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Abstract. Discovering Probabilistic Frequent Itemsets (PFI) is very
challenging since algorithms designed for deterministic data are not ap-
plicable in probabilistic data. The problem is even more difficult for
probabilistic data streams where massive frequent updates need to be
taken into account while respecting data stream constraints. In this pa-
per, we propose FEMP (Fast and Exact Mining of Probabilistic data
streams), the first solution for exact PFI mining in data streams with
sliding windows. FEMP allows updating the frequentness probability of
an itemset whenever a transaction is added or removed from the obser-
vation window. Using these update operations, we are able to extract
PFI in sliding windows with very low response times. Furthermore, our
method is exact, meaning that we are able to discover the exact proba-
bilistic frequentness distribution function for any monitored itemset, at
any time. We implemented FEMP and conducted an extensive exper-
imental evaluation over synthetic and real-world data sets; the results
illustrate its very good performance.

Keywords: Probabilistic Data Streams, Probabilistic Frequent Item-
sets, Sliding Windows.

1 Introduction

Dealing with probabilistic data has gained increasing attention these past few
years in both static and streaming data management and mining [3], [9], [2],
[11], [10]. There are many possible reasons for probabilistic data, such as noise
occurring when data are collected, noise injected for privacy reasons, semantics
of the results of a search engine (often ambiguous), etc. Thus, many sensitive
domains now involve massive probabilistic data. Example 1 illustrates a collec-
tion of probabilistic data, where each record is associated to a probability of
occurrence.

Ezample 1. Let us consider animals’ health monitoring in a zoo, and more par-
ticularly the health of Pandas, for which reproduction is an important issue. In
our scenario, a set of body sensors gathers physiological data (blood pressure,
temperature, etc.) and transforms it into possible activities thanks to a given
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model. For instance, the rule {pressure = [100..150], temperature = [80..90] —
sleeping, 75%} means that with a blood pressure between 100 and 150mmHg,
and a body temperature between 80 and 90 Fahrenheit, the probability that
a Panda is sleeping is 75%. Figure 1 illustrates the activities inferred for the
pandas. We can observe, for instance, that Yuan Zi was eating at 9am, with a
probability of 40%.

With the probabilistic approach illustrated by Example 1, there are two cases
for each probabilistic record: either it really occurred in the real world or it did
not. A reliable framework for handling such probabilistic data lies in the theory
of “possible worlds” [6] where each unique combination of records’ existence
corresponds to a possible world. Unfortunately, there is a combinatorial explosion
in the number of possible worlds (n records, each associated to 2 possible values
of existence, leading to 2™ possible worlds). Therefore, in this context, frequent
itemset mining [1] must be carefully adapted. Finding the number of occurrences
of an itemset X in a database D (also called the support of X in D) is at the
core of frequent itemset mining. In the literature, we find two main support
measures for probabilistic data: Expected Support [5] (an approximate measure
of support) and Probabilistic Support [3] (that is an exact measure of support
in probabilistic data). We work with Probabilistic, and we propose a solution for
Probabilistic Frequent Itemset (PFI) mining in data streams using this measure
of interest.

Huan Huan Yuan Zi

e | h|activity |Prob.|| e | h | activity |Prob.
1| 8| sleeping | 0.3 2| 8 | sleeping | 0.9
319 | eating 0.3 419 | eating 0.4
5 6
7 8

10| sleeping | 0.3 10| drinking 1
11|grooming| 0.4 11|grooming| 0.9
9 |12] sleeping | 0.3 10{12| marking | 0.4
11|13| drinking | 0.3 12|13| resting 0.2
13|14 courting | 0.9 14|14| climbing | 0.2
15(15| resting 0.2 16|15| courting | 0.4
17|16| playing 0.4 18|16| playing 0.3
19[17| growling | 0.2 20(17| growling | 0.9

Fig. 1. Panda’s activities inferred from body sensor data

There are several ways to observe a data stream, two important ones being
batches and sliding windows [8]. Both techniques have pros and cons. Batches
allow fast processing but the result is available only after the batch has been
fulfilled (which is not compatible with real time constraints). Sliding windows
allow maintaining the result any time the stream is updated, but they need more
CPU. Today, existing methods for probabilistic data stream mining are batch-
based and work with Expected Support [17], [11], [10]. Meanwhile, working with
sliding windows is a major matter for numerous monitoring applications where
handling “anytime queries” is crucial. Data stream mining over a sliding window
requires to provide efficient solutions for updating probabilistic supports after
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adding/removing transactions and, in the probabilistic context, this is quite
challenging.

In this paper, we introduce FEMP (Fast and Exact Mining of Probabilistic
data streams), a framework adopting the exact approach while meeting the time
limitations of data stream environments. To the best of our knowledge, FEMP
1s the first solution for PFI mining in a sliding window over probabilistic data
streams.

Our contributions are i) a new model for probabilistic data streams, where
an item may have multiple occurrences (each associated to a probability) for one
transaction ii) a new approach for computing probabilistic support by recursion
on the transactions (this approach allows to develop efficient algorithms for up-
dating probabilistic support after any modification in the sliding window) and
iii) new algorithms for probabilistic frequent itemset mining with sliding win-
dows, where transactions are inserted or deleted. Our algorithms allow updating
the new probabilistic support of any monitored itemset with a low complexity
since they avoid scanning the whole sliding window from scratch.

We validated our solution through experimentation over synthetic and real-
world data sets. The results show that it is able to discover and manage PFI
in data streams with response times that are up to several orders of magnitude
faster than baseline methods of the literature employed in a sliding window
context.

2 Problem Definition

We now describe the problem we address with formal definitions of the prob-
abilistic model we adopt, probabilistic itemset mining and probabilistic data
streams.

2.1 Probabilistic Data

Let I be a set of literals. I is also called the vocabulary. An event e; is a tuple
e; =< Oid,ts,z, P > where i is the identifier of the event, Oid is an object
identifier, ts is a timestamp, x € [ is an item and P is an existential probability
P € [0,1] denoting the probability that e; occurs.

Ezample 2. Consider the data given by Figure 1, the first two events for Huan
Huan are: e; =< Huan Hwuan,8, sleeping,0.3 > and es =< Huan Huan,9,
eating, 0.3 >.

Definition 1. A probabilistic item x is an item that appears in an event, the
probability of x is the probability of its event.

Definition 2. A probabilistic transaction ¢ is a set of pairs (x, P) for an object
such that x is a probabilistic item and P is the probability of the event of x.
P(x € t) is the probability of existence of x in t. A probabilistic database is a
set of probabilistic transactions.
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Panda |Id Transaction
Huan Huan|¢; |(eating, 0.3); (sleeping, 0.3)
Yuan Zi |t2| (eating, 0.4); (drinking, 1)

-

Fig. 2. The pandas’ activities (probabilistic transactions) from 9am to 10am

Ezxample 3. Figure 2 gives the probabilistic transaction database of Huan Huan
and Yuan Zi for two hours, from 9am to 10am. We can observe that Yuan Zi’s
activities in this time window were: eating with a probability of 40% and drinking
with a probability of 100%.

Possible Worlds Probability
wi {}; {drinking} 0.294
wa {eating}; {drinking} 0.126
ws {sleeping}; {drinking} 0.126
Wy {eating, sleeping}; {drinking} 0.054
ws {}; {eating, drinking} 0.196
we {eating}; {eating, drinking} 0.084
wr {sleeping}; {eating, drinking} 0.084
ws |{eating, sleeping}; {eating, drinking}| 0.036

Fig. 3. Possible worlds for the database illustrated in Figure 2

A probabilistic database can be treated as a set of deterministic databases,
called possible worlds. The possible worlds are generated from the possible in-
stances of transactions. Let w be a possible world, then the instance of a transac-
tion ¢ in w is denoted by t,,. Figure 3 shows the possible worlds for the database in
Figure 2. In this database, the instance of transaction t; in ws is {sleeping}, and
that of transaction ts is {drinking}. For each possible world w, there is probabil-
ity P(w) that is computed based on the probability of its transaction instances.
The sum of the probabilities of all possible worlds of a database is equal to one. In
the case of independence of events, the probability of a given world is computed
as P(w) = [[,¢; P(tw), where P(t,) is the probability of ¢’s instance in w. P(t.)
is computed as follows: P(tw) = ([[,¢,, (P(z €1)) X ([ ¢, (1 — Pz €1))).

Intuitively, we multiply the existential probability of ¢ items that are present
in t,, by the probability of absence of those that are not present in t,,.

Ezample 4. In the possible worlds shown in Figure 3, the probability of wy is
equal to the occurrence of eating and sleeping for transaction t;, drinking for ¢,
and the non-occurrence of eating for to. Thus P(w4) = (0.3x0.3x1)x(1—0.4) =
0.054.
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2.2 Probabilistic Frequent Itemsets

The problem of frequent itemset mining from a set of transactions T, as de-
fined in [1], aims at extracting the itemsets that occur in a sufficient number of
transactions in 7. This is based on the number of transactions in 7" where an
itemset X appears (i.e. the support of X in T'). In the deterministic context,
computing this support is straightforward (with a scan over T'). In probabilistic
databases, however, the support varies from one possible world to another. For
this reason, the support of an itemset in a probabilistic database, introduced in
[3], is given as a probability distribution function. In other words, each possible
value i € {0,...,|T|} for the support of X is associated to a probability that is
the probability that X has this support in the probabilistic database. Definition
3 gives a more formal definition of this notion.

Definition 3. Let W be the set of possible worlds and Sx ., be the support of
X € I in world w € W. The probability Px r(i) that X has support i in the
set of probabilistic transactions T is given by: Px r(i) = Zwew,sx,,,,:i P(w). In
other words, Px 1(i) is the cumulative probability of all possible worlds in which
support of X is i. The probability distribution function Px r(i) fori € [0..|T] is
called the probabilistic support of X.

Ezample 5. In the possible worlds given by Figure 3, we have Pegiing (1) =
P(wy) + P(wy) + P(ws) + P(w7) = 0.46. In other words, the probability that
exactly one Panda is eating between 9am and 10am is 46%.

Definition 4. Given a support value i, the probability P>x r(i) that an itemset
X has at least i occurrences in T, is given by: P>x r(i) = ZLTJ? Px 7(j). Given
minSup and minProb, a user minimum support and minimum probability, and
T a set of probabilistic transactions, an itemset X is a probabilistic frequent
itemset (PFI) iff P>x, p(minSup) > minProb. P>x p(minSup) is also called
the frequentness probability of X.

For example, the probability that “eating” has support of at least 1 is given
by Peating,7(1)+Peating,7(2) = 0.4640.12 = 0.58. In other words, the probability
that at least one panda was eating between 9am and 10am is 58%.

2.3 Probabilistic Data Stream Mining

In many applications, the data production rate is so high that their analysis in
real time with traditional methods is impossible. Sensor networks, Web usage
data, scientific instruments or bio-informatics, to name a few, have added to this
situation. Because of their rate, data streams should often be observed through
a limited observation window and their analysis is highly constrained (e.g. “in
real-time”, “with ongoing queries”, “with no access to outdated data”, etc.).
There are several models for this observation, including sliding windows [16].
Definition 5 gives a formal definition of this notion.
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Definition 5. An event data stream (or data stream) is an unbounded stream of
ordered events. Given n, the mazimum number of events to maintain in memory,
a sliding window over a data stream contains the last n events from the stream.

The problem of probabilistic frequent itemset mining in a sliding window is to
extract the set of probabilistic frequent itemsets after each update. The updates
occur when a new event is added to the stream and the oldest one is removed
from the sliding window.

3 PFI Mining in Sliding Windows

We now introduce FEMP, our framework for PFI mining in probabilistic data
streams with a sliding window SW. FEMP allows monitoring the probabilistic
support of all the itemsets of SW in real time, as opposed to the batch model
where these results are obtained only when a batch is complete. However, the
main challenge in this approach consists in updating the probabilistic support
of an itemset X when a transaction ¢ is added to, or removed from the sliding
window. In deterministic data, this operation is simple, we just check if X C ¢
and update its support consequently. In the context of possible worlds, there
is no such straightforward approach, because the set of possible worlds changes
completely, after adding/removing a transaction to/from the sliding window.
Before describing our solution, we mention that one of its requirements is to
know P(X C t), the probability that itemset X is included in transaction ¢. In the
case of independent items, it can be computed as P(X C t) = le):(‘l P(z; €t).
In the case where items of transaction ¢ are dependent, for computing P(X C t)
we have to take into account the rules defined on the dependency of items. For
example, if two items x; and x5 have a mutual exclusion dependency, then the
probability that X = {x1,x2,...} is a subset of a transaction ¢ is zero.

