the multi-bandit setting. We conclude the
paper and discuss future work in Section 7.

1 Our objective is pragmatic as many practical scenarios (e.g. scientific publication)
require surpassing some confidence threshold for capturing any value, with extra
confidence beyond the threshold providing rapidly diminishing additional value.
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2 Motivating and Formulating our Objective

Consider a pharmaceutical developer evaluating a new drug for potential use in
multiple sub-populations of patients. Given a fixed budget for processing trial
patients, the developer may seek to maximize the number of sub-populations
for which their proposed drug is identified as significantly better than existing
treatments2. We can formalize this problem as follows:

– Each sub-population is represented by a bandit bi.
– Each bandit has a set of n arms Ai = {ai1, ..., ain}, with arm ai1 representing

the new drug and the rest representing existing treatments.
– The random variables Ri = {ri1, ..., rin} give the per-trial outcomes for bi.
– The objective is to maximize the number of bandits bi for which we find

E[ri1] > maxj 6=1 E[rij ] with confidence ρi > τ .

In the above scenario, only confident results involving a particular target arm
(i.e. the pharmaceutical developer’s proposed drug) are considered worth pursu-
ing. This represents a variant of the general greedy confidence pursuit problem,
in which confident results involving any best arm are pursued equally.

We approach greedy confidence pursuit by decomposing trial allocation into
three stages: bandit selection, arm selection, and belief updates based on the
trial outcome. Methods for these stages can be combined “a la carte”, which
facilitates algorithm development and eases comparison with existing work.

In previous work [8], given a set of N bandits B = {b1, ...bN}, Gabillon et. al
proposed the following objective for multi-bandit subset selection:

maximize EH [ min
i
ρi ] , (1)

where ρi measures the confidence that the top-m group selected for bandit bi is
correct. In contrast, our objective can be written as follows:

maximize EH [
∑
i

I{ρi > τ} ] , (2)

where ρi is as above, τ is a confidence threshold and I is the indicator function.
The expectations are over histories (i.e. sequences of observed trial outcomes).
Intuitively, (1) maximizes a lower bound on the per-bandit confidences and (2)
maximizes the number of bandits for which the top-m group can be selected
with high confidence. The precise confidence measure we use is given in (3).

For both objectives (1) and (2), the trials allocated to bandit bi should be
distributed among its arms to maximize ρi. Hence, good arm selection for (1) will
also be good for (2). However, methods for optimizing these objectives will select
bandits quite differently. Intuitively, methods optimizing (1) will tend to allocate
trials to bandits with relatively low confidence, while methods optimizing (2) will

2 While human drug trials are slow to adopt novel experimental designs, one could
analogously consider trials of a new consumer product across multiple potential
target demographics, or exploratory drug trials in non-human model systems.
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tend to allocate trials to bandits with relatively low expected completion cost
(out of the bandits bi for which ρi ≤ τ). The practical differences between (1) and
(2) are most striking when some bandit bi is effectively intractable with respect
to the operative confidence measure and trial budget; an algorithm optimizing
(1) will still sink its budget into (hopelessly) pursuing improvements in ρi, while
algorithms optimizing (2) will ignore bi in favor of lower-hanging fruit.

The completion cost is a critical concept when working with (2), which we
define as follows: a bandit bi has completion cost ci if efficiently allocating ci
trials among the arms of bi is expected to push ρi above τ . Note that if each
ci were deterministic and known a priori, an optimal trial allocation policy for
(2) would be to sort the bandits such that c1 ≤ c2 ≤ ... ≤ cN , then allocate
c1 trials to b1, c2 trials to b2 etc., until budget exhaustion. This greedy policy
maximizes the number of tasks completed on a fixed budget when each task has
a known cost. The difficulty in our case is that each ci is neither known a priori
nor deterministic. Thus, a balance between exploring (to better estimate each
ci) and exploiting (to push each ρi past τ) must be struck.

