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Abstract. Sensor placement on water networks is critical for the detection of ac-
cidental or intentional contamination event. With the development and expansion
of cities, the public water distribution systems in cities are continuously growing.
As a result, the current sensor placement will lose its effectiveness in detecting
contamination event. Hence, in many real applications, we need to solve the in-
cremental sensor placement (ISP) problem. We expect to find a sensor placement
solution that reuses existing sensor deployments as much as possible to reduce
cost, while ensuring the effectiveness of contamination detection. In this paper,
we propose scenario-cover model to formalize ISP and prove that ISP is NP-
hard and propose our greedy approaches with provable quality bound. Extensive
experiments show the effectiveness, robustness and efficiency of the proposed
solutions.

1 Introduction

Monitoring water networks in cities for the safety of water quality is of critical impor-
tance for the living and development of societies. One of the efforts for water safety
is building early warning systems (EWSs) with the aim to detect contamination event
promptly by installing sensors in a water distribution network. When placing sensors
in a water network, it is always desired to maximize the effectiveness of these sensors
with minimal deployment cost. Hence, optimizing the sensor placement on water net-
work so that the adverse impact of contaminant event on public health is minimized
under the budget limit becomes one of the major concerns of researchers or engineers
when building EWSs.

Problem Statement With the development and expansion of cities, especially those
cities in developing countries like China, India, the public municipal water distribu-
tion systems are ever-expanding. As a consequence, the current sensor placement of
EWS generally will lose its effectiveness in detecting contamination events. See Fig-
ure 1 as an example. The sensor deployment in the original water network is shown
in Figure 1(a). Sometime later, the water network may significantly expand (the ex-
panded network is shown in Figure 1(b)). Clearly, if we keep the sensor deployment
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unchanged, it will be hard for the sensors in the original locations to detect the contam-
ination events occurring in the expanded part of the network (marked by the red dotted
line in Figure 1(b)).

To keep the effectiveness of EWS in detecting such contamination events, in most
cases people needs to add more sensors or reinstall existing sensors. In the previous
example, to ensure the effectiveness of contamination detection on the expanded net-
work, we may move one sensor deployed in vy (the green node in Figure 1(a)) from
the original network and reinstall it on a location (say vg) of the expanded network. We
may also need to buy two new sensors and deploy them on v;3 and v1¢.

Effectiveness of above redeployment comes at the cost of reinstalling and adding
new sensors. However, in many cases, the budget is limited. To reduce the cost, the
newly installed sensors and reinstalled sensors are always expected to be minimized.
Consequently, in real applications of water network, an incremental sensor placement
(ISP) problem usually arises, in which we need to find a sensor placement that reuses
existing sensor placement as much as possible, and meanwhile guarantees the effec-
tiveness to detect contaminations.

Despite of the importance of ISP, rare efforts can be found to solve it efficiently
and effectively. Most of existing related works focus on sensor placement on a static
water network. These solutions on static water networks can not be straightforwardly
extended to solve ISP since reusing current sensor placement is a new objective of the
problem. If we directly recalculate a sensor placement on the current water networks,
the resulting sensor deployment may not have sufficient overlap with the current deploy-
ment, which will lead to high cost of redeployment. Furthermore, the water networks in
real life are generally evolving in a complicated way, which also poses new challenges
to solve ISP.

In summary, it is a great challenge to design a strategy to deploy sensors incremen-
tally under limited budget without losing the effectiveness of contamination detection.
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Fig. 1. Demonstration of a possible incremental sensor deployment solution. Originally, 2 sensors

were deployed. When the network was expanded, 2 additional sensors would be deployed and one
original sensor (marked by green node) was moved to the expanded part of the network.

Contribution and Organization To overcome the difficulties stated above, we reduce
the ISP problem to maximal coverage (MC) problem. Based on this model, we develop
several heuristic algorithms to solve ISP. The contribution of this paper can be summa-
rized as follows:

1. We reduce sensor placement optimization to maximal coverage problem.
2. We propose the problem of ISP. We show that ISP is NP-hard, and the objective
function of ISP is submodular.



3. We propose a series of greedy algorithms with provable bound on the solution
quality to solve static sensor placement and then extend them to solve ISP.

4. We conduct extensive experiments to show the effectiveness, robustness and effi-
ciency of our proposed solutions.

The remainder is organized as follows. Sec 2 briefly reviews the related works. Sec 3
formalizes the ISP problem and builds the theory for this problem. In Sec 4, we present
the solutions for the proposed problems. Sec 5 shows the experimental results. We close
the paper with a brief conclusion in Sec 6.