3.1 Sliding Window Model

Panda Sliding window of size 6, after es

Huan Huan |(eating, 0.3); (sleeping, 0.3); (grooming, 0.4)

Yuan Zi (eating, 0.4); (drinking, 1); (grooming, 0.9)

Sliding window of size 6, after eg

Huan Huan |(eating, 0.3); (sleeping, 0.51); (grooming, 0.4)

Yuan Zi (eating, 0.4); (drinking, 1); (grooming, 0.9)

Sliding window of size 6, after eig

Huan Huan |(sleeping, 0.51); (grooming, 0.4)

Yuan Zi (eating, 0.4); (drinking, 1); (grooming, 0.9); (marking, 0.4)

Fig. 4. Sliding windows of size 6 from e3 to eig
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Our sliding window model maintains a set of probabilistic transactions in
memory. When the stream produces a new event e; =< Oid, time,z, P >, the
corresponding object in the model is either created or updated in the window.
With streaming data, an item z may occur at several points in time and each
occurrence is associated to a probability. Therefore, we must give a reliable prob-
ability of existence of x, by taking each probability of occurrence into account.
To that end, we consider P(z € t) as the probability that at least one occurrence
of = exists in ¢ (4.e. 1 minus the probability that = does not exist in t).

Ezxample 6. Consider the stream of events illustrated in Figure 1 and SW, the
sliding window limited to the last 6 events. Figure 4 illustrates the content of
SW from 1lam (i.e. eg to eg) to 12am (i.e. e5 to e1p). In this example, when
eg is added, we update the probability of sleeping for Huan Huan, but we do
not need to remove any item from SW. Then, after e;q, we add marking to the
probabilistic transaction of Yuan Zi and es3, the oldest event, must be removed.

3.2 Computing Frequentness Probability

For computing the probability that an itemset X is frequent, we need to sum
up the probabilities of all supports ¢ for i > minsup. In other words, we have
Psx p(minsup) = Z‘i@mmsw Px 1(i), where Py 1 (i) is the probability of sup-
port ¢ for X in T'. Notice that the sum of the probabilities in each row is equal
to one. Therefore, we have: Ps x 7 (minsup) = (1— 70"~ Py (7). We use
this equation for computing the frequentness probability of itemsets. To update
the frequentness probabilities after inserting/deleting a transaction, we need to
compute and update the probability of support ¢ (0 < i < minSup — 1) for an
itemset X after inserting/deleting a transaction to/from the sliding window. Our
approach for computing the probabilistic support of itemsets uses a recursion on
transactions.

3.3 Recursion On Transactions

Let X be an itemset, DB™ be a probabilistic database involving transactions
T = {t1,...,tn}, and Px (i) be the probability that the support of X, in the
set of transactions T, is i. We develop an approach for computing Px (i) by
doing recursion on the number of transactions.

Base. Let us first consider the recursion base. Consider DB' be a database that
involves only transaction t;. In this database, the support of X can be zero or
one. The support of X in DB! is 1 with probability P(X C t1) , and its support
is 0 with probability (1 — P(X C ¢1)). Thus, for the probabilistic support of X
in DB', we have the following formula:

P(X Cty) for i=1;

Px () = § (1= P(X € 1)) for i=0; 1)
0 otherwise
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Recursion Step. Assume we have DB" !, a database involving the transac-
tions t1,...,tn—1. We construct DB™ by adding transaction ¢, to DB"~!. If
X ¢ t, then the probability of support ¢ for X in DB™ is exactly the same as
that in DB™ . If X C t,, then two cases can lead to a support of i for X in
DB":

1. X Ct, in DB™ and the support of X in DB™ ! is equal to i — 1. Thus, we
have:
Px (i) = Pxp—(1,3 (i — 1) x (P(X Ct,)).

2. X ¢ t, and the support of X in DB™ ! is equal to i. Thus, we have:
Px 1(i) = Pxr—q1,1(1) x (1 = P(X Cty)).

Then, the probability of support ¢ for X in a database containing t1,...,t,
is computed based on theorem 1.