In Section 5 we describe an estimator for the completion costs ci and discuss
how to use these estimates for inter-bandit trial allocation during greedy confi-
dence pursuit. Next, we present our method for intra-bandit top-m selection.

3 Bayesian Top-m Selection

Our intra-bandit subset selection algorithm uses Bayesian estimates of the per-
arm returns and follows a general approach called posterior sampling, of which
Thompson sampling [16] is perhaps the best-known example. The notation in-
troduced in this section will be reused throughout the remainder of this paper.

3.1 Definitions and Notation

For a set B ofN bandits, where each bi ∈ B has a set Ai of n arms with Bernoulli-
distributed returns, our algorithm maintains its beliefs about the return of each
arm aij ∈ Ai using a beta distribution Bij = B(αij , βij), where αij and βij
count the observed successes and failures for arm aij , respectively. We set priors
over the returns by initializing all parameters αij and βij to a common value
(e.g. we set them to 1 in all of our tests). The belief for arm aij is updated by
incrementing αij or βij following each trial allocated to aij . The MAP estimate
of the return of aij is given by αij(αij + βij)

−1.
For a bandit bi with current MAP return estimates R̄i = {r̄i1, ..., r̄in}, we

define its current MAP gap location γ̄i as 1
2 (r̄im + r̄i(m+1)), in which r̄im and

r̄i(m+1) refer to the mth and (m+1)th largest MAP return estimates respectively.
Given γ̄i, we define the current MAP per-arm gaps Γ̄i = {γ̄i1, ...γ̄in} such that
γ̄ij = |r̄ij − γ̄i|. We also refer to a bandit’s true returns and gaps (Ri, Γi) as its
parameters θ ∈ Θ, where Θ spans all bandits permitted by the prior.

We associate each bandit bi with a confidence ρi, which should give the
probability that its current top-m group (based on the MAP return estimates) is
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correct. Since this is impractical to compute exactly, we use a lower bound3. For
a bandit bi with current MAP return estimates R̄i = {r̄i1, ..., r̄in}, we compute
this bound as follows:

ρ̄i = 1−
n∑
j=1

1− Φ
(√

tij |r̄ij − γ̄i|
σ̄ij

)
, (3)

where σ̄ij =
√
r̄ij(1− r̄ij) is the current MAP estimate of the standard deviation

of the return for arm aij , tij is the number of trials previously allocated to arm
aij , γ̄i is the MAP gap location derived from R̄i, and Φ is the CDF for a standard
normal distribution. This bound uses a normal approximation to the posterior
distribution of the return estimate for each arm and computes a union bound
on the probability that all MAP return estimates are on the same side of γ̄i as
their true values. When (3) is negative, we define ρ̄i = 0.

The algorithms presented in this paper all sample from the current posterior
over a bandit’s returns and gaps (i.e. its parameters θ ∈ Θ) as follows: sample a
return for each arm from its current Beta distribution, compute the gap location
implied by the sampled returns, and compute the per-arm gaps using the sampled
returns and the computed gap location.

3.2 Posterior Sampling and its Merits

Posterior sampling, or randomized probability matching, is a flexible approach to
sequential optimization problems drawing increasing interest from the theoretical
and applied sides of machine learning [1, 11, 15, 5]. For bandit problems, posterior
sampling policies πp select arms as follows:

πp(aij |H) ∝ p
(
aij = arg max

akl

fHθ (akl)

∣∣∣∣ H) , (4)

in which πp(aij |H) is the probability of πp selecting aij given H, the trial history
H records the outcomes of all previous trials, θ ∈ Θ is an unobserved parameter
specifying the distribution of the bandit’s returns, and fHθ is any determinis-
tic function with bounded range. The remaining component of any posterior
sampling policy πp is the conditional distribution p(θ|H), which describes the
posterior over θ ∈ Θ after observing the trials recorded in H. Alg. (1) gives the
general form followed by posterior sampling algorithms.

