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Abstract. We introduce inhomogeneous parsimonious Markov models
for modeling statistical patterns in discrete sequences. These models are
based on parsimonious context trees, which are a generalization of con-
text trees, and thus generalize variable order Markov models. We follow
a Bayesian approach, consisting of structure and parameter learning.
Structure learning is a challenging problem due to an overexponential
number of possible tree structures, so we describe an exact and efficient
dynamic programming algorithm for finding the optimal tree structures.

We apply model and learning algorithm to the problem of modeling
binding sites of the human transcription factor C/EBP, and find an in-
creased prediction performance compared to fixed order and variable
order Markov models. We investigate the reason for this improvement
and find several instances of context-specific dependences that can be
captured by parsimonious context trees but not by traditional context
trees.

1 Introduction

Discrete sequential data as diverse as bit strings in computer science, DNA and
polypeptide molecules in bioinformatics, or alphabetic strings in linguistics are
omnipresent in todays science and technology. Despite highly diverse applica-
tions, the characterization of ensembles of sequences based on a finite sample is
a common and fundamental statistical challenge raised in these different fields.
Examples are data compression [1, 2], the prediction of functional sites in bio-
logical macromolecules [3–6], or the study of the structure of languages [7, 8].

While reducing a sequence to a set of independent letters may yield satis-
factory results for certain tasks and certain data sets [9], one can easily name a
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wealth of other settings where this is unlikely to be the case. Examples are writ-
ten texts, where the occurrence of a letter at a certain position is significantly
constrained by the language [10], or DNA sequences, where the occurrence of a
base at a certain position of a functional site on a chromosome influences its ac-
tivity [11, 12]. Hence, there is a wealth of applications where the characterization
of finite ensembles of sequences bearing statistical dependences is needed.

Inferring the probability distribution of the sequences from a finite ensemble
of sequences becomes challenging already for moderate sequence lengths. In such
situations, trading simplifications of the model against statistical strength has
been shown to be potentially beneficial. For each model class, the joint probabil-
ity of a sequence can be decomposed into a product of conditional probabilities
of single symbols given all predecessors. While the class of Markov models of
order d is based on the simplification that all conditional dependences except for
those given the d previous symbols are dropped [2], the richer class of variable
order Markov models (VOMMs) [13] makes this order context dependent. Most
other approaches proposed to date also share the feature of dropping certain
entries from the conditional probability distributions in a Markovian manner.

Bourguignon and Robelin [14] propose an alternative approach to the reduc-
tion of the dimension of the space of conditional distributions, where conditional
independence assumptions are formed with respect to a partition of the condi-
tions, i.e., a partition of context words, by means of a parsimonious context
tree (PCT). Particular choices for the partition of the context words may re-
sult in conditional independence assumptions that coincide with those formed
by a regular Markov model, as well as those formed by a variable order Markov
model. The parallel with the VOMM is actually much further reaching, since
PCTs can be understood as a generalization of the context trees that are used
by VOMMs. However, parsimonious Markov models that use parsimonious con-
text trees are in general not representable in a sheer Markovian manner, i.e., by
dropping entries in the conditions.

Here, we aim at exploring the merits of this form of parsimony for modeling
discrete sequential data of fixed length. We introduce inhomogeneous parsimo-
nious Markov models (PMMs) based on a sequence of parsimonious context trees
and follow a Bayesian approach for structure and parameter learning. Whereas
parameter learning is straightforward, structure learning is challenging due to
an overexponential number of possible tree structures. However, this optimiza-
tion problem can be solved by an efficient dynamic programming algorithm,
which generalizes the context tree maximization algorithm [1]. We apply inho-
mogeneous PMMs to the prediction of binding sites of the human transcription
factor C/EBP [15], and investigate if the richer expressiveness of inhomogeneous
PMMs might possibly lead to an improved prediction compared to inhomoge-
neous VOMMs.



2 Theory

In this section, we introduce inhomogeneous parsimonious Markov models in a
Bayesian framework by defining likelihood and prior. We subsequently describe
structure and parameter learning, and finally discuss the relation to variable
order Markov models and further special cases.

We denote a single symbol by x ∈ A, a sequence of length L by ~x =
(x1, . . . , xL), and a data set of N sequences of fixed length L by x = (~x1, . . . , ~xN ).
Further, we denote the power set of A by P(A), and P≥1(A) = P(A) \ ∅. We
call each element in Ad context word of length d.