2 Related Work

A large number of approaches have been proposed for optimizing water sensor net-
works. They differ from each other in the design and/or performance objective. [1] de-
veloped a formulation related to a set covering problem with an premise that sampling
at a location supplied by upstream nodes provides information about water at the up-
stream nodes. Subsequently several researchers refined the model by greedy heuristic-
based algorithm [2] and genetic algorithm [3]. [4,5] introduced a scenario in which
the objective is to ensure a pre-specified maximum volume of contaminated water con-
sumed prior to detection and also reduced this problem to set cover problem. [6, 7]
introduced an MIP(mixed integer programming) solution for the objective to minimize
the expected fraction of population exposed to a contamination. The objective of [8, 9]
is to ensure that the expected impact of a contamination event is within a pre-specified
level, and [8] introduced a formulation based on set cover and solved the problem using
genetic algorithm while [9] use a MIP based solution. In order to achieve the objective
defined in [10], [11-21] adopted multi-objective optimization by different methods such
as heuristic, predator-prey model or local search method and [22] used the submodular
property to achieve an approximation guarantee.

In our paper, we use the concept of submodularity [23,24] to solve the problem
of sensor placement on dynamic water network. Submodularity was widely used in
sensor placement optimization [22,25]. But these solutions are mostlybuilt for static
water network. Besides sensor placement, submodularity has also been widely adopted
in finding influencers [26], influence maximization [27] and network structural learning
[28]. All the solutions mentioned above are not designed for incremental sensor place-
ment, which is a more realistic problem in real-world. To the best of our knowledge,
this paper is the first one addressing the incremental sensor placement on dynamic water
networks.

3 Incremental Sensor Placement

In this section, we formalize ISP. We start this section with the introduction of prelimi-
nary concepts in Sec 3.1. Please refer to [6] for more background knowledge. Then, we
propose a scenario-cover based model in Sec 3.3, upon which ISP is defined in Sec 3.2.
Finally, we show that ISP is NP-hard in Sec 3.4 and the submodularity of the objective
function used in ISP in Sec 3.5.



3.1 Preliminaries

A water distribution system is modeled as an undirected graph G = (V, E), with ver-
tices in V' representing junctions, tanks, and other resources in the systems; edges in
FE representing pipes, pumps, and valves. Suppose we need to monitor a set of con-
tamination scenarios A. Each contamination scenario ¢ € A can be characterized by
a quadruple of the form (v, ts,t¢, X), where v, € V is the origin of the contamina-
tion event, t, and ¢ are the start and stop times of a contamination event, respectively,
and X is the contamination event profile (which describes the contamination material
injected at a particular concentration or at a given rate).

Let L C V be the set of all possible sensor locations (e.g. junctions in the water
network). A placement of p sensors on L C V is called a sensor placement. In general,
we do not distinguish sensors placed at different locations. Thus, a subset of L holding
the sensors can uniquely determine a sensor placement. In this paper, we always use the
subset of L to describe a sensor placement.

One of key issues in water sensor placement is the measurement of the total impact
of contamination scenario ¢ when c is detected by a sensor deployed at vertex v in a
sensor placement S. We use d. ,, to denote such an impact. More specifically, d. ., rep-
resents the total damaging influence caused by contamination scenario ¢ during the time
period from the beginning of c to the time point at which ¢ was detected by a sensor
deployed at vertex v. d..,, can be defined from various aspects, including volume of con-
taminated water consumed [4], population affected [6], and the time until detection [2].
In this paper, we use the time until detection as the quantitative criteria to evaluate the
adverse impact of each contamination scenario. Solutions proposed in this paper can be
directly extended on other adverse impact measures.

The contamination scenarios can be simulated by water quality analysis software
(e.g. EPANET ?). Based on the simulation data, d..,, can be computed accordingly.
In this paper, each d., can be considered as the input of the major problem that will
be addressed. Given a set of contamination scenarios A and sensor locations L, we
have a |A| x |L| matrix with each element representing d. ,. We call this matrix as
contamination scenario matrix (CS for short) and denote it by D 4, 7,. We use Example 1
to illustrate above basic concepts.

Example 1 (Basic Concepts). We give in Table 1(a) a scenario set (i.e., A) for water
distribution network described in Figure 1(a). A matrix D 4 ;, provided by contami-
nation simulation is given in Tablel(b), in which the time until detection is adopted
as the measure of the adverse impact of each contamination scenario. As an example,
de, v, = 7 implies that placing a sensor on v; can detect contamination event c¢; within
7 minutes.

3.2 Scenario-Cover Based Modeling

In this subsection, we will reduce sensor placement optimization to maximal coverage
problem. Based on this model, we will formalize the static sensor placement problem

3 http://www.epa.gov/nrmrl/wswrd/dw/epanet.html



Table 1. Table 1(a): Scenario set .A. Table 1(b): Contamination scenario matrix D 4, 1. Each
element in the matrix denotes the the time (in minutes). Table 1(c): R, for each vertex shown
in Figure 1(a).
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and incremental sensor placement problem. After that, in subsection 3.4, we will show
that problem ISP (Definition 4) is NP-hard.

In real applications, it is a reasonable objective to limit the worst damage caused by
a potential contamination event under a certain level. For example, we usually expect
that the contaminated population can not exceed a certain threshold when we choose a
rational water sensor placement strategy. We use credit M to capture the worst damage
that we can afford.

Definition 1 (Covered Scenario with Credit M). Given a contamination scenario
matrix D 4.1, and a sensor placement S, if a contamination scenario c can be detected
by a sensor deployed at vertex v € S such that d. ., < M, then we say that the contam-
ination scenario c is covered by S with credit M.

Given the contamination scenario matrix D 4 r,, the set of scenarios in A that is cov-
ered by v with credit M can be uniquely determined. This set can be formally defined
as:

Rv,]% = {c|dc,v € -D.A7L7dc,v < M} (D

R, ar is the set of scenarios in .4 whose total harmful impact is within credit M if we
place a sensor on vertex v. If we add vertex v into sensor placement .S, then each con-
tamination scenario in R, »s would be covered by S. In other words, R,, 5s represents
the contamination detection performance when v is added into sensor placement.

Given the water network, D 4 1, and credit M, we hope that the sensor placement
can cover contamination scenarios with credit M as many as possible. For this purpose,
we use F'(S), an evaluation function defined on sensor placement, formally defined in
Definition 2, to precisely quantify the the number of scenarios covered by S with credit
M. Thus, our design objective is to maximize F'(.S).

Definition 2 (Evaluation Function). Given a credit M and a contamination scenario
matrix D 4 1, the evaluation function F(S) of a sensor placement S C L is defined as:

F(8) = | J Ronl )

veS

Now the static sensor placement optimization on a water network can be rewritten
in the scenario-cover based model. We illustrate key concepts in scenario-cover based
modeling and the SP problem based on this modeling in Example 2.

Definition 3 (Sensor Placement (SP)). Given a water network G with sensor locations
L, scenario set A, CS matrix D 4 1, a credit M and an integer p, finding a sensor
placement S C L such that |S| < p and F(S) is maximized.



Example 2 (Scenario-cover Based Modeling). Continue the previous example and con-
sider the water network shown in Figure 1(a). Suppose the detection time credit M/ = 10
minutes and contamination scenario set is .4 shown in Table 1(a). Table 1(c) shows the
covered scenario set R, js for each v. We find that S = {v2,vs} can cover all the
scenarios in A. Hence, S is a solution of SP.

Note that sensor placement optimization can be also reduced to integer linear pro-
gramming (ILP), which could be solved by the state-of-the-art mixed integer program-
ming (MIP) solver such as ILOG’s AMPL/CPLEX9.1 MIP solver that was widely used
in the previous works [9]. However, in general, these solvers are less efficient and can
not scale up to large water distribution networks.

3.3 Incremental Sensor Placement

Now, we are ready to formalize incremental sensor placement (ISP). In ISP, beside
quality, cost is another major concern. Following the scenario-cover based modeling,
the quality of a sensor placement can also be measured by F'(.S). Next, we first give the
cost constraint in ISP then give the formal definition of ISP.

Cost Constraint Let Sy, S be the sensor placement in the original water network and
the adjusted sensor placement in the expanded network, respectively. In general, when
the network grows larger, we need more sensors. Hence, |S| > |Sy|. To reduce the cost
of S, we may reuse Sy. There are two kinds of reuse:

1. First, the sensor placement on some location may be completely preserved. S N Sy
contains such sensor locations. No cost will be paid for this kind of reuse.

2. Second, we may move sensors to other locations. For such kind of reuse, we need
to pay the uninstall and reinstall cost.

Let S; C S be the set of sensor locations in which sensors are reused in the second
case. The relationships among Sy, S; and S for the running example is illustrated in
Figure 1(c).

Let C1, C5 be the cost of installing and uninstalling a sensor, respectively. The cost
of replacing an existing sensor to a different location can be approximated by C; and
(. Suppose the overall cost budget C' is given. Then, we expect |S1|(Cy + C2) +
(IS] = |So])C1 < C. In general, C1, Cs can be considered as constants in a typical
water network. Hence, limiting the cost is equivalent to limiting |S1| and |S| — |So|.
Thus, we can use two input parameters k1, ks to bound |.S1 | and |S| —|Sy|, respectively,
to precisely model the cost constraint.

Problem definition Now, we can define the Incremental Sensor Placement (ISP) prob-
lem in Definition 4. We use Example 3 to illustrate ISP.

Definition 4 (Incremental Sensor Placement(ISP)). Given a water network G with
sensor locations L, scenario set A, CS matrix D 4 1,, a credit M and a sensor placement
So € L and two integers ki, ks, find a new sensor placement S C L such that (1)
|S1]| < k1, |S] — |So| = ko, where S; = So — S is the set of places at which sensors
have been uninstalled from Sy and replaced on a sensor location outside of Sy, and (2)
F(S) is maximized.



Example 3 (ISP). Continue the previous example shown in Figure 1, where Sy =
{va,v6}. Suppose k1 = 1,k; = 2, which means that we could modify the location
of at most 1 sensor deployed in Sy and 2 additional sensors would be deployed on the
network. Our goal is to find a sensor placement solution S such that |Sy — S| < 1,
|S| —1So| = 2 and F(S) is maximized.

Notice that in our problem Definition 4(ISP), the sensor placement .S cannot guaran-
tee that all the contamination scenarios in scenario set .A are covered. In fact, according
to previous works [25, 16, 17], it requires an exponential number of sensors to detect all
scenarios in .4, which is unaffordable in real world due to the limited budget. Hence,
covering scenarios as many as possible under the budget limit is a more realistic objec-
tive for real applications.

3.4 NP-hardness of ISP

In this subsection, we will show that ISP is NP-hard. Our proof consists of two steps.
We first show that SP in our model is NP-hard by the reduction from the NP-Complete
problem Maximal Coverage Problem (Definition 5) to SP. Then, we prove the NP-
hardness of ISP by showing that SP is a special case of ISP.

Definition 5 (Maximal Coverage Problem (MC)). Given a number k, universe V
with n elements and a collection of sets C = {C}...Cy,} such that each C; C V, find a
subset C' C C such that |C'| < kand| U C;|is maximized.

ciec’

Theorem 1 (NP-hardness of SP). SP is NP-hard.

Proof. 1t can be shown that for any instance of MC, i.e. < V,C = {C1,...,Cn },k > we can
construct an instance of SP accordingly such that there exists solution for this instance of MC if
and only if the corresponding SP instance could be solved. For this purpose, let V' = A, k = p,
and for each C; we define a sensor location v; such that |L| = m. Then, we just need to show
that given C = {C4,...,Cn}, we can always construct a pair < M, D4,z > such that each
Ry, m = C;. Clearly, it can be easily constructed. For any M (without loss of generality, we
may assume it as an integer), we can create matrix D 4,7, as follows. For each v; € L and each
scenario a € A, we set dq,»;, = 00 at first. Then, for each c € Cj, 7 = 1,...,m, we set dc o, to
M — 1. As aresult, we surely have R, s = C;. m

Theorem 2 (NP-hardness of ISP). ISP is NP-hard.

Proof. Let k be the number of senors to be placed in problem SP. We can simply set Sy = 0,
and k1 = 0, k2 = k to transform an instance of SP into a problem instance of ISP. Since SP is
NP-hard, ISP is also NP-hard. m

3.5 Submodularity of Evaluation Function

In this subsection, we will present the major properties of evaluation function F(-),
especially the submodularity of this function, which underlies our major solution for
ISP.



F(S) has some obvious properties. First, it is nonnegative. It is obvious by defini-
tion. F((/)) = 0, i.e., if we place no sensors, the evaluation function is 0. It is also nonde-
creasing, i.e., for placement placements A C B C L, it holds that F'(4) < F(B). The
last but also the most important property is submodularity. Intuitively, adding a sensor
to a large deployment brings less benefits than adding it to a small deployment. The
diminishing returns are formalized by the combinatorial concept of submodularity [23]
(given in Definition 6). In other words, adding sensor s to the smaller set A helps more
than adding it to the larger set B. Theorem 3 gives the results.

Definition 6 (Submodularity). Given a universe set S, a set function F is called
submodular if for all subsets A C B C S and an element s € S, it holds that
F(AU{s})— F(A) > F(BU{s}) — F(B).

Theorem 3 (Submodularity of F'(-)). Sensor placement evaluation function F'(-) given
in Definition 2 is submodular.

Proof. For sensor placement A C L, F(AU {i}) = |Ri,m U (|J Rv,n)|- Then, we have

vEA
FAU{i}) — F(A) = |Rim U U Rom| — | U Rom| = |Rim — |J Ro,m|. Given
vEA vEA vEA
two sensor placements A C B C L. We have |J Ry, € |J Ro,m. Thus, Ri v —
vEA veEB

(U Ru,m) 2 Riym — (| Ro,m). Consequently, we have F(AU {i}) — F(A) > F(BU
vEA veEB

{i}) — F(B). =

Thus, the SP problem on water distribution networks can be cast as a submodular
optimization problem, which has been proven to be NP-hard and can be solved with
bounded quality [22]. Next, we will present the detail of solutions based on submodu-
larity of the evaluation function.

4 Algorithm Solutions

Let L be the set of locations that can hold sensors and ¢ be the number of sensors to
be installed. To solve SP, a brute-force solution needs to enumerate all C’qL sensor de-
ployments, where C' represents the binomial coefficient. For ISP, we should enumerate
Zogig ke fSO‘CrJ(“f‘ Sol possible deployments, where Sy is the original sensor place-
ment. In both cases, the search space is exponential. Hence, it is computationally pro-
hibitive to find the global-optimal deployment for large water distribution network by
an exhaustive enumeration approach. To overcome the complexity, we will first present

a greedy approach to solve SP. Then, we will further extend it to solve ISP.

4.1 Greedy Algorithms for SP

The basic greedy heuristic algorithm starts from the empty placement S = ) and pro-
ceeds iteratively. In each iteration, a new place v € V which leads to the most increase

of F,ie.,

b, = F(SU{v}) = F(5), ()
Ve = arg max,¢ g(d,) would be added to S. In other words, at each iteration, we always
select the place covering the largest number of uncovered scenarios. A fundamental



result in [23] shows that the above greedy procedure will produce a near optimal
solution for the class of nondecreasing submodular functions. More specifically, for
any instance of SP, the greedy algorithm always return a sensor placement S such that
F(S) > (1—1)F(S*), where S* is the global optimal solution to this instance. Hence,
the greedy solutions achieve an approximation ratio at least 1 — % ~ 63% compared to
the global optimal solution.

We present the greedy procedure in Algorithm 1. After the selection of v., we update
R, by excluding the contamination scenarios that have been covered by v,. (line 6-8).
Thus, when the procedure proceeds, the size of R, p; becomes progressively smaller.
Note that the size of R, »s for each candidate vertex in the beginning of each iteration
is equal to J,, as defined in Equation 3.

The running time of the algorithm is proportional to the number of sensor locations
|L| = n of the water network, the number of sensors to be deployed p, the size of
contamination scenarios |.A| = m and the time taken to calculate the size of remaining
uncovered scenarios for each v € L — S¢. The update of R, p; needs set union opera-
tion, whose complexity is O(m). In each iteration, O(n) vertices need to be evaluated
on its quality function. Hence, the total running time is O(pnm).

Algorithm 1 GreedySP
Input: p, M, R, n foreachv € L
Output: Sc
1: iter <1
2: SG < @
3: while iter < p do
4 Ve <— arg MaXver—sq | Ro, M|
50 Sag <+ {ve}USa
6: foreachv € L — Sg do
’7.
8
9
0
1

Ry, m < Rym — Roo oM
end for
iter < iter + 1
: end while

1
11: return Sg

4.2 Algorithms for ISP

In this section, we will further apply the above greedy heuristic to solve ISP. Compared
to SP, effective reuse of the original sensor placement Sy is one of the distinctive con-
cern of ISP. We use a function Select to decide the subset of the original sensor place-
ment to be reused. And we will discuss different selection strategies used in Select and
their effectiveness in detail later. According to our definition of ISP (see Definition 4),
there are at least |:Sy| — k1 sensors remain unchanged in the new sensor placement.
The greedy algorithm to solve ISP is presented in Algorithm 2, which consists of
three major steps. In the first step (line 1), we use Select to choose |Sp| — k1 sensors
in Sy to be preserved (denoted by S..). In the second step (line 2-5), the algorithm
updates R, »s for every sensor location v € L — S, at which no sensor is deployed by



eliminating the scenarios covered by the |\Sy| — k1 sensors. In the last step (line 7), we
directly call Algorithm 1 to calculate a solution for deploying k1 + k2 sensors on L — 5.
The union of the result of the last step and .S, will be returned as the final answer.

Obviously, the selection strategy used in Select function has a significant impact
on the quality of the final sensor placement. We investigate three candidate strategies:
randomized, greedy and simulated annealing. The effectiveness of three strategies will
be tested in the experimental section.

Randomized Heuristic (RH). The straightforward strategy is choosing |So| — k1
sensors from the original sensor placement Sy randomly such that each sensor has the
same probability to be selected.

Greedy Heuristic (GH). The greedy heuristic is identical to that used in Algorithm
1. Start with the empty placement, S = () and proceeds |Sy| — k1 times iteratively.
In each iteration, select vertex v € Sy such that d(v) is maximal from the remaining
vertices in Sg.

Simulated Annealing (SA). First, we use Randomized Heuristic to choose |.Sp|— k&1
sensors denoted as Sry. Then, we start from Sgy, and perform a local search based
approach called Simulated Annealing to get a local optimal solution. Simulated Anneal-
ing proceeds iteratively. Let S.,, be the solution to be optimized in current iteration.
The simulated annealing proceeds as follows. At each round, it proposes an exchange
of a selected vertex s € Sgy,- and an unselected vertex s’ € Sy — Sey, randomly, then
computes the quality gain function for the exchange of s, s’ by

a(s,s) = F(Seur U{s'} = {s}) — F(Seur) 4)
If «(s,s’) is positive, i.e. the exchange operation improves the current solution, the
proposal is accepted. Otherwise, the proposal is accepted with probability exp( (’(;%’ts/)),
where ¥, is the annealing temperature at round ¢, and ¥; = Cq' for some large constant
C and small constant ¢ (0 < g < 1). We use exponential decay scheme for annealing
temperature. Such exchanges are repeated until the number of iterations reach to the
user-specified upper limit.

Algorithm 2 Greedy Algorithm for ISP
Input: p, M, R, ns foreachwv € V, So, k1
Output: S¢

: S+ GreedySP (ki + ko, M,{Rym|v € L — S,})
return S, U S’

1: S/r- — Select(So, ‘So| — k1)
2: foreachu € S, do

3: foreachv e L — S, do
4: Rym — Rom — Rum
5: end for

6: end for

7

8:

5 Experimental Study

In this section, we present our experimental study results. We show in Sec 5.1 the ex-
periment setup. Then, in Sec 5.2 we justify our scenario-cover based modeling through



comparisons of different solutions to SP. Sec 5.3 5.4 5.5 5.6 will study our solution to
ISP, including the influence of parameters k1, k2, robustness and performance.

5.1 Experiment Setup

We use two real water networks provided by BWSN challenge [10] to test our algo-
rithms. The first one is BWSN/ containing 129 nodes. The second one is BWSN2 con-
taining 12,527 nodes. We run EPANET ! hydraulic simulation and water quality sim-
ulation for the two water distribution networks and use the time until detection [10] as
the criteria to evaluate contamination impact. For network BWSNI, 516 contamination
scenarios were generated for each of the vertices in the water distribution network at 4
different attack time (i.e. the start time of contamination ts): 6 A.M., 12 A.M., 6 PM.,
12 PM.. The reason why we vary the start time is that during simulation of water net-
work, parameters of resources in the water systems such as junction’s water pressure or
pipe’s flow velocity would change over time, which will influence the propagation of
contamination events. Each contamination scenario features 96-hour injection of a fic-
tional contaminant (i.e. stop time point ty of each scenario is set to be the end time point
of contamination simulation) at strength 1000mg/min (using EPANET’s "MASS’ in-
jection type). We record the contaminant concentration at intervals of 5 minutes and use
these time points as the time series.

For network BWSN2, we generate 4000 contamination scenarios originating from
1000 randomly selected vertices in the water distribution network with settings identical
to that of BWSNI. In the following experiments, we fix M as 120 min and 150 min for
BWSNI and BWSN2, respectively. For the water quality simulation on the two networks,
we assume that a deployed sensor would alarm when the concentration of contaminant
surpasses 10mg/L. To compare the effectiveness of our solution, we use defect ratio,
defined as %, i.e, the proportion of covered contamination scenario, to measure the
quality of the sensor placement .S, where |.4| denotes the total number of contamination
scenarios considered. We run all algorithms on a machine with 2G memory and 2.2GHZ
AMD processor. All algorithms are implemented in C++.

5.2 Effectiveness and Efficiency of Solutions to SP

In this subsection, we will show the effectiveness and efficiency of our SP solution. The
purpose is to justify the scenario-cover based model. Through the comparisons to other
solutions, we will show that by modeling sensor placement optimization in the form of
scenario-cover, our solution achieves good solution quality (comparable to the state-of-
the-art solution) but consumes significantly less running time. With the growth of real
water network, improving the scalability without sacrificing the quality will be a more
and more critical concern.
We compare to the following approaches:

1. Random placement. In a random placement, we randomly select p sensor locations
as a solution. We repeat it for 100 times. For each random placement, we calculate
its detect ratios. Then, we summarize the the median, minimum, maximum, 10th,
25th, 75th, and 90th-percentiles over 100 random solutions in our experiment.



2. Exhaustive search. It’s a brute-force solution by enumerating all possible sensor
placements. Clearly it gets the optimal result but consumes the most time. Since
the time cost is unaffordable, we estimate the entire running time by multiplying
the time of enumerating one placement and the number of possible enumerations .

3. MIP(mixed-integer programming). The state-of-the-art approach for SP uses mixed-
integer programming modeling. We use LINDO #, a state-of-the-art MIP solvers,
to solve SP.

On large network We first compare random placement to our greedy approach on the
large network BWSN2. MIP and exhaustive search can not scale to large networks,
hence are omitted here. The result is shown in Figure 2(a). We can see that our method
can detect significantly more scenarios than random placement. Even the optimal one
in 100 random placements is worse than our greedy solution. Hence, in the following
test, random placement will not compared.

On small network We also compared different approaches on the small network: BWSNI.
The result is given in Figure 2(b) and Figure 2(c). From Figure 2(b),we can see that our
greedy solution’s quality is comparable to that produced by MIP. Their difference is less
than 3.7%. However, MIP costs almost one order of magnitude more time than greedy
solution. This can be observed from Figure 2(c).
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Fig. 2. Comparison of effectiveness and time. Figure 2(a) compares the results of greedy solution
and random placement strategy on BWSN2. Figure 2(b) compares solution quality(detect ratio)
of our greedy algorithm and MIP. Figure 2(c) compares running time of our greedy algorithm,
exhaustive search and MIP.

5.3 Influence of k;

In this experiment, we explore the influence of k1, i.e., the maximal number of rede-
ployed sensors, on the solution quality of ISP. By this experiment, we justify the motiva-
tion of ISP. We show that we only need to modify a relatively small part of the original
sensor placement to keep the effectiveness of sensors while significantly reducing the
deployment cost.

We first need to simulate the growth of a water network since no real evolving
water network data is available. For the simulation, we first find a subregion of the

* http://www.lindo.com/



entire water network and consider it as the network at the earlier time. We solve the SP
problem on this subregion and obtain a sensor placement Sy on this subregion. Then,
the entire water network can be regarded as the network after growth with Sy as the
original sensor placement.

Due to the expansion of water network, Sy may fail to detect contamination events.
In this experiment, we exclude the influence caused by deploying new sensors through
setting ko as 0. Note that by setting k2 = 0, no new sensors will be added in our
solution. Hence, the detect ratio may be quite small for a large network (as indicated in
Figure 3(c)). Then, we vary the upper bound of reinstalled sensors k; from O to |.Sp| and
observe the evolution of detect ratio varying with k;. For each network, we set |Sg| = 5
and |.So| = 10 for BWSNI and BWSN2, respectively. We define increase rate of detect
ratio as the difference of detect ratio between k; = dand k; = d + 1.

The results are shown in Figure 3(a) and 3(c). It is clear that defect ratio increases
with the growth of k1, indicating that if we allow more sensors to be redeployed, we can
cover more contamination scenarios. However, the increase rate gradually decreases
when k; increases. It is interesting to see that there exist critical points for both two
networks (k; = 2 for BWSNI1 and k; = 4 for BWSN2, respectively), after which the
detect ratio will increase very slowly.

Considering results given above, we find a good trade-off between detect ratio and
deployment cost. Since after the critical point, the improvement of detect ratio is slower
than the increase of cost, generally we can set k; at the critical point to trade quality for
cost.

Note that k; is the upper limit of the actual redeployed sensors. We further summa-
rize the actual number of redeployed sensors in Figure 3(b) and 3(d). We can see that
the actual number of reinstalled sensors is always equal to k;, which implies that the
original sensor placement Sy needs to be redeployed completely to enhance the detect
ratio on current water network.
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Fig. 3. (a)(c):detect ratio for BWSNI and BWSN2 (b)(d): the actual number of redeployed sen-
sors in BWSNI and BWSN2. The results show that solution quality generally increases with the
growth of k1 and there exists some critical point at which we can seek for a good tradeoff between
solution quality and deployment cost.

5.4 Influence of k- and the Selection Strategies

In this experiment, we explore the influence of ko and compare the effectiveness of
three strategies used in Select function to solve ISP. We set k1 as 2 and 5 for BWSN1
and BWSN2, respectively. Other parameters are the same as the previous experiment.
We set iteration number to be 1000 for the simulated annealing strategy.



From Figure 4(a), i.e., the result on BWSNI, we can see that simulated annealing
and random heuristic strategy show only minor priority in defect ratio over the greedy
heuristic. However, on BWSN2 (shown in Figure 4(b)), the performance of the three
strategies are quite close to each other. Such results imply that our solution is generally
independent on the selection strategy. For comparison, we also present median of detect
ratio of 100 complete random placements in Figure 4(b).
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Fig. 4. Figure 4(a),4(b) show the influence of k2 and compare different selection strategies used
in Select function. It shows that solution quality increases with the growth of k2, and three strate-
gies shows similar effectiveness. Figure 4(c),4(d) present the robustness of proposed solutions.
Expected represents the detect ratio on the training scenario set; Actual represents the average
of detect ratio on test scenario sets. These figures show that our sensor placement solution is
robust against newly introduced contamination scenarios.

5.5 Robustness of Solutions

In general, there may exist potentially infinite number of possible contamination scenar-
ios. A placement strategy with high detect ratio on the training contamination scenario
set may be ineffective to detect contamination scenarios not belonging in the training
set. An ideal solution is expected to be robust against the newly introduced contamina-
tion scenarios. In this section, we will show the robustness of our solution.

In our experiments, we set |\Sg| = 5,10, k; = 2,5 for BWSNI and BWSN2, respec-
tively. We use simulated annealing with 1000 iterations for the Select function. We
randomly generate four scenario sets for BWSNI and BWSN2 as test sets, respectively.
Each test set contains 100 scenarios. We choose one set as A and get solution S using
Algorithm 2 with simulated annealing heuristic. Then, we compare detect ratio of S on
the training set A and the average detect ratio of S on the other three sets.

The result is shown in Figure 4(c) and 4(d), where we vary the number of new
sensors (ko) and observe the evolution of detect ratio. It can be observed that when
ko increases, detect ratio of test case on average is quite close to that of the training
sets, implying that our sensor placement which is effective on training scenario set .A
works well on other scenario sets as well. Hence, our solution to ISP is robust against
unknown contamination scenarios.

5.6 Performance of Our Solution for ISP

In this experiment, we test the performance of our solutions for ISP. MIP can not be eas-
ily extended on ISP problem. Random placement is certainly the fastest, but as shown



in Sec 5.2, is of quite low quality. Hence, in this experiment, we only compare to ex-
haustive searching whose time is estimated as stated in Sec 5.2. We fix |Sp| = 5 and
|So| = 10 for BWSNI and BWSN2, respectively.

The result is shown in Figure 5, from which we can see that our solution is faster
than exhaustive search, and the speedup is almost two or three orders of magnitudes.
Our algorithm generally linearly increases with the growth of ky. Even on the large
network with ten thousands of nodes, our solution finds a solution within 2-3 hours.
The performance result implies that our approach can scale up to large water networks.
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Fig. 5. Running time comparison of solutions to ISP.

6 Conclusion

In this paper, we propose a new problem: incremental sensor placement optimization
problem (ISP), in which we need to find an optimal sensor placement for the dynamic-
evolving water network with the following two objectives: (1) keeping the deployment
cost limited and (2) maximizing the effectiveness of the new sensor placement. We
show this problem is NP-hard. We prove that the objective function used in the defini-
tion of ISP is submodular. Based on this property, we propose several greedy algorithms
to solve this problem. Experimental results verify the effectiveness, robustness and effi-
ciency of proposed solutions. We will further consider more realistic constraints on our
problem to solve more specific real sensor optimization problems.
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