While the fHθ used in (4) must be deterministic given particular values for θ
and H, its use in posterior sampling induces a stochastic policy by virtue of our
imperfect knowledge of θ, which we observe only through the trials recorded in
H. Thus, while fHθ must be deterministic, its value for a particular arm aij given
a particular history H is stochastic, with stochasticity provided by entropy in
the posterior p(θ|H).

3 The true (Bayesian) confidence for a bandit can be computed to arbitrary precision
by repeatedly sampling from the joint posterior over its per-arm returns and ob-
serving the frequency with which its MAP top-m group appears as the top-m group
among the sampled sets of returns.
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Algorithm 1 PostSample( fHθ , p(θ|H), H, T )

1: for 1 ≤ t ≤ T :
3: Sample θ̂ ∈ Θ from the posterior given by p(θ̂|H)
4: Let â∗ij = arg maxakl

fH
θ̂

(akl)
5: Pull arm â∗ij and update H based on the outcome
6: end for

The performance of a posterior sampling policy πp is most naturally measured
by its Bayes risk with respect to fHθ , which can be written as follows:

Eθ
T∑
t=1

[
fHθ (a∗ij)− fHθ (πpt )

]
, (5)

in which πpt indicates an arm selected according to the probabilities given by
πp(aij |H) and a∗ij is an arm which maximizes fHθ . The Bayes risk describes the
sub-optimality of πp with respect to an optimal policy π∗ that always knows
a∗ij , with respect to a prior over Θ chosen a priori. Based on work in [14], we
decompose the Bayes risk for posterior sampling policies as follows:

(5) = EHEθ
T∑
t=1

[
fHθ (a∗ij)− fHθ (πpt )

]
= EHEθ

T∑
t=1

[
fHθ (a∗ij)− UHt (πpt ) + UHt (πpt )− fHθ (πpt )

]
= EHEθ

T∑
t=1

[
fHθ (a∗ij)− UHt (a∗ij) + UHt (πpt )− fHθ (πpt )

]
= Eθ

T∑
t=1

[
fHθ (a∗ij)− UHt (a∗ij)

]
+ Eθ

T∑
t=1

[
UHt (πpt )− fHθ (πpt )

]
in which UHt is any function that is deterministic and bounded given H. The
key step in this decomposition relies on the property that Eθ|H [UHt (a∗ij)] =

Eθ|H [UHt (πpt )], which results from the posterior sampling construction of πp ac-
cording to (4), which makes the distributions πp(aij |H) and p(aij = a∗ij |H)
identical. We emphasize that this decomposition is valid for any πp based on
posterior sampling for any fHθ and UHt meeting the stated contraints.

Analyses of the Bayes risk for UCB policies follow a decomposition parallel
to that for posterior sampling, with a final step that results in:

Eθ
T∑
t=1

[
fHθ (a∗ij)− UHt (a∗ij)

]
+ Eθ

T∑
t=1

[
UHt (πut )− fHθ (πut )

]
,

in which UHt meets the same constraints as for posterior sampling and πut is
the arm selected by a UCB policy πu based on UHt , i.e. one where πut =
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arg maxaij U
H
t (aij). The key step in the Bayes risk decomposition for UCB

policies relies on the fact that UHt (πut ) ≥ UHt (a∗ij) for all t, due to the UCB
construction of πu.

The parallel decompositions of the Bayes risks for posterior sampling and
UCB algorithms show that, if for some fHθ there exists an upper bound UHt which
produces a UCB policy πu with provably good Bayes risk, then substituting that
UHt into the decomposed Bayes risk for the policy πp which performs posterior
sampling with respect to fHθ proves an equivalent Bayes risk for πp. Thus, the
Bayes risk of posterior sampling with respect to any fHθ is upper-bounded by the
lowest Bayes risk upper bound for any πu constructed from any upper bound
UHt on fHθ . For detailed coverage of this result and its implications, see [14].