2.1 Model

Similar to context trees, which are used by variable order Markov models for
reducing and representing their parameter space, parsimonious context trees
as proposed by Bourguignon and Robelin [14] are the central data structure of
inhomogeneous PMMs. A PCT τ of depth d for alphabet A is a rooted, balanced
tree. Each node of a PCT is labeled by a non-empty subset of A, except for the
root, which is labeled by the empty subset. The set of labels of all children of
an arbitrary inner node forms a partition of A.

It follows that the cross product of the symbol sets encountered along each
path from a leaf to the root defines a non-empty subset of Ad, which we call
context. Hence, a context is a set of context words, and the set of the contexts of
all leaves of a PCT forms a partition of Ad. Thus, the PCT is a data structure
that represents a partition of the whole set of context words. For example, the
PCT of depth two for the four-letter DNA alphabet A = {A,C,G,T} shown in
Figure 1 encodes the contexts {A}×{A},{C, G}×{A}, {T} × {A}, {A, G}×{C, G, T},
and {C, T}×{C, G, T}. A PCT of depth d interpolates between two extreme cases:
a minimal tree with only one leaf, which represents the union of all context words
into one set, and a maximal tree with |A|d leaves, each of which represents a
single context word.

An inhomogeneous PMM of order d for sequences of length L is based on ex-
actly L PCTs, which we denote by ~τ = (τ1, . . . , τL). For the ease of presentation,

    

A C,G,T

A C,G T A,G C,T

Fig. 1. Example PCT of depth 2 over DNA alphabet. It encodes the partition of
all 16 possible context words into subsets {AA},{CA,GA},{TA},{AC,AG,AT,GC,GG,GT},
{CC,CG,CT,TC,TG,TT}.



we exclude the first d PCTs, which have an increasing depth of 0, . . . , d−1, from
the following discussion. Since there is a bijective mapping from the leaves of a
PCT to the corresponding contexts, we can perceive a PCT as a set of contexts
as well as a set of leaf nodes. Hence, we denote a single context by c, the number
of context words represented by a context by |c|, and the set of all contexts in a
PCT by τ itself.

We denote the conditional probability of observing a symbol a ∈ A given that
the concatenation of the preceding d symbols is in c by θca. We denote the model

parameters of a single position by Θ =
(
τ, (~θc)c∈τ

)
and all model parameters

by ~Θ = (Θ1, . . . , ΘL). We now define the likelihood of an inhomogeneous PMM
by

P (x| ~Θ) =

L∏
`=1

∏
c∈τ`

∏
a∈A

(θ`ca)
N`ca , (1)

where N`ca is the number of occurrences of symbol a at position ` in all sequences
of x where the concatenation of the symbols from position `−d to position `−1
is in c.

The likelihood of an inhomogeneous PMM is similar to that of a fixed order
inhomogeneous Markov model since it is a product over all possible observations
a for all possible contexts c at all possible positions `. However, in contrast to
fixed order inhomogeneous Markov models, where each c is a single context word,
we here allow arbitrary sets of context words defined by the PCT τ`.

2.2 Prior

Assuming local and global parameter independence [16], we define the prior of
an inhomogeneous PMM by

P ( ~Θ) = P (~τ)

L∏
`=1

∏
c∈τ`

P (~θ`c), (2)

where P (~τ) is the prior probability of all PCTs ~τ (and could thus be referred

to as structure prior) and P (~θ`c) is the prior over the probability parameters of
one particular context c at position `. We specify the structure prior by

P (~τ) ∝
L∏
`=1

κ|τ`|, (3)

where |τ`| denotes the number of leaves of τ`. It depends on one scalar hyper-
parameter κ ∈ (0,∞), which can be used to influence the number of leaves and
thus the complexity of the model, interpolating between the two extreme cases:
When κ→ +∞, the model that has maximal PCTs at all positions, and is thus
equivalent to a fixed order Markov model, receives a prior probability of one.
Conversely, when κ → 0, the model that has minimal PCTs at all positions,
and is thus equivalent to an independence model, receives full prior support. For



the local parameter priors P (~θ`c) we choose Dirichlet distributions with hyperpa-
rameters ~α`c. In this work, we further restrict the parameter priors to symmetric
Dirichlet distributions. Following the equivalent sample size concept [16], we ob-
tain a natural computation of the pseudocounts from the equivalent sample size

η that is inspired by Bayesian networks, namely α`ca = η|c|
|A|d+1 .