Theorem 1. Given an itemset X and a set of transactions T = {t1,...,tn—1,tn},
the probabilistic support of X in T can be computed based on the probabilistic
support in T — {t,} by using the following equation:

Px,r(i) = Px,r—{1,}(i = 1) X (P(X C tn)) @)
+Px 1 1,1(1) X (1 = P(X Cty))

Proof. Implied by the above discussion.

3.4 Updating Probabilistic Support after Inserting a Transaction

To efficiently support data mining over probabilistic data streams, we need to
update efficiently the probabilistic support of itemsets after each update. Here,
we deal with the insertion of a new transaction to the sliding window. The case
of transaction removal will be addressed in Section 3.5.

After inserting a new transaction to the sliding window, the probabilistic
support can be updated by an algorithm that proceeds as follows (we removed the
pseudo-code due to space restrictions). Let Px r[0..|SW|] be an array such that
Px 7[i] shows the probability of support ¢ for itemset X in a set of transactions
T. |SW| is the maximum support of a transaction in the sliding window, i.e.
the size of the window. Given Px r, we generate an array Px (s such that
Px 1.4 (+[i] shows the probability of support i for X in T 4 {t}. For filling the
array Py 7.4}, our algorithm considers two main cases: either T' is empty or T' is
not empty (so Px r is available). In the first case, we have only one transaction in
the sliding window. Thus, our algorithm initializes Px 7 () using the base of our
recursive formula (described in Section 3.3) by setting Px 74 [1] = P(X C?)
and Px ry4[0] =1~ P(X Ct). In the second case, i.e. where T' is not empty,
the algorithm computes the values of Px 7, (¢ based on those in Px 7 by using
our recursive formula (i.e. Equation 2) as follows:

Py i) = (Pxrli — 1] x P(X C 1)+ (Pxrli] x (1— P(X C 1))
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When P(X C t) = 0 we can simply ignore the transaction since it has no
impact on the support, thus we have Px 7, (;; = Px 7. Recall that for computing
the frequentness probability of itemsets, we need to know only the probability of
supports between zero and minSup — 1. This is the reason why in our algorithm
we fill the array only for the values that are lower than minSup. Example 7
illustrates our algorithm.

Ezample 7. Figure 5 shows the execution of our algorithm over the database
shown in Figure 2, with X=eating. Recall that, in this database, we have: P(X C
t1) = 0.3 and P(X C t3) = 0.4. Initially T = {}, then we add ¢; and afterwards
to to it. In the fist row, the algorithm sets the probabilistic supports for T' = {¢1}.
Thus, we have Px 14 4,1[1] = P(X Ct1) = 0.3 and Px py,3[0] = (1 - P(X C
t1)) = 1 — 0.3 = 0.7. The probabilities in the second row are computed using
our recursive formula. For example, Px t, +,3[1] = (Px +,1[0] x P(X C t3)) +
(Pxq4,3[1] x (1 = P(X Ct2)) = (0.7 x 0.4) + (0.3 x 0.6) = 0.46.

T
{t1,12} 042 0.46 0.12
{t:} 0.7 0.3

0 1 2 possible supports

Fig. 5. Computing the probabilistic support of eating in the probabilistic database of
Figure 2

The time complexity of our algorithm for updating the probabilistic sup-
port of an itemset X after inserting a new transaction to the sliding window
is O(minsup). Its space complexity is O(]SW|) where |SW]| is the size of the
sliding window, i.e. the maximum number of transactions in the window.

3.5 Updating Probabilistic Support after Deleting a Transaction

Assume we have the probabilistic support of an itemset X for a set of trans-
actions 7', then the question is: “how to compute the probabilistic support in
T —{t}?” One might think that the probabilistic support i for X in T'— {t} (i.e.
Px 1_{y(i)) could be computed as Px r(i—1)/P(X Ct)+Pxr(i)/(1-P(X C
t)). Unfortunately, this formula will not work. For example, if we use it for com-
puting P.ating,gt,3(1) after deleting transaction ¢ from the database used in
Example 7, then we obtain 0.42 x 0.4 + 0.46 x 0.6 = 0.444, whereas the value of
Peating {#,3(1) is equal to 0.3 (see Figure 5). To solve the problem of updating
the probabilistic support of X in T'— {t}, we develop the following theorem:

Theorem 2. Let X be an itemset, T a set of transactions, and Px r an array
denoting the probabilistic support of X in T. Assume we delete a transaction t
from T. Let Px p_{41(i) be the probability for X to have support i in T — {t},
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then Px p_g4 (i) can be computed as:

_ Pxr(i)—(Px, 7 (s ((i—1)XP(XCt
1—P(XCh)
— Pxr(i+ 1) otherwise

D ifP(X Ct)£1

Proof. In the case where P(X C t) = 1, it is obvious that by removing ¢
from T, the support of X is reduced by one. Thus, the probability of support 4
in T — {t} is equal to the probability of support i + 1 in 7. For the case where
P(X Ct) #1, it is sufficient to show that:

PX,Tf{t}(i) X (1 — P(X - t)) = PX’T(Z') — (PX,Tf{t}(i — 1) X P(X - t))

For this, we expand the right side of this equation by using Equation 2 in
Section 3.3. We replace Px (i) by its equivalent, that is:

Pxr (i — 1) x (P(X C 8)) + Pxr_gy(i) x (1 P(X C 1))
Thus, we have:
PX,T(i) — (PX,T—{t}(i — 1) X P(X g t))
= PX,T—{t}(i — 1) X (P(X - t)) +PX,T—{t}(Z.) X (1 — P(X - t)) — (PX,T—{t} (Z —
1) x P(X Ct))
= Pxrn(i) x (1~ P(X € 1)) O

Theorem 2 suggests to compute Py 7_ (i) based on Py (i) and Px p_ 4 (i—
1). To develop an algorithm based on this theorem, we need to compute Px 7_ ¢ (0)
that is the probability of support 0 for X in T'—{t}. This can be done as follows.
We use the fact that when a transaction ¢ is added to the sliding window, the
probability of support 0 is multiplied by the probability of absence of ¢. Thus,
when ¢ is removed from 7', to compute Px p_41(0) we can divide Px 7(0) by (1
- P(X Ct)),if P(X Ct)# 1. In other words, we have:

Px 7(0)

m,forP(X Ct)y#1 (3)

Px r—y(0) =

Equation 3 works iff P(X C ¢) # 1. In the case where P(X C t) = 1, we
have PX,Tf{t}(O) = PX’T(l).

Based on Theorem 2 and Equation 3, we developed Algorithm 1 that updates
the probabilistic support after removing a transaction from a sliding window. Re-
call that for finding frequent itemsets, we need only to compute the probabilistic
supports for values that are lower than minSup. This is why the “for loop” in
the algorithm (started at Line 10) is from 1 to min{minSup — 1,|T| — 1}. The
time complexity of Algorithm 1 is O(minsup), and its space complexity O(|SW)
where |ST| is the size of the sliding window.

4 Experiments

We evaluate the performance of FEMP by a thorough comparison to existing
algorithms in the literature that use Probabilistic Support in exact [3] and ap-
proximate [14] mining. Since we do not find sliding window approaches in the
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Algorithm 1 Probabilistic support update after deleting a transaction.

Input: X: itemset; ¢: deleted transaction; T": set of transactions before delete; Px r:
an array containing probabilistic support of X in T’

Output: Py r_{;: an array containing probabilistic supports for X in 7" — {t}

1: if P(X Ct) =0 then
2 Pxr_1y = Pxr
3: else
4:  if P(X Ct) < 1 then
Px 1[0
5 Prroml0l = akey
6: else
7 Px r—3[0] = Px,r[1]
8 end if

9: k= min{minSup —1,|T| — 1}
10:  fori=1..k do

11: if P(X Ct) =1 then

12: PX,T—{t}m = PX,T[i + 1]

g else Px p[i]—(P [i—1]x P(XCt))
14: Px il = = Xl'fl_o({;}gw —
15: end if

16: end for

17: end if

18: return Px 14

literature, we implemented these algorithms as follows: each time an event is
added or removed from the sliding window, the algorithm runs, from scratch, on
the content of the updated sliding window. PFIM is the algorithm of [3] im-
plemented with all the optimizations (including the 0-1 optimization). However,
due to extremely high response time in batch mode, we implemented two other
versions of this algorithm. In PFIM-50% the discovery is not performed for
each event but for each two events (only 50% of the events are considered). In
PFIM-25%, the discovery on the sliding window is performed each 4 events.
Eventually, Poisson is the algorithm of [14] (that allows approximate PFI min-
ing) running on the whole sliding window after each update. A brief discussion
on these algorithms is given in Section 5.

We use two datasets for these experiments: a synthetic one (by the IBM*
generator) and a real one (the “accident” dataset from the FMI repository?). The
synthetic dataset contains 38 millions of events, 8 millions of transactions and 100
items. The accidents dataset contains 11 millions of events, 340K transactions
and 468 items. We have added an existential probability P €]0..1] to each event
in these datasets, with a uniform distribution. For both datasets, minSup has
been set to 30% of the window size and minProb to 40%.

We implemented two versions of FEMP. The first one is “Dynamic-FEMP”
(d-FEMP in our experiments). In this version, when a new candidate itemset

! http://www.cs.loyola.edu/ -cgiannel /assoc_gen.html
2 http://fimi.ua.ac.be/data,/



12 Fast and Exact Mining of Probabilistic Data Streams

is generated, it’s frequentness probability will be checked over the next updates
in the stream thanks to our algorithms presented in Section 3. This is the fastest
approach but it implies a delay in the pattern discovery (similar to the delay
described in [13]). The second version is “Exact-FEMP” (e-FEMP in our ex-
periments). Here, each time a candidate itemset is generated it is immediately
verified, from scratch, over all the transactions maintained in the current sliding
window.Besides that, the probabilistic support of all existing itemsets is main-
tained at each update using our algorithms presented in Section 3. e-FEMP
guarantees an exact PFI discovery at any point in the stream. However, this is
done at the price of a higher time complexity compared to d-FEMP.

We present the results obtained by these approaches on a probabilistic data
streams with sliding windows. Our goal is, on the one hand, to show that a slid-
ing window approach in probabilistic data streams with probabilistic support is
possible thanks to our algorithms and, on the other hand, to illustrate the be-
havior of our approach in a context where transactions can be added or removed
from the observation window.

4.1 Feasibility

Figure 6 shows the time needed by each algorithm to extract the PFI in a grow-
ing sliding window SW. The size of SW grows from 0 to 5000 transactions for
the synthetic dataset and from 0 to 10000 for the accident dataset. This corre-
sponds to the initialization of the stream. We observe that the response time of
d-FEMP increases barely since it needs very few calculations. e-FEMP increases
more clearly, since it must scan SW each time a new candidate is proposed.
Meanwhile, all the versions of PFIM and Poisson have much higher response
times. d-FEMP needs 7.34s to fill SW for the accident dataset, where PFIM
needs 618s. Furthermore, we can see that Poisson is faster than all versions of
PFIM after a number of transactions, but not for the first ones. This is due to the
large number of infrequent patterns extracted by Poisson, caused by the approx-
imation of Expected Support. Actually, for the first hundreds of transactions,
Poisson may extract up to 146 PFI while the real number of PFI is 36 at most.
Such a large number of erroneous PFI is a cause of unnecessary computations
and high response times.

Figure 7 shows the time needed by each algorithm to process 100 events, while
the transaction data is fed in a pass-through fashion. Although probabilistic
supports are maintained after each update in the cases of d-FEMP, e-FEMP,
Poisson and PFIM, we report the time for 100 events because the response time
of d-FEMP, for only one event, would always be 0s. That time is recorded as the
number of processed events increases, from the 100** event to the 50000*" one
in the case of synthetic dataset (100000 for accident dataset). We observe that
d-FEMP needs less than 0.05s to update the supports of the monitored itemsets
in memory for each 100 updates to the stream. e-FEMP needs more time (up
to 1s) since it has to scan SW when new candidate itemsets are generated.
Depending on the dataset, Poisson is faster or slower that PFIM-25%. This
is due to the difference in density between these datasets, where Poisson can
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Fig. 6. Initialization time (filling SW) on synthetic (top) and accident (bottom)

datasets

extract itemsets that are not frequent (slowing down the extraction process).
Over the synthetic dataset, the time needed by e-FEMP is 5 times faster than
Poisson (while extracting exact probabilistic support, whereas Poisson gives an
approximation with Expected Support) and up to 20 times faster than PFIM.
We also observe that d-FEMP is very close to 0s. In fact, in our experimental
data, d-FEMP appears to run up to two orders of magnitude faster than PFIM
on the accident dataset to process 100 events. The global response time of d-
FEMP, as the stream passes through, is several orders of magnitude lower than

that of
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Fig. 7. Processing times for 100 events on synthetic (top) and accident (bottom)

datasets
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4.2 Scalability

Figure 8 shows the execution times of each algorithm for a full sliding window.
More precisely, when a sliding window SW is full (after initialization), we mea-
sure the time needed to process |[SW| updates (one update is made of an event
insertion and an event removal). This time is measured for an increasing size of
SW. Our experiments clearly show that d-FEMP incurs very few overhead to
the computations needed for maintaining the data structures.
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Fig. 8. Processing time for |SW| updates with increasing size of SW on synthetic (top)
and accident (bottom) datasets

5 Related Work

Expected Support. Probabilistic data mining is a recent research topic that is
gaining increasing attention [9], [4], [12], [10], [15]. In [5], the problem of itemset
mining from probabilistic data is introduced and the authors propose the notion
of Ezpected Support as a first solution. Let P(X C t) be the probability that
itemset X is included in transaction ¢, the Expected Support ES(X) of X in
database D is given by: ES(X) = lezll P(X,t;). This support is then used as
a frequency measure (compared to a user minimum threshold) in U-Apriori, a
level-wise approach based on the Apriori principle for frequent itemset mining.
Probabilistic Support. In [3], the authors introduce the notion of proba-
bilistic support which is an exact measure of an itemset support in the possible
world model. They define the probability that an itemset X has support i as in
Definition 4. The authors propose to compute the frequentness probability of an
itemset X using a dynamic programming approach. However, their approach is
incremental in the support (i.e. the transaction set is fixed and each iteration
of their recursion allows computing the support probability of an itemset for an
increasing support), thus not appropriate for a data stream environment.
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Some approximation methods for the probabilistic support of an itemset have
also been proposed. The idea of [14] is to approximate the support distribution
function by means of a Poisson law. In [4], the authors propose another ap-
proximation of frequentness probability based on the central limit theorem. The
main drawbacks of these approaches are to use Expected Support as a measure
of probabilistic frequentness [14] and to work only on statistical independent
data [14], [4].

Probabilistic Data Streams. Itemset mining in data streams is an impor-
tant topic of knowledge discovery [13], [7]. Mainly, we find contributions on the
extraction techniques and the data models, such as batches [7] or sliding windows
[13], [16]. In [8], we find a comparative study of these models. In [17], the authors
propose to extract frequent items in probabilistic data. Their approaches allow
finding items (itemsets of only one item) in static data and likely frequent items
in data streams. [11] proposes to extract frequent itemset from streaming prob-
abilistic data by means of Expected Support and a batch model. In [10], we find
a batch-based approach to extract frequent itemsets using Expected Support in
probabilistic data streams with a technique inspired from [7].

Despite the interest of exact PFI mining with sliding windows [8], [16], we
do not find any proposal in the literature for such an approach. As we discuss
in Section 3, the main challenge in this context is to update the probabilistic
support of an itemset when a transaction is added to or removed from the win-
dow. Our work is therefore motivated by the needs and challenges of providing
an approach that is able to i) extract PFI from data streams; ii) use sliding
windows and update the support of an itemset upon transaction insertion or
removal; and iii) work with statistical dependent and independent data.

6 Conclusion

In this paper, we proposed FEMP, the first solution for exact PFI mining in data
streams with sliding windows. FEMP allows efficient computation of the exact
probabilistic support of itemsets whenever a transaction is added or removed
from the observation window. Compared to non-incremental algorithms, that
need to scan the whole sliding window after each update, our approach shows
very low execution time. Through an extensive experimental evaluation on syn-
thetic and real datasets, we observed that FEMP can be up to several orders of
magnitude faster than traditional approaches adapted to sliding windows.
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