3.3 Top-m Selection via Posterior Sampling

Motivated by the preceding result, we derive a function fHθ for which good Bayes
risk ensures good subset selection performance. We begin by restating an efficient
static allocation policy πs for subset selection described in detail by [8]:

πsθ(aij) =
Tb2

γ2ij
∑
kl

b2

γ2
kl

, (6)

in which πsθ(aij) gives the number of trials to allocate to aij assuming the gaps
γij are known a priori (the gaps are determined by the bandit parameters θ), T
gives the total number of trials to allocate, and b is a bound on the range of the
returns (e.g., b = 1 for Bernoulli bandits). The policy induced by (6) is optimal
with respect to a lower bound on selection confidence analogous to that in (3).
Next, for any trial history H, define H(aij) as the number of trials recorded
for aij in H4. Finally, for history H and bandit parameters θ, define the log
misallocation ratio as:

fHθ (aij) = log

(
πsθ(aij)

H(aij)

)
. (7)

Note that this fHθ implicitly depends on the desired subset size m through the
definition of the per-arm gaps used in computing πsθ(aij) for each arm and that
it is bounded by ± log(T ). This fHθ provides a particularly interesting target
for posterior sampling because we only ever observe it indirectly, through the
information recorded in H over the course of an experiment.

Intuitively, posterior sampling with respect to (7) will select arms in propor-
tion to their posterior probability of being most under-sampled relative to their
sample density in the optimal static policy πsθ. Any policy whose Bayes risk with
respect to (7) grows sublinearly in T has performance asymptotically equivalent
to that of πsθ for the true θ as T →∞. And, from the earlier result, the existence
of any UCB policy with good Bayes risk with respect to (7) suggests good Bayes
risk for posterior sampling with respect to (7).

4 Without loss of generality, we assume all arms have at least one trial in H.
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We perform intra-bandit top-m selection by posterior sampling with respect
to the value in (7). Alg. (2) describes how our algorithm allocates trials at
each round. While our full approach to greedy confidence pursuit calls Alg. (2)
one round at a time, it can also be iterated following the form of Alg. (1) for
application to single bandit subset selection problems.

Algorithm 2 SelectArm( bandit bi, trial history H )

1: Sample θ̂i = (R̂i, Γ̂i) according to p(θ̂i|H).
2: Compute πs

θ̂i
(aij) for each aij ∈ Ai according to (6).

3: Compute â∗ij = arg maxaij f
H
θ̂i

(aij), with fH
θ̂i

as in (7).

4: Return â∗ij .

As further justification for our algorithm, consider the relation:

arg max
aij

log

(
πsθ(aij)

H(aij)

)
= arg min

aij

√
H(aij)γij

b
, (8)

which follows from a straightforward derivation. If one were to model all arms
using the same bound b on their standard deviation, then the values in the
argmin above are equivalent to the values passed to Φ in (3) when computing
the contribution of each arm to a bandit’s confidence ρi. Thus, by posterior sam-
pling with respect to (7), our algorithm selects arms according to their posterior
probability of having the lowest confidence in (3). This can be interpreted as
stochastic greedy maximization of the following lower bound on ρi:

ρi ≥ 1− n
(

1−min
j

[
Φ

(√
tij |r̄ij − γ̄i|

σ̄ij

)])
. (9)

4 Testing Top-m Selection

This section empirically compares our subset selection algorithm with two ex-
isting methods. The first one [10] offers a standard PAC guarantee on sample
complexity and success probability that matches a theoretical lower bound on the
optimal samples/accuracy tradeoff (up to constant factors). The second method
is based on the optimally efficient (up to constant factors) method for best arm
selection presented in [8], which we adapt for use in subset selection. We refer to
our arm selection method as Bayes and the respective baseline methods as PAC
and UCB. We now describe the PAC and UCB methods as used in our tests.

Using the notation from the previous section, both the PAC and UCB meth-
ods rely primarily on the current MAP estimates of the gaps (i.e. {γ̄i1, ..., γ̄in})
for each of the arms in bandit bi. Both methods allocate the next trial to an arm
aij such that −γ̄ij + βij = maxk[−γ̄ik + βik], in which the negative gap −γ̄ij
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(b) 20 arms
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(c) 50 arms

Fig. 1. These plots show average confidence lower bounds as a function of trials allo-
cated for three different arm selection methods and two subset sizes at each of three
arm counts. To generate each line, confidence lower bounds were averaged over 100
tests using bandits generated as described in the main text. Methods are indicated by
line style. In each subfigure, the darker lines correspond to selecting the best arm and
the lighter lines correspond to selecting the top half of the arms.

encourages a focus on arms near the boundary and the term βij encourages ex-
ploration to improve the per-arm gap estimates. The PAC and UCB methods
differ only in their computation of the βij term.

The PAC method, referred to in [10] as LUCB1, computes βij as follows:

βij =

√
1

2tij
ln

(
5nt4

4δ

)
, (10)

in which tij gives the number of trials previously allocated to aij , t gives the
total number of trials previously allocated, n is the number of bandit arms, and
(1 − δ) is the desired probability of correct subset selection (we set δ = 0.05 in
our tests). UCB computes βij as follows:

βij =

√
2κiσ̄2

ij

tij
+

7κiνi
3(tij − 1)

, (11)

in which σ̄2
ij is the current empirical (i.e. MAP) estimate of the variance of the re-

turn of aij , tij is as in (10), and κi/νi are constants computed from continuously
updated empirical estimates of the complexity of bandit bi. A full description of
the κi/νi computations is beyond the scope of this paper and appears in [8]5.

All tests underlying Figures 1 and 2 used bandits with return distributions
generated by the same process. Four parameters determined the return distri-
bution of each bandit used in these tests: the minimum allowed gap γmin, the
maximum allowed gap γmax, the number of arms n, and the number of top arms
to select m. Without loss of generality, we assume that the arms are sorted in

5 For those familiar with the source material, we have implemented AGapE-V with
the per-arm gaps ∆mk redefined to permit top-m selection. This redefinition of the
gaps permits simpler notation, while effecting only a constant shift in all gap values,
thus leaving the selection process unchanged when m = 1.
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(a) Instant
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(b) Delayed

Fig. 2. This plot compares best arm selection performance of the Bayes, PAC, and UCB
algorithms. The lines show the median completion times achieved by each method over
100 tests at each arm count in {5, 10, 20, 50, 100}, with bandits generated as described
in the text. Tests were considered complete when a confidence ≥ 0.98 was maintained
for at least 100 rounds. Feedback in (a) was instant, while feedback in (b) was delayed
100 trials.

order of descending returns. We generated a random set of returns meeting the
constraints imposed by these parameters by generating sets of n returns uni-
formly distributed over [0.1...0.9] until the gap between the mth and (m + 1)th

largest returns was in the range [γmin...γmax]. For the tests in this section, and
those in the remaining sections, for a given set of per-arm returns (i.e. a bandit),
we presented each algorithm with matching sequences of trial outcomes. This
allowed us to expose all methods tested to problems of equivalent difficulty. For
tests in this section we set γmin = 0.05 and γmax = 0.15.

In Figure 1 we show the results of running the Bayes, PAC, and UCB methods
on bandits with various arm counts when selecting either the best arm or the top
half of the arms. We plot the average learning curves over 100 bandits for each
arm count/subset size pair. The confidence values plotted in these curves were
computed according to (3). Confidence curves for all other tests in this paper
were computed similarly. The tests in Figure 1 show our method consistently
outperforming existing methods over all arm counts and subset sizes.

Figure 2 compares Bayes, PAC, and UCB methods across a larger range of
arm counts, in the context of best arm selection. For these tests, we compute
completion time as the first round at which the confidence bound ρ̄i was at least
0.98 for the previous 100 trials. Our method clearly has a large advantage as the
number of arms increases. While the absolute advantage at arm counts ≤ 10 is
smaller, it still represents a 10%− 20% reduction in completion time.

5 Bayesian Greedy Confidence Pursuit

Recall that, if the completion cost ci for each bandit bi were deterministic and
known a priori, an optimal policy for greedy confidence pursuit would be to com-
plete bandits in order of increasing completion costs, until budget exhaustion.
To compensate for the uncertain completion costs encountered in practical sce-
narios, we address greedy confidence pursuit by posterior sampling with respect
to an approximate per-bandit completion cost.
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For use in greedy confidence pursuit, an approximate completion cost need
only predict the relative ranking of a set of bandits in terms of their true com-
pletion costs, as this permits mimicking the optimal greedy policy for known
completion costs, which depends only on the cost-induced bandit order. For a
bandit bi with true returns Ri and gaps Γi, we use the following cost estimate:

ĉi =

n∑
j=1

(
σij +

√
σ2
ij + (16/3)γij

)2
γ2ij

, (12)

in which σij is the standard deviation associated with the return rij . The value in
(12) comes from a bandit complexity measure described in [8]. Figure 3 supports
the predictiveness of (12) with respect to relative empirical costs.

Note that, if one assumes the same target confidence τ for all bandits bi ∈ B,
then accounting for τ in ĉi would not affect the ordering of bandits according to
ĉi, as an “easier” bandit according to (12) would also have a smaller expected
completion cost for any value of τ . By using (12), we also ignore the effort
previously expended on a given bandit. While considering the number of trials
already spent on a bandit could improve on the performance of (12), it would
require steps to avoid the “sunk-cost” fallacy of economics, as manifested by
premature commitment to bandits wrongly identified as “easy”.
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Fig. 3. This figure examines the predictive power of the completion cost in (12). From
darkest to lightest the points represent selecting the top 1, 3, and 5 arms of a 10-armed
bandit. Points correspond to particular bandits for which 20 runs of our Bayesian subset
selection were performed, using independently generated trial outcomes for each run.
The x coordinate of each point is the value of (12) for the true returns and gaps
underlying its runs, while the y coordinate is the mean completion time for its runs.

We perform bandit selection for greedy confidence pursuit by (minimum)
posterior sampling with respect to fHθ (bi) = ĉi. The resulting algorithm is given
in Alg. (3). Note that (12) captures dependence on the subset size m through its
use of Γi and that ĉi becomes stochastic when sampled with respect to the per-
bandit posteriors over returns and gaps. A theoretical analysis of our allocation
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process is beyond the scope of this paper, but the properties of posterior sampling
described in Section 3 suggest it will efficiently direct trials towards the bandits
with minimal ĉi. Section 6 empirically supports the design of this approach.

Algorithm 3 SelectBandit( bandit set B, trial history H )

1: for each bi ∈ B:
2: Sample θ̂i = (R̂i, Γ̂i) according to p(θ̂i|H).
3: Compute ĉi according to (12) using R̂i and Γ̂i.
4: end for
5: Let b∗i = arg minbi: ρi<τ ĉi.
6: Return bi∗ .

5.1 Greedy Confidence Pursuit for “Targeted” Tasks

Now, consider the following problem:

– Given a finite trial budget T and N bandits bi with returns Ri = {ri1, ...rin}
– Maximize the number of bandits bi for which we can say with confidence ρi

greater than τ that (without loss of generality) ri1 > maxj 6=1 rij ,

which reformulates the example scenario from Section 2. The twist in this sce-
nario is that we only care about bandits for which a specific arm is best.

We address this problem by extending our algorithm for bandit selection in
general greedy confidence pursuit. Intuitively, we sample bandits in proportion
to their probability of having the lowest completion cost among bandits in which
the targeted arm is best. Alg. (4) describes our extension of Alg. (3).

Algorithm 4 TargetedBanditSelection( bandit set B, trial history H )

01: ∀i, set ĉi =∞.
02: while (mini ĉi ==∞)
03: for each bi ∈ B:
04: Sample θ̂i = (R̂i, Γ̂i) according to p(θ̂i|H).
05: Compute ĉi according to (12) using R̂i and Γ̂i.
06: If r̂i1 < maxj 6=1 r̂ij , set ĉi =∞
08: end for
09: end while
10: Let b∗i = arg minbi: ρi<τ ĉi.
11: Return bi∗ .

In the next section, we empirically support the value of Alg. (4) in situations
where one is focused on maximizing “positive” results involving specific arms. For
practical reasons, we upper bound the number of runs through the “resampling”
loop of lines 02− 09. If, prior to reaching the upper bound, no bandit has been
found for which r̂i1 > maxj 6=1 r̂ij , we select a bandit according to Alg. (3).
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6 Testing Greedy Confidence Pursuit

We begin our empirical examination of greedy confidence pursuit with tests
supporting (12) as an approximate completion cost. These tests were based on
selecting the top 1, 3, and 5 arms of 10-armed bandits, with returns distributed
as in Section 4. For each test, we generated a bandit, computed its cost according
to (12) using the true returns, and then ran our Bayes arm selection 20 times
on the bandit, using independently simulated trials for each run. Each point
in Figure 3 corresponds to the analytically computed cost and the empirical
expected cost for a particular bandit, with empirical completion costs measured
as for Figure 2. These tests show that the cost estimates given by (12) are highly
predictive with respect to the behavior of our algorithm.
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Fig. 4. This figure examines the performance of our method for greedy confidence
pursuit, when selecting best arms. Curves in (a) were computed over 100 tests, each
of which used 20 10-armed bandits, with the gap for one bandit set to 0.1 and the
remaining gaps set to 0.01. Curves in (b) were computed over 100 tests, each of which
used 15 10-armed bandits, with the gaps for the bandits evenly spaced on a log scale
from 0.01 to 0.1. Bandit generation for the tests in (a) and (b) is described in the text.
The curves in (a) and (b) show the number of bandits confidently completed prior to a
given trial, aggregated across the relevant tests, with completion defined as for Fig. 2.

For the tests underlying Figures 4 and 5, the per-bandit objective was best
arm selection. These tests compared our method for greedy confidence pursuit
(tag: GCP-Bayes), comprising the bandit selection described in Section 5 and
the arm selection described in Section 3, to three baseline methods. The first
baseline was Uni-UCB, which uniformly selected bandits and then applied the
UCB arm selection described in Section 4. The second baseline was Gab-UCB,
which used UCB arm selection applied jointly over the bandits as described for
GapE-V in [8]6. The final baseline was provided by MAP-UCB, which selected
bandits stochastically in inverse proportion to estimates of their completion costs
computed by plugging MAP estimates of the relevant values into (12), and then
used UCB for intra-bandit arm selection.

6 Note that Gab-UCB is designed to optimize (1) rather than (2). By selecting jointly
over all arms/bandits, our Bayesian approach to top-m selection can also be applied
towards (1).
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Figure 4 examines whether our approach to greedy confidence pursuit can
improve the rate at which confident results are achieved. In each test underlying
(a), 20 bandits were generated such that one had gap 0.1 and the rest had gap
0.01. For each test underlying (b), 15 bandits were generated to have gaps evenly
spaced on a logarithmic scale over [0.01...0.10]. Given the desired gap size γ for
each bandit, the best arm was set to return 0.5 + γ, and the remaining returns
were set uniformly at random in [0.0...0.5] and then uniformly shifted such that
the second best arm had return 0.5. The curves in Figure 4 show the cumulative
confident results achieved by each method prior to a given trial, computed based
on 100 independently generated sets of test bandits for both (a) and (b).

Overall, Figure 4 shows that, in comparison to Uni-UCB and Gab-UCB, our
method significantly accelerates the achievement of confident results. The tests in
(a) show that Gab-UCB, which optimizes the objective described in (1), performs
poorly with respect to the rate at which confident results are achieved when the
bandits under consideration span a wide range of costs. The tests in (b) show
that GCP-Bayes and MAP-UCB both maintain a large performance advantage
over Uni-UCB even when the difference between easy and hard bandits is less
pronounced than for the tests in (a). Note that MAP-UCB is a novel algorithm
which we have introduced to provide non-trivial competition for GCP-Bayes.

6.1 Testing “Targeted” Greedy Confidence Pursuit
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Fig. 5. This figure gives two views of the cumulative number of best arms confidently
selected prior to a given trial, similar to Figure 4. Each of the 100 tests on which these
plots are based used 20 10-armed bandits, of which 5 had the target arm best while
the remaining 15 had some other arm best. Gaps for all bandits were set uniformly at
random in [0.01...0.10]. Bandit generation for these tests is described in the text. Plot
(a) shows the cumulative number of bandits completed among those whose target arm
was best, while (b) shows cumulative completions among all bandits.

Figure 5 examines the performance of our approach to group selection for
greedy confidence pursuit in the context of the targeted scenario from Section 2.
In each test underlying the plots, 20 10-armed bandits were generated with gaps
distributed uniformly at random over [0.01...0.10]. In each test, 5 bandits had
their target arm best and the other 15 bandits had some other arm best. Given
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the gap size and best arm index for each bandit, the per-arm returns were set
as for the tests underlying Figure 4.

The curves in Figure 5 show the rate at which each considered method
achieved confident results, as measured by the number of bandits confidently
completed prior to a given round, aggregated over 100 independently generated
sets of bandits. For (a), only completed bandits among those with their tar-
get arm best were considered when computing the plotted curves. For (b), all
completed bandits were considered when computing the plotted curves.

The curves in (a) show that, in comparison to both Uni-UCB and MAP-UCB,
the targeted version of GCP-Bayes from Section 5.1 dramatically increases the
rate at which confident results are achieved among bandits with their target arm
best. The curves in (b) show that the increased focus of this version of GCP-
Bayes on a particular subset of the bandits also modestly increases the initial
rate at which confident results are achieved among all bandits, but that this early
advantage fades as easy target-arm-best results are exhausted. After completing
the easiest target-arm-best results, GCP-Bayes falls behind MAP-UCB, which
greedily and impartially pursues all easy results.

7 Conclusion and Future Work

We presented a new multi-bandit optimization objective, called greedy confi-
dence pursuit, which captures the general problem of maximizing the number
of significant results achieved among a set of experiments sharing a finite pool
of fungible resources. We derived algorithms for optimizing this objective in the
context of top-m arm identification, both for single and multiple bandits. Our
methods compare favorably to existing UCB-style algorithms in terms of em-
pirical performance. In particular, for subset selection, our method scales much
better with increasing arm counts than existing algorithms, which suggests its
applicability in domains frequently involving numerous actions, such as online
advertising and Monte-Carlo tree search for games with high branching factors.

While we used Bernoulli bandits in this paper, our methods directly extend to
other return types e.g. normally-distributed continuous returns, through a simple
change of priors. Structured priors, e.g. Gaussian processes, can also be used to
capture both inter-bandit and intra-bandit relationships between returns. We
used bandits with homogenous arm counts, but our methods handle heterogenous
arm counts with no changes. With minor modifications, our methods can be
used with bandits that share arms and for tasks other than subset selection,
e.g. estimating quantiles or rank-ordering all returns. For practical applications,
it may also be useful to account for variability in the value of completing each
bandit. Such extensions are beyond the scope of the current paper, but provide
rich material for future work. We gave one brief illustration of the flexibility
granted by our use of posterior sampling by transforming Alg. (3) into Alg. (4),
for application to problems in which only specific confident results are pursued.
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