2.3 Learning

In resonance with learning many other probabilistic graphical models, learning
inhomogeneous PMMs consists of structure and parameter learning with the
former being the more challenging task.

In order to learn the structure of the model, we intend to find the parsimo-
nious context trees that maximize P (~τ |x). Since P (x) is constant w.r.t. the tree
structures, it is sufficient to maximize

P (~τ ,x) =

∫
P (x| ~Θ)P ( ~Θ)d~Θ~τ , (4)

where ~Θ denotes all parameters of the model, and ~Θ~τ denotes here the con-
ditional probability parameters within ~Θ for given PCT structures ~τ . Due to
global parameter independence (outer product of Eq. 2), we can decompose the
structure learning problem into finding the optimal PCT for each position sep-
arately. Due to local parameter independence (inner product of Eq. 2), we can
decompose the score of a PCT into a product of scores of its leaves. Solving the
remaining integral, we obtain the optimization problem

∀L`=1 : τ̂` := argmax
τ`

∏
c∈τ`

κ
B( ~N`c + ~α`c)

B(~α`c)
, (5)

where B denotes the multinomial beta function. Hence, the target function is a
product over local marginal likelihoods for all contexts multiplied by the struc-
ture prior hyperparameters for each context.

While the score for a given PCT can be computed easily, finding the optimal
out of an overexponential number of possible PCTs (with respect to model order
and alphabet size) without computing the score for every single PCT explicitly
is challenging. This problem can be solved by a dynamic programming (DP)
algorithm similar to the context tree maximization algorithm [1]. The algorithm
runs on a data structure that we call the extended PCT of depth d and that
we denote by T Ad . In contrast to a PCT, the children of a node of an extended
PCT do not form a partition of alphabet A, but rather encompass all elements
of P≥1(A) (Figure 2). The leaves of an extended PCT are thus all possible leaves
(identified by their label concatenation up to the root) that may occur in any
PCT of same depth and alphabet.

Let N (T ) denote the set of nodes of an extended PCT T , n one element of
N (T ), and r(T ) the root of T . Each node can be uniquely identified by the label
concatenation on the path from that node up to the root of the extended PCT.
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A C G T A,C A,G A,T C,G C,T G,T A,C,G A,C,T A,G,T C,G,T A,C,G,T

Fig. 2. Here, we show an arbitrary inner node (labeled by X) and its children in the
extended PCT over the DNA alphabet. The labels of all children form P≥1(A).

Let s(n) denote the score of the optimal PCT subtree rooted at n. Let C(n)
denote the set of all children of n in the extended PCT. Let V(C(n)) denote the
set of all valid child combinations, i.e., all subsets of children whose labels form
a partition of A. Let further L(T ) denote the leaves and I(T ) the remaining
inner nodes of N (T ). Using this notation, we specify the dynamic programming
approach in Algorithm 1, which consists of a single function for computing the
optimal PCT subtree rooted at an arbitrary node of the extended PCT.

Algorithm 1 Dynamic programming for finding optimal PCT subtrees

findOptimalSubtree(n)

if n ∈ L(T Ad ) then

s(n) := κB(
~N`n+~α`n)
B(~α`n)

end if
if n ∈ I(T Ad ) then

for all m ∈ C(n) do
findOptimalSubtree(m)

end for
for all v ∈ V(C(n)) do
s(v) :=

∏
m∈v

s(m)

end for
v∗ := argmax

v∈V(C(n))
s(v)

s(n) := s(v∗)
for all m ∈ C(n) \ v∗ do

remove m and subtree below
end for

end if

Applying this function to the root of the extended PCT, i.e., calling the func-
tion findOptimalSubtree(r(T Ad )), yields the optimal PCT. The algorithm can
be intuitively described as bottom-up reduction of the extended PCT towards
a valid PCT by selecting at each inner node the locally optimal PCT subtree.
The correctness of the algorithm follows from the property that the score of a
PCT is a product of leaf scores (Eq. 5), which further implies that the score of



a PCT subtree rooted at node n depends (apart from its own structure) only on
the nodes on the path from n up to the root, but is independent of the structure
of the PCT subtrees rooted at siblings of n.

The complexity of the DP algorithm is given by the size of the extended
PCT, which must be completely traversed, multiplied by the number of valid
child combinations, for which a score must be computed in each inner node of
the extended PCT. Whereas the former is exponential with the base being the
number of possible subsets of A, the latter is equivalent to the Bell number

B|A|. Hence, we obtain a time complexity of roughly O
(
B|A|

(
2|A| − 1

)d)
for

learning one PCT, stating that the complexity grows exponentially with model
order d and overexponentially with alphabet size A. Structure learning for an
inhomogeneous PMM is linear in the sequence length as the DP algorithm is
called L− 1 times, once for each PCT of non-zero depth.

Having determined optimal PCTs, we estimate their conditional probability
parameters according to the posterior mean [17]. It is in general defined by

θ̂ =
∫
θ
θP (θ|x)dθ and yields for inhomogeneous PMMs

∀L`=1∀c∈τ`∀a∈A : θ̂`ca :=
N`ca + α`ca
N`c· + α`c·

. (6)

A common task is prediction, i.e., computing the probability of a data point
~xN+1 after having observed N data points (~x1, . . . , ~xN ). In a Bayesian setting,
this is done by integrating over the space of parameters, which is in resonance
with structure learning, where the target function is the probability of the model
structure given data, obtained by integrating over the space of parameters. Here,
we obtain for inhomogeneous PMMs

P (~xN+1|x, ~τ) =

∫
P (~xN+1| ~Θ)

L∏
`=1

P (~θτ` |x)d~Θ~τ , (7)

which is equivalent to computing P (~xN+1|~τ , Θ̂1,τ1 , . . . , Θ̂L,τL), where Θ̂`,τ` is the
posterior mean of the parameters (Eq. 6) of the PCT at position ` [16].

2.4 Special Cases

Context trees (CTs), which are used by variable order Markov models [13], are
special cases of PCTs. Hence, inhomogeneous VOMMs are special cases of inho-
mogeneous PMMs. The differences between CTs and PCTs arise from a different
concept of tree-building. Whereas the idea of building CTs is to prune a maximal
tree by removing unimportant subtrees, the idea of PCTs is to fuse nodes if sub-
trees and corresponding conditional probability distributions are not sufficiently
different. Since removing nodes can be also expressed by fusing them into one
pseudo-node [18], CTs are special cases of PCTs (Figure 3). The opposite does
not hold, though. There are many PCTs that represent a set of contexts that
cannot be represented by CTs, since the notion of pruning yields several limi-
tations of the possible CT structures that are relaxed by PCTs. Two structural



    

A C,G,T

A C,G T A,C,G,T

Fig. 3. Example CT of depth 2 over DNA alphabet. Pruned contexts are here shown as
pseudo-nodes (displayed in gray) in order to achieve depth two for all possible contexts
and thus allow a visualization of the CT in PCT-style.

features distinguish PCTs from CTs. First, an inner node in a PCT may have
an arbitrary number of fused children as long as their labels form a partition of
A, whereas a CT allows at most one fused child (the pseudo-node). Second, a
PCT allows arbitrary subtrees below a fused node, whereas a CT allows only a
completely fused node as single child of a fused parent, which is equivalent to
removing the entire subtree below the first occurrence of a fused node.

PCTs are more expressive than CTs, but this comes at the cost of a larger
time complexity for structure learning, which limits the straightforward applica-
bility of PMMs to problems with comparatively small alphabets. Even though
there are plenty of such applications, with the most well known example being
DNA and RNA sequence analysis, it might be desirable to benefit from more
expressive tree structures also for problems where the alphabet size becomes a
limiting factor.

The DP algorithm offers the possibility to reduce the allowed tree structures
(and thus the space that must be searched for the optimal structure) by redefin-
ing V(C(n)), the set of allowed child combinations of an inner node n. In PCTs
this is the set of all partitions of the alphabet, which yields the Bell number
factor in time complexity. Restricting V(C(n)) to all partitions that include one
fused node at maximum, is one of the two necessary restrictions for obtaining a
CT. Enforcing it, but allowing a fused node to have more than one child, yields
a data structure that lies in between CTs and PCTs in terms of complexity.
Conversely, restricting V(C(n)) to only one choice – the partition that lumps
all symbols together into one node – if n is already a fused node, represents
the second necessary restriction for obtaining CTs, which could also be solely
enforced.

Besides these two options, which are inspired by the special case CT, there
are further possible modifications such as restricting the maximal number of
children of n to a value smaller than |A| or restricting V(C(n)) based on the
label and/or the location of n in the extended PCT. Hence, a plethora of model
classes of almost arbitrary complexity could be defined and learned by slight
modifications of Algorithm 1.



3 Experiments

In the experimental part of this work, we apply inhomogeneous PMMs to the pre-
diction of DNA binding sites of the eukaryotic transcription factor C/EBP [15]
and compare it with inhomogeneous VOMMs, both implemented within the open
source Java library Jstacs [19]. For the sake of convenience, we drop the explicit
reference to the inhomogeneity in the following discussion. The C/EBP data set
consists of N = 96 DNA binding sites from human and mouse, retrieved from
the TRANSFAC R© database [20]. These binding sites are aligned sequences of
fixed length L = 12 over the DNA alphabet A = {A,C,G,T}.

3.1 Comparing Prediction Performance

The Bayesian learning approach for PMMs and VOMMs described above allows
influencing the complexity of the model via the structure prior (Eq. 3). Since it
is not immediately clear, which value of hyperparameter κ translates to which
model complexity, specifying the structure prior manually is not a trivial task.
While a uniform prior over all structures, which we obtain by setting κ = 1,
may appear as a reasonable option in the absence of a priori knowledge, it might
yield tree structures that are not optimal for prediction and related tasks.

Hence, in a first study we investigate the performance of third-order PMMs
and VOMMs for different model complexities. Even though statistical models are
often used for classification purposes (e.g. positive vs. negative sites), we here
focus on prediction as the main challenge of many classification approaches.
Evaluation by prediction has the advantage of not requiring the choice of a neg-
ative data set and a corresponding statistical model, which both may influence
results heavily.

Since the C/EBP data set is rather small, we perform a leave-one-out cross
validation (CV). In the i-th step, we remove the i-th sequence from the data
set, learn a model (using η = 1 for the parameter prior) on the remaining
95 sequences and compute the predictive probability of the i-th sequence. We
repeat this procedure for i = 1, . . . , 96, compute the average number of leaves of
the models, and compute the arithmetic mean of the 96 logarithmic predictive
probabilities, as well as the corresponding standard error.

In Figure 4 we plot, for both model classes, the mean log predictive probabil-
ity against the average model complexity, quantified by the number of leaves of
all context trees in the model, which is proportional to the total number of pa-
rameters. We choose values of κ that cover the whole range of model complexity,
interpolating from the minimal model with only 12 leaves (independence model)
to the maximal model with 597 leaves (third-order Markov model).

We observe that for low model complexities of less than 50 leaves PMMs yield
a substantially higher prediction than VOMMs. For high model complexities
both approaches show a similar prediction, lower than the prediction achieved
by a simple independence model, which indicates that overfitting occurs. These
results are interesting in three aspects. First, PMMs are capable of utilizing
statistical dependences in the data for improving prediction if the structure prior
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Fig. 4. We compare the prediction performance of third-order PMMs with third-order
VOMMs. For both model classes, we plot the mean logarithmic prediction resulting
from a leave-one-out cross validation experiment on the C/EBP data set against differ-
ent model complexities (proportional to the number of parameters) obtained by varying
the structure prior hyperparameter κ. Error bars depict double standard error.

is chosen well. Second, a uniform structure prior corresponds here to a model
structure of approximately 110 leaves, which confirms that using it is not an
optimal choice. Third, VOMMs are barely capable of benefiting from statistical
dependences no matter how κ is chosen. This observation raises the question why
PMMs are capable of finding a good compromise between modeling dependences
and avoiding overfitting whereas VOMMs are not.

3.2 Comparing Tree Structures

In a second study, we attempt to answer that question by comparing the learned
model structures of PMM and VOMM. We choose for both model classes the
values of κ that yield the highest mean log prediction in the leave-one-out CV
experiment of Figure 4. For the PMM, this is κ = e−2.5 with an average number
of leaves of 32.6 and a mean log prediction of −13.6, while for the VOMM this is
κ = e−1.8 with an average number of leaves of 42.8 and a mean log prediction of
−14.5. We use these structure priors to learn two models on the complete C/EBP
data set of 96 sequences and scrutinize the resulting models in the following.

The resulting PMM and VOMM have 32 and 43 leaves respectively, which is
in resonance with the average number of leaves of the leave-one-out CV experi-

Table 1. Numbers of leaves for all trees of best third-order PMM and VOMM.

Position 1 2 3 4 5 6 7 8 9 10 11 12 Σ

PMM 1 1 4 3 2 3 1 2 6 5 3 2 32

VOMM 1 1 4 1 12 2 1 3 8 2 7 1 43



A,C,G,T

A,C,G,T

T A,C,G

0.0307
0.8782
0.0307
0.0604

0.2080
0.0063
0.4097
0.3760

(a)

A C G T

G A,C,T T A,C,G A T C,G T A,C,G

A,C,G,T A,C,G,T

 0.0147
 0.0147
 0.9559
 0.0147

 0.1679
 0.8243
 0.0039
 0.0039

T A,C,G A,C,G,T

0.0005
0.9985
0.0005
0.0005

 0.9664
 0.0112
 0.0112
 0.0112

0.0214
0.0214
0.9357
0.0214

A,C,G,T T A,C,G A,C,G,T

0.0076
0.0076
0.0076
0.9772

0.0002
0.9994
0.0002
0.0002

0.9829
0.0057
0.0057
0.0057

0.0278
0.9166
0.0278
0.0278

T A,C,G A,C,G,T

0.0003
0.9278
0.0716
0.0003

0.1435
0.0017
0.4274
0.4274

0.1014
0.0519
0.3491
0.4977

(b)

Fig. 5. We compare the PCT and the CT at position 5. We choose for both the PMM
and the VOMM the optimal structure prior hyperparameter κ with respect to the
leave-one-out experiment of Figure 4. Next, we learn both models using their respective
optimal structure prior on the complete data set of 96 sequences and depict both the
PCT of the PMM (a) and the CT of the VOMM (b) at position 5.

ment. First, we analyze how the total numbers of leaves of both models distribute
over the 12 trees (Table 1). Even though the VOMM has more leaves than the
PMM in total, this does not apply for each of the 12 individual trees. Whereas
in some cases (positions 5, 8, 9, and 11), the CT of the VOMM is indeed more
complex than the PCT of the PMM, in other cases (positions 4, 6, 10, and 12)
the opposite holds, even though the absolute difference in complexity is here
generally smaller, which is the reason of the overall higher complexity of the
VOMM. Hence, it might be worthwhile to compare PCT and CT structures for
both groups in detail. To this end, we choose position 5 and position 4, both
representing extreme cases.

In Figure 5, we show the PCT of the PMM and the CT of the VOMM at
position 5. Since tree structures can be only partially interpreted without know-
ing the underlying conditional probability distributions, we plot the conditional
probabilities for each context, estimated according to Eq. 6, in rectangular boxes
below the corresponding leaf node in lexicographical order of the observations.

The PCT in Figure 5(a) has only two leaves, so it partitions all context
words into only two sets. The first and the second layer of the tree are com-
pletely fused, so the first and second predecessor symbol does not influence the
probability distribution at position 5. At the third layer, however, the context
words are partitioned into two subsets according to the observed symbol at the
third predecessor (position 2). Observing a T at position 2 yields a high con-
ditional probability of 0.8782 for finding a C at position 5, whereas any other
symbol at position 2 yields a low conditional probability of 0.063 for a C at the
fifth position. Conversely, for the second context, the conditional probability of
finding A, G, and T is highly increased. This shows that there is a strong statisti-
cal dependence among positions 5 and 2, and a PCT is capable of exploiting it
with only two parameters sets, which can be estimated comparatively robustly
from 96 data points (partitioned into two sets of sizes 67 and 29 respectively).



A,G C,T

A,C,G,T A C,G,T

A,C,G,T

0.1276
0.0051
0.1276
0.7397

A,C,G,T A,C,G,T

0.0031
0.2994
0.0031
0.6944

0.1618
0.1298
0.4504
0.2580

(a)

A,C,G,T

A,C,G,T

A,C,G,T

0.1366
0.1160
0.3222
0.4252

(b)

Fig. 6. We compare learned PCT (a) and CT (b) at position 4 of the C/EBP data set.
The experimental setup is identical to that of Figure 5.

The CT in Figure 5(b) has twelve leaves, but many of the contexts represent
only few occurrences of context words in the data set. For example, the first,
fourth, and ninth leaf represent only a single sequence in the data set each. Hence,
the reliability of the corresponding parameter estimates is highly questionable.
The reason why such a context tree is learned despite the indication of overfitting
is the strong statistical dependence among positions 5 and 2. Leaves number two,
three, seven, and ten represent most of the context words that are combined in
the first leaf of the PCT in Figure 5(a). But since a CT does not allow a split
in the tree structure below a fused node, the only possibility to learn this third-
order dependence is a broad tree with many dispensable parameter sets.

We conclude that one reason for the inability of the VOMM to effectively
capture dependences in this data set is its structural limitation of not being
capable of “skipping” a position, which may lead to strong overfitting if skipping
positions were actually required.

In Figure 6, we display the PCT and CT at position 4. The CT of Figure 6(b)
is completely pruned, resulting in a minimal tree corresponding to full statistical
independence. At this position the VOMM does not suffer from overfitting, but
it may neglect existing dependences.

The PCT at the same position has three leaves, resulting in three different
parameter sets. Each leaf represents a substantial amount of sequences from the
data set (24, 10, 62) so that the parameter estimates may not be completely
unrealiable. We observe that the first leaf yields a high conditional probability
of 0.7397 for a T, given the symbol of the preceding position being either A or
G. The second and third leaf represent the other contexts that have either C

or T at the previous position and differ in the second predecessor. The second
leaf represents the subset of context words that have an A at position 2. The
corresponding conditional probability of a T is 0.6944, whereas A and C rarely
occur. However, if the symbol at the second predecessor is not A, then G has the
highest probability at position 4 (third leaf).

This implies that a certain amount of statistical dependences exists among
the fourth position of the C/EBP data set and its predecessors, and that these



dependences can be modeled – at least to some degree – by a PCT. A PCT is
capable of splitting the contexts at any layer so that there is more than one fused
child node per parent. This feature may be required to properly represent statis-
tical dependences at position 4. Apparently a CT is not capable of representing
these splits, so it here neglects statistical dependences completely. This indicates
that VOMMs are not necessarily always overfitted compared to PMMs, but also
the opposite, underfitting due to structural limitations, may occur.

We may conclude that, compared to the third-order PMM, the third-order
VOMM is both over- and underfitted. The PMM is capable of using the full
potential of the inhomogeneity of the model better than a VOMM, since it yields
– on average over all positions – a better tradeoff between capturing dependences
and reducing the parameter space.

3.3 Model Validation

The previous two experiments show that a PMM is capable of modeling depen-
dences in a small real-world data set and how it finds a reasonable balance in
avoiding both over- and underfitting due to its structural flexibility. However, as
we have seen in Figure 4, the prediction performance depends on the choice of
the structure prior, for which real a priori knowledge is rarely available.

Hence, we must devise a method that can automatically provide us with an
adequate choice for κ in order to validate the model class against other alterna-
tives. To this end, we perform in each step of the CV described in Section 3.1
another internal CV on the 95 training sequences. We then choose in the i-th
step that κ that yields the highest mean log prediction in the CV on the 95 train-
ing data sequences, learn a model on that data set, and compute the predictive
probability of the i-th sequence. Finally, we average all logarithmic predictive
probabilities and use that single number for evaluating the performance of the
model class.

In Figure 7, we compare PMMs, VOMMs, and inhomogeneous Markov mod-
els of orders 1-3. In addition, we consider the independence model, which neglects
all dependences. Despite its simplicity, it is the most popular choice for modeling
DNA binding sites in bioinformatics and in that field known as position weight
matrix model [21, 22]. For the independence model and the fixed order Markov
models, there is no internal cross validation.

We find that the independence model yields a mean log prediction value of
−14.91. A first-order Markov model improves it to a value of −14.56, showing
that taking into account first-order dependences is reasonable and beneficial.
Second- and third-order Markov models yield a lower prediction than the inde-
pendence model. This is not surprising since we expect overfitting for complex
models when sample size is as small as 96 data points.

First- and second-order VOMM yield a prediction accuracy that is compara-
ble with that of an independence model. Despite reducing the parameter space,
they are – at least on this data set – not capable of utilizing statistical de-
pendences effectively. The third-order VOMM yields an even lower prediction,
comparable to a third-order Markov model, indicating that overfitting occurs.
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Fig. 7. We show the prediction performance of the independence model (IM), fixed
order MMs, VOMMs, and PMMs of orders 1-3. The experimental setup is identical
to that of Figure 4. For the parsimonious and variable order models, we perform an
additional internal cross validation on the N − 1 training sequences for determining
the optimal structure prior hyperparameter κ.

This also shows that the internal CV fails in this case: At more than one posi-
tion it selects in some iterations very complex and thus poorly generalizing tree
structures, comparable to that in Figure 5(b).

The first-order PMM yields a mean log prediction value of −14.42, which is
comparable to that of the first-order Markov model. Apparently, overfitting is
not a serious problem for the first-order Markov model, so the potential reduction
of the parameter space yields only a small improvement. However, in contrast
to fixed order MMs, PMMs of second- and third-order continue to increase the
prediction performance. The overall best prediction is achieved by a third-order
PMM with a mean log prediction value of −14.1, which is slightly lower than
the best prediction in Figure 4, but close to the average prediction within the
range of reasonable complexities (15 to 40 leaves).

We summarize that PMMs yield a higher prediction of C/EBP binding sites
than the independence model, than fixed order Markov models, and than variable
order Markov models. Among the three PMMs, the third-order PMM yields the
overall highest prediction. Hence, PMMs are capable of exploiting dependences
in the small data set of only 96 sequences effectively, whereas the effectivity of
VOMMs is harmed by their structural limitations. This makes it tempting to
speculate that PMMs might be a useful model class for other types of sequen-
tial data as well, especially when certain dependences among non-neighboring
positions exist and when the sample size is comparatively small.



4 Conclusions

In this work, we have introduced a new model class for sequential data in a dis-
crete state space. Inhomogeneous parsimonious Markov models are capable of
learning position-dependent statistical dependences from limited data by using
parsimonious context trees for reducing the parameter space. Parsimony achieved
by grouping context words is shown here to be promising from theoretical point
of view as it generalizes the idea of context word pruning. However, the pre-
sented approach has an acceptable time complexity only for small alphabets, so
additional constraints on the tree structures must be imposed when sequences
of large alphabets are to be modeled. We have discussed how the learning algo-
rithm can be adapted to incorporate these constraints, admitting an acceptable
time complexity while retaining specific merits of parsimonious context trees.

Predicting functional DNA sequences is an important application where this
model class can be used in a straightforward manner. In a case study on binding
sites of the human transcription factor C/EBP, we have observed that inhomo-
geneous parsimonious Markov models yield more accurate predictions than the
corresponding variable order Markov models. Scrutinizing the structural differ-
ences between the best models of both model classes, we found that strong third-
order dependences but comparatively weak first- and second-order dependences
exist at several positions. These are features that a parsimonious context tree can
take into account with very few parameters, whereas a traditional context tree is
limited by its structural constraints, either requiring substantially more param-
eters, yielding unreliable parameter estimates, or neglecting those dependences
completely. We conclude that inhomogeneous parsimonious Markov models are
a promising alternative to inhomogeneous Markov models and inhomogeneous
variable order Markov models. The adaptation to different applications might
possibly require additional algorithmic work, but taking such challenges might
be worth the effort.
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14. P. Bourguignon and D. Robelin, “Modèles de Markov parcimonieux,” in Proceed-
ings of JOBIM, 2004.

15. D. Ramji and P. Foka, “CCAAT/enhancer-binding proteins : structure, function
and regulation,” Biochem. J., vol. 365, pp. 561–575, 2002.

16. G. Heckerman, D. Geiger, and D. Chickering, “Learning Bayesian networks:
The combination of knowledge and statistical data,” Machine Learning, vol. 20,
pp. 197–243, 1995.

17. E. T. Jaynes, Probability Theory: The Logic of Science. Cambridge University
Press, 2003.
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