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Abstract. In this paper we present a spectral algorithm for learning
weighted finite-state sequence taggers (WFSTs) over paired input-output
sequences, where the input is continuous and the output discrete. WF-
STs are an important tool for modelling paired input-output sequences
and have numerous applications in real-world problems. Our approach is
based on generalizing the class of weighted finite-state sequence taggers
over discrete input-output sequences to a class where transitions are lin-
ear combinations of elementary transitions and the weights of the linear
combination are determined by dynamic features of the continuous input
sequence. The resulting learning algorithm is efficient and accurate.

1 Introduction

Weighted Finite-state Sequence Taggers (WFSTs) are an important tool for
modelling paired input-output sequences and have found numerous applications
in areas such as natural language processing and computational biology (e.g.
part of speech tagging, NP-chunking, entity recognition and protein folding pre-
diction, to mention a few). The problem of modelling paired input-output se-
quences is usually referred in the literature as sequence tagging. In sequence
tagging the goal is to predict a tag (i.e. a discrete output) for each symbol in
the input sequence. And thus different from the general transduction problem
where input and output sequences might be of different lengths, in the sequence
tagging problem both input and output sequences are ’aligned’ and have the
same length. Still the problem of learning sequence taggers with latent states
remains a challenging task.

The most popular methods for learning sequence taggers with hidden states
are based on gradient-based or EM optimizations [12, 13], but these can be com-
putationally expensive and are susceptible to local optima issues. Recently, an
emerging line of work on spectral methods has proposed algorithms for latent-
variable structure modelling that overcome some of the limitations of EM [11,
16, 21, 4, 15, 24, 3, 8, 6, 2]. Of these, [5] proposed a spectral method for learning
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WFSTs that learns distributions where both inputs and outputs are sequences
from a discrete alphabet.

However, many real world problems require tagging sequences where the in-
puts are not discrete but continuous sequences. For example [22, 28, 20] consider
the problem of human gesture or action recognition where given a video sequence
the task is to predict the gesture that is been performed at each frame. Clearly,
this can be framed as a sequence tagging problem where the continuous inputs
correspond to real-valued features of the video sequence and the discrete outputs
correspond to the gestures been performed at each point in time.

In this paper we extend the previous line of work on spectral learning for
continuous sequences to handle the task of tagging sequences of continuous in-
puts. Our approach is based on generalizing the class of weighted finite-state
sequence taggers over discrete input-output sequences to a class where transi-
tions are linear combinations of elementary transitions and the weights of the
linear combinations are determined by dynamic features of the continuous input
sequence. One intuitive way to understand our approach is to think that we are
learning a basis of the vectorial space of transition functions and that the weights
of the linear combination depend only on the given features of the continuous
input sequence.

Similar to [19, 6], we develop a spectral method for our model from forward-
backward recursions which are used to derive useful matrix decompositions of
observable statistics. These matrix decompositions are then in turn exploited
to induce the relationships between observations and latent state dynamics. As
with previous spectral methods our algorithm for learning finite-state sequence
taggers is simple and efficient. It reduces to estimating simple statistics from
samples of paired input-output sequences, performing a singular value decom-
position and inversion of some matrices.

In summary the main contributions of this paper are: (1) We present a la-
tent state model for sequence tagging over continuous inputs; (2) We derive
an efficient spectral learning algorithm for this model from forward-backward
recursions; and (3) We present experiments on a real-task that validate the ef-
fectiveness of our approach.

2 Models for Sequences of Continuous Inputs and
Discrete Outputs

2.1 Preliminary: Weighted Finite-state Sequence Taggers

We start by defining a class of functions over pairs of discrete sequences. More
specifically, let x = x1, . . . , xT be an input sequence and y = y1, . . . , yT be an
output sequence, where x ∈ ∆∗ and y ∈ Σ∗. Here both ∆ and Σ are assumed to
be discrete alphabets. We follow [5] in that we assume that x and y have the same
length (i.e we model aligned sequences). Defining spectral learning algorithms
over pairs of sequences of different lengths would require handling unobserved
alignments which is outside the scope of this paper.



A weighted finite-state sequence tagger (WFST) over ∆ × Σ with m states
can be defined as a tuple A = 〈α1, α∞, A

σ
δ 〉 where α1, α∞ ∈ Rm are the initial

and final weight vectors and Aσδ ∈ Rm×m are the |∆ × Σ| transition matrices
associated to each pair of symbols 〈δ, σ〉 ∈ ∆ × Σ. The function fA realized by
a WFST is defined as:

fA(x, y) = α>1 A
y1
x1
· · ·AyTxTα∞ . (1)

The above equation is an algebraic representation of the computation per-
formed by a WFST on a pair of sequences 〈x, y〉. To see this consider a state
vector st ∈ Rm where the ith entry represents the sum of the weights of all
the state paths that generate the prefix 〈x1:t, y1:t〉 and end in state i. Initially,
s1 = α1, and then s>t+1 = s>t A

yt
xt updates the state distribution by simultaneously

emiting the symbol 〈xt, yt〉 and transitioning to the next state vector.
Notice that since x and y are aligned sequences we could regard a WFST as

a weighted finite-state automata (WFA) over a combined alphabet Γ = ∆×Σ.
The reason why we maintain separate alphabets will become evident in the next
sections when we will consider modelling pairs of continuous input sequences
and discrete outputs.

We say that a WFST is stochastic if the function fA is a probability distri-
bution over (∆ × Σ)∗. That is, if fA(x, y) > 0 for all 〈x, y〉 ∈ (∆ × Σ)∗ and∑
〈x,y〉∈(∆×Σ)∗ fA(x, y) = 1. When x is continuous we have the analogous con-

dition:
∫
(x,y)∈(∆×Σ)∗

fA(x, y) dx dy=1. To make it clear that fA(x, y) represents

the probability of pairs of sequences 〈x, y〉 we will sometimes write it as P[x, y].

2.2 Sequence Taggers over Continuous Sequences

We will now consider the case in which the input sequences are not discrete
but continuous. More specifically, let X be an arbitrary domain of input sym-
bols (possibly infinite) and Φ = {φ1, . . . , φk} be a set of feature functions
over X , where φi : X → R . For any symbol a ∈ X we regard the vector
Φ(a) = [φ1(a), . . . , φk(a)] ∈ Rk as the real representation of a under the X → Rk
mapping induced by Φ. When necessary we will use Φ(X ) to refer to the range
of this mapping.

We could attempt to define a WFST over (X ×Σ)∗ as:

fA(x, y) = α>1 A
y1
Φ(x1)

· · ·AyTΦ(xT )α∞ . (2)

Clearly, there is a problem with the above formulation because there are an
infinite number of transition matrices (i.e. one for each member of Φ(X ) × Σ),
thus we need to impose some further restrictions on fA. The first observation
is that instead of regarding AσΦ(a) as a matrix in Rm×m we can define it as a
function:

A(Φ(a), σ) : Rk ×Σ → Rm×m (3)

We can now restrict fA by restricting A, in particular we will assume that:

A(Φ(a), σ) =

k∑
l=1

φl(a)Oσl (4)



where Oσl ∈ Rm×m is an operator associated with each of the k functions of Φ
and each output symbol σ ∈ Σ. Thus for each output symbol we restrict our
transition function to be a linear combination of a set of k elementary operators.
The weights of the linear combination are those induced by Φ.

In summary, a Continuous Weighted Finite-state Sequence Tagger (CWFST)
over (Φ(X ) × Σ)∗ with m states can be defined as a tuple A = 〈Φ, α1, α∞, O

σ
l 〉

where Φ is a set of k functions, α1, α∞ ∈ Rm are the initial and final weight
vectors, and Oσl ∈ Rm×m are the k×|Σ| operator matrices associated with each
each symbol in Σ and each function in Φ. The function fA realized by a CWFST
is defined as:

fA(x, y) = α>1 A(Φ(x1), y1) · · ·A(Φ(xT ), yT ) α∞ (5)

= α>1

(
k∑
l=1

φl(x1)Oy1l

)
· · ·

(
k∑
l=1

φl(xT )OyTl

)
α∞ (6)

2.3 Some Examples

We give now some examples of classes of functions that can be computed by
CWFSTs.

A WFST as a CWFST We start by considering WFSTs as they were defined
in the previous section. It is easy to see that if we have a WFST defined over
∆ × Σ we can construct a CWFST that will compute the same function. The
construction is very simple, to map a WFST A = 〈α1, α∞, A

σ
δ 〉 to a CWFST A′ =

〈Φ, α′1, α′∞, Oσl 〉 we perform the following construction: (1) Define one indicator
function φδ : ∆ → R for each δ ∈ ∆ as: φδ(a) = 1 if a = δ and 0 otherwise;
(2) Set the |∆| × |Σ| operators to Oσl = Aσl ; (3) Define α′1 = α1 and α′∞ = α∞.
Clearly, the CWFST A′ resulting from this construction will compute the same
function as A since by construction A(Φ(δ), σ) = Aσδ .

Transitions as Mixture Models We will now describe a more interesting
case of a distribution over (X × Σ)∗ that can be represented as a CWFST.
To motivate this example consider a gesture recognition problem where given a
sequence of video frames we wish to predict the gesture been performed at each
point in time.

One of the challenges in the gesture recognition task is that each video frame
lies in a high-dimensional space which makes generalization to unseen samples
difficult. To alleviate this problem we could consider a two step process where in
the first step we induce a mapping from the high-dimensional space to a lower
dimensional semantic space.

For example in the first step, like in [10] we could learn a visual topic model
[7] over frames and represent each frame as a posterior distribution over visual
topics. In the second step we need to be able to learn a sequence model from the
topic space to gesture labels. To define such a model we will make use of some
intermediate latent variables.



More precisely, let H = {c1, . . . , cm} be a set of m hidden states and Z be a
k dimensional multinomial random variable. In the gesture recognition example
Z would correspond to the latent topic variable for each video frame. Consider
now the following distribution over paired 〈x, y〉 sequences:

P[x, y] =
∑

h∈HT+1

P[x, y, h] (7)

=
∑

h∈HT+1

P[h0]

T−1∏
t=1

P[ht+1, xt, yt | ht] (8)

P[ht+1, xt, yt|ht] is the probability of emiting a pair of symbols (x, y) at time t
and transitioning to a new state. Since x might lie in a high-dimensional space,
to ease modelling of this conditional distribution we will define it as a mixture
of k elementary conditional distributions:

{ P1[ht+1, yt | ht], . . . ,Pk[ht+1, yt | ht] } (9)

More precisely, we define the transition function as:

P[ht+1, xt, yt | ht] =

k∑
l=1

Pl[ht+1, yt | ht] P[z = l | xt] P[xt] (10)

Thus, in this model the emission of an output symbol y is conditioned on z
which is itself conditioned on the input variable x. Intuitively, we can think of
P[z = l|x] as the probability of x taking discrete label l. In the gesture example,
this would correspond to the posterior probability of a topic l given some input
x. An alternative interpretation is that Z induces a soft partition of X . The
model exploits this partition to induce a better mapping between inputs and
outputs.

Finally, we show how to construct a CWFST that realizes P[x, y]. The idea
is quite simple, we define a feature function for each of the k possible values that
Z can take. More precisely, we define a CWFST A in the following manner: (1)
Define one feature function φl(x) for each possible value of Z as P[z = l | x] P[x];
(2) Define the k× |Σ| operators as Oσl (i, j) = Pl[ht+1 = i, σ | ht = j]; (3) Define
α1(i) = P[h0 = i] and α∞ = 1. It is easy to see that A computes P[x, y] since by
definition A(Φ(δ), σ) = P[ht+1, δ, σ | ht].

We would like to end this section with a note on the limitations of the model.
One of the key assumptions is that the feature functions depend only on the
input. This means that the feature function needs to capture enough information
so that at any point in time the output yt can be predicted knowing the current
state vector (which is a summary of the [x1:t−1; y1:t−1] history) and the input
features at time t. In other words, there must be enough information in the
feature functions to explain the dynamics of the output symbols.



3 Spectral Learning of Stochastic CWFSTs

Recall that a stochastic CWFST computes a function fA that is a probability
distribution over (∆×Σ)∗. In this section we will derive a learning algorithm for
inducing the parameters of the CWFST from samples. We begin by defining some
expectation matrices induced by fA. We continue by presenting a duality result
between a subclass of stochastic CWFSTs and factorizations of these matrices.
Finally, we describe the spectral method for CWFSTs which is a statistically
robust implementation of the arguments used in the duality proof.

3.1 Duality and Minimal CWFST

Let P be the function computed by fA, we define functions: φij(aa
′) = φi(a)φj(a

′)
and φσilj(aa

′a′′, σ′σ′′σ′′′) = φi(a)φl(a
′)φj(a

′′)P(a′) if σ′′ = σ and 0 otherwise.

Using these functions we construct the observable statistics matrices H1 ∈ Rk,
H2 ∈ Rk×k , Hσ

l ∈ Rk×k and C ∈ Rk×k as:

H1(i) = EP[φi(a)] (11)

H2(i, j) = EP[φij(aa
′)] (12)

Hσ
l (i, j) = EP[φσilj(aa

′a′′, σ′σ′′σ′′′)] (13)

C(i, j) = EP[φi(a)φj(a)] (14)

We say that a CWFST A = 〈Φ, α1, α∞, O
σ
l 〉 with Oσl ∈ Rm×m for l = 1 : k

is minimal for fA if rank(H2) = m and rank(C) = k.
The rank-m restriction on H2 is analogous to the restriction that O and T be

rank m in [15, 6]. There are ways to relax this assumption by considering higher
order expectations, but this is outside the scope of the paper. Now we will show
a relationship between minimal A and some useful rank-m factorizations of H2.
Under appropriate stationary assumptions:

Lemma 1. Let H1, H2, Hσ
l and C be the expectation matrices induced by an

m-state minimal A. There exist matrices F ∈ Rk×m and B ∈ Rm×k such that
the following holds:

H2 = FB (15)

Hσ
l = F

k∑
i=1

Oσi C(l, i)B (16)

H1 = Fα∞ = α>1 B (17)

Proof. Define a forward vector fl ∈ Rm and a backward vector bl ∈ Rm for each
feature function:

fl = α>1

∫
(x,y)∈(X×Σ)∗

A(x, y)φl(x) dx dy (18)

bl =

∫
(x,y)∈(X×Σ)∗

A(x, y)φl(x) dx dy α∞ (19)



where we use the shorthand notation A(x, y) = A(Φ(x1), y1) · · ·A(Φ(xT ), yT )).
It is not hard to see that H2 can be written as:

H2(i, j) = E[φi(a)φj(a
′)]

=

∫
(xa,yσ)

∫
(a′x′,σ′y′)

fA(xaa′x′, yσσ′y′) φi(a)φj(a
′)

=

∫
(xa,yσ)

∫
(a′x′,σ′y′)

α>1 A(xa, yσ)A(a′x′, σ′y′)α∞ φi(a)φj(a
′)

= 〈fi, bj〉

Thus if we define a forward matrix F ∈ Rk×m where each row corresponds
to a forward vector and a backward matrix B ∈ Rm×k where each column
corresponds to a backward vector we get H2 = FB as desired. For the next
claim we have:

Hσ
l (i, j) = EP[φσilj(a

′aa′′, σ′′σ′σ′′′)]

=

∫
(xa′,yσ′′)

∫
a

∫
(a′′x′,σ′′′y′)

fA(xa′aa′′x′, yσ′′σσ′′′y′)φi(a
′)φl(a)φj(a

′′)P(a)

= f ti

∫
a

A(a, σ)φl(a)P(a) bj

= f ti

k∑
r=1

OσrC(l, r) bj

A few extra algebraic manipulations using F and B give us the remaining
claims. ut

We now develop the opposite direction of the duality between factorizations
and minimal CWFSTs, which is the key to understand the spectral learning
algorithm. The following theorem shows that given any rank factorization of H2

we can compute a CWFST for f .

Theorem 1. Let H1, H2, Hσ
l and C be the expectation matrices of some func-

tion f computed by a minimal CWFST and let H2 = FB be a rank factorization,
then A = 〈Φ, α1, α∞, O

σ
l 〉 defined as:

α∞ = F+H1 (20)

α>1 = H1B
+ (21)

[Oσ1 (i, j), . . . , Oσk (i, j)]> = C−1[Qσ1 (i, j), . . . , Qσk(i, j)] (22)

Qσl = F+Hσ
l B

+ (23)

computes f .

Proof. Let Ã = 〈Φ, α̃1, α̃∞, Õ
σ
l 〉 be a minimal CWFST for f that induces rank

factorization H2 = F̃ B̃. We first show that there exists an invertible matrix M



such that for all (x, y) ∈ (X×Σ)∗ we have that: M−1Ã(x, y)M = A(x, y). Define

M = B̃B+, we have that: F+F̃ B̃B+ =⇒ F+H2B
+ = I =⇒ M−1 = F+F̃ .

Thus M is invertible. We also have that for every σ and every l the following
holds:

k∑
i=1

Oσi C(l, i) = F+Hσ
l B

+ = F+F̃

k∑
i=1

Õσi C(l, i)B̃B+

= M−1
k∑
i=1

Õσi C(l, i)M (24)

For each σ we have k different equations, one per feature l:

k∑
i=1

Oσi C(l, i) = M−1
k∑
i=1

Õσi C(l, i)M (25)

Fixing the right part of the equation we observe that it is a system of k equations
with k variables Oσi . Since f is minimal C is invertible and we can perform
Gauss elimination and end up with a unique solution for the system. Since
Oσi = M−1ÕσiM is a solution we must have that

∀(a, σ) ∈ (X ×Σ) :

k∑
i=1

Oσi φi(a) = M−1
k∑
i=1

Õσi φi(a)M . (26)

Some algebraic manipulations give: α>1 = α̃>1 M and α∞ = M−1α̃∞. Therefore,
we can compute f as:

fA(x, y) = α>1

(
k∑
l=1

Oy1l φl(x1)

)
· · ·

(
k∑
l=1

Oytl φl(xt)

)
α∞

= α̃>1 MM−1

(
k∑
l=1

Õy1l φl(x1)

)
M · · ·M−1

(
k∑
l=1

Õytl φl(xt)

)
MM−1α̃∞

= fÃ(x, y) = f (27)

ut

This result shows that there exists a duality between rank factorizations of
H2 and minimal CWFST for f . A consequence of this is that minimal CWFSTs
for a function f with covariance C are related to each other via some change of
basis.

Corollary 1. Let A = 〈Φ, α1, α∞, O
σ
l 〉 and Ã = 〈Φ, α̃1, α̃∞, Õ

σ
l 〉 be two minimal

CWFSTs for some f of rank m with covariance C. Then there exists an invertible
matrix M ∈ Rm×m such that α>1 = α̃>1 M , α∞ = M−1α̃∞ and

∀(a, σ) ∈ (X ×Σ) :

k∑
l=1

Oσl φl(a) = M−1
k∑
l=1

Õσl φl(a)M .



In practice, we do not observe H2, Hσ
l and C but we can estimate them from

n training samples (x, y). The errors in the estimation can be bounded using the
Hoeffding inequality, for example for H2 we would get:

P (|Ê[φi(a)φj(a
′)]− E[φi(a)φj(a

′)]| > ε) ≤ 2 exp
−2nε2

(µ−λ)2

where a and a′ are any two input symbols, and λ and µ are bounds on the
minimum and maximum values for φi(a) · φj(a′).

The spectral learning algorithm that we present in the next section uses the
singular value decomposition of H2; this choice of low rank decomposition is
appealing because its robustness to noise in the estimation of H2. Using results
from the stability of the singular value decomposition it is possible to show that
the CWFST obtained from an approximate H2 will be close to the one obtained
using the exact statistics and thus the algorithm is statistically consistent. Also,
it is not hard to see that one could use techniques similar to [15, 4, 6] to prove
sample complexity bounds that depend linearly in the number of input features
and |Σ|.

3.2 Spectral Algorithm

In this section we present a learning algorithm for stochastic CWFST based on
spectral decompositions of observable statistics. Given samples from the joint
distribution of paired input-output sequences P[x, y] and feature functions Φ,
the task is to induce a CWFST: A = 〈Φ, α1, α∞, O

σ
l 〉 that approximates P.

More precisely, we are given:

– A set of n training samples S = {(x1, y1), . . . , (xn, yn)} of input-output
sequences (where x ∈ X T and y ∈ ΣT for some T ), sampled from P[x, y]

– A set of k feature functions Φ = {φ1(a), . . . , φk(a)}
– The desired number of states m

We first use the training samples to compute estimates of H1, H2, Hσ
l and

C. Recall that the compact SVD of a k × k matrix of rank m is given by:
H2 = UΛV > where U ∈ k×m and V ∈ k×m are orthogonal matrices. Clearly,
H2 = (UΛ)V > is a rank m factorization of H2, note that since V V > = I this
factorization is equivalent to H2 = (H2V )V >. Applying the ideas of the duality
theorem for the factorization F = H2V and B = V > we get that the model
parameters are given by:

α∞ = (HV )+H1 (28)

α>1 = H1V (29)

[Oσ1 (i, j), . . . Oσk (i, j)]> = C−1[Qσ1 (i, j), . . . Qσk(i, j)] (30)

Qσl = (HV )+Hσ
l V (31)

Computing the expectation matrices is linear in the size of the training set
and the number of features and output symbols. The cost of the algorithm is
dominated by the singular value decomposition of the k × k matrix H2 and
therefore the overall cost is at most cubic on the number of features.



4 Related Work

Modelling continuous sequences with spectral methods has been studied in the
context of HMMs [26], where a spectral algorithm for this case was derived.
Their approach builds on previous work [27] on Hilbert Space Embeddings of
conditional distributions. The main idea is first to map continuous distributions
to points in a Hilbert Space and then derive a spectral method that works
directly in the embedded space. [25] proposed an alternative spectral algorithm
for continuous HMMs which is based on kernels. In spirit, our algorithm shares
some similarities with all these methods since all of them work by embedding
the transition function in some vectorial space.

Modelling continuous sequences has also been addressed in the original work
by Jaeger [17, 18] on observable operator models (OOMs). Similar to that ap-
proach, we also consider operators that can be written as linear combinations
of some basis operators. The main difference is that while they consider mod-
elling continuous sequences, we consider the special case of tagging continuous
sequences, that is, modelling paired sequences of continuous inputs and discrete
outputs. Furthermore, we study the case in which the weights of the linear com-
bination are provided in the form of feature functions that depend only on the
continuous input.

More closely related to our approach is the work by [9] on transformed pre-
dictive state representations (TPSR). Although they do not directly address the
sequence tagging problem (they are interested in predicting the conditional out-
put of a dynamical system), implicitly they do consider paired sequences which
can be sampled from a continuous space. Furthermore, they also use feature rep-
resentations and operators that can be seen as linear combinations of elementary
operators. One of the main difference between our work is that we focus on the
case in which the following holds: (1) one of the two sequences comes from a
small discrete alphabet; and (2) the weights of the linear operators depend on
features of the continuous sequence only (in their case the feature function de-
pends on both sequences). We show that for this special case the observable
statistics on past and future events that are used to compute the basis of the
operators depend only on the continuous input sequence. In their case, all ob-
servable statistics depend on both sequences. In this sense the difference between
our work and theirs is analogous to the difference of a vanilla approach for com-
puting joint distributions of discrete paired input/output sequences versus the
work by [5], where they show that the basis can be computed from one of the
two sequences alone.

Thus, although the learning algorithms might seem similar at first hand, the
observable statistics on which they rely are quite different and thus they both
have different properties. For example, we can consider cases in which we can
easily estimate the statistics of the input distribution needed to compute the
basis but in which estimating the joint input/output statistic might be hard.
Another property of our model is that since some observable statistics depend
only on the input we could easily use unlabeled samples (i.e. samples for which
the output sequences are unknown) to better estimate them.



Apart from the differences mentioned above, the techniques that we use to
prove the correctness of our algorithm are different. We derive the algorithm
directly from a duality between low-rank factorizations of certain observable
statistics and the parameters of the model. Finally, at the experimental level the
two works are quite different. We test the accuracy of our learning algorithm in
sequence tagging tasks while they test their model in tasks that involve predicting
the future state of a dynamic system conditioned on the observed history.

5 Experiments

We conducted experiments on the Wall-following Navigation dataset of the UCI
repository [1]. Given a sequence of sensor readings, the task is to predict an
appropriate movement action out of a set of discrete actions. There are four pos-
sible actions: move-right, move-left, right-turn, left-turn. The sensor readings are
the outputs of 24 ultrasound sensors sampled at a rate of 9 samples per second.
When we frame this task as a sequence prediction problem over continuous in-
puts we have that x consists of sequences of sensor readings and y consists of
sequences of appropriate actions.

The dataset consists of one long sequence of sensor readings and correspond-
ing robot actions. For our experiments we split this sequence into 150 contiguous
sequences of approximately 4 seconds each (36 contiguous samples per sequence).
We then randomly partition these sequences and use 100 sequences as training
data 25 sequences as validation and the remaining 25 sequences as test. When
we report optimal performance for a given model, the validation sequences were
used to pick the optimal number of states and to choose the optimal parameters
of the feature functions.

5.1 Feature Functions

In general the feature functions can be validated using a held-out validation
data. The goal of the first set of experiments is to test the robustness of our
method with respect to different feature functions.

In kernel learning one usually assumes that a kernel function is provided,
analogously a natural way to define feature functions in our setting it so as-
sume that we are provided with some distance function between elements in X .
Once we have the distance function we can obtain centroids on the input space
by performing vector-quantization (e.g. k-means) using the given distance. If
a kernel was provided instead we could also perform kernel k-means to obtain
centroids. Finally, we compute features as similarities to each of the centroids.
More specifically, to obtain features for these experiments we do the following:
(1) Perform k-means (with the provided distance function) on the input train-
ing samples to obtain k cluster centroids; and (2) For each cluster centroid c

define the corresponding feature function: φc(x) =
exp

−d(c,x)
τ

z . Here −d(x, x′) is
the provided distance function, we will compare three distance functions: (1)
Square Euclidean; (2) Correlation, computed as 1-sample correlation between



points; and (3) Cosine, computed as 1-the cosine of the included angle between
points. The other parameter τ defines the width of the kernel function and z
is a normalization constant. A small τ will result in sparse feature vectors for
each point, where most of the mass will be concentrated around a few features.
To compare against the discrete WFST we create a discrete alphabet by map-
ping each point to its closest cluster centroid according to the provided distance
function.

In all experiments as a performance metric we report the accuracy on pre-
dicting actions for the test sequences. To predict the most probable sequence of
actions y for a given test sequence x we must compute:

argmaxyP(y|x) = argmaxyP(x; y) (32)

Due to the presence of the latent state variables the above computation is known
to be untractable. Instead we use the standard approximation of maximizing the
marginal probability at each time, that is we compute:

argmaxyt

∑
y1:t−1,yt+1:T

P(x1:T , y1:t−1ytyt+1:T ) (33)

In the next section we validate the accuracy of this approximation.
Figure 1 shows the accuracy of CWFST and WFST as a function of the

number of latent states m for the Euclidean, Correlation and Cosine feature
functions. The number of features for these graphs is 80. As we can see CWFST
outperforms WFST for all feature functions. In the three figures we can see the
performance of CWFST for different values of τ (i.e. different feature functions).
Larger values of τ result in feature functions that induce a softer partition of the
input space. Thus we expect that for small τ values CWFST and WFST give
similar performance, and this seems to be the case.

CWFST seems to be quite robust to the particular choice of feature function
and what seems to change in each case is the optimal kernel width τ . For the
cosine and correlation functions sparser feature vectors seem to be preferred (i.e.
smaller τ) than for the Euclidean distance function. WFST on the other hand
seems to be less robust to the choice of distance function (used in this case to
discretize the inputs) and Cosine and Correlation seem to perform significantly
better than the Euclidean distance.

Figure 2 (Left) shows accuracy as a function of the number of features (i.e.
for optimal number of states and τ). As we can see CWFST significantly out-
performs WFST for any number of features. This seems to suggest that working
with a soft partition of the input space always results in better performance,
regardless of the number of partitions. This appears to be true independent of
the particular choice of feature function.

We end this subsection with a note on how to pick the optimal number of
states. In general, one should use a validation set to pick the optimal number
of states. One advantage of spectral learning algorithms is that they are very
fast, hence parameter validation is cost-less. Still, we can use information of the
spectrum of H2 to guide our search for optimal m. Figure 2 (Center) shows
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Fig. 1. Accuracy as a function of the number of states for different feature functions.
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Fig. 2. (Left) Accuracy as a function of the number of features. (Center) Singular
Values of H2. (Right) Accuracy as a function of number of states for different methods

sorted singular singular values of H2 for the correlation model with 80 features.
As we can see the singular values drop to almost 0 after the 34th singular vector.
Most likely, the optimal number of states for the spectral method will be less
than 34 and probably in between 30 and 35 states.

5.2 Comparison with other methods

In the second set of experiments we fix the feature function to be Correlation
and compare CWFST against two other methods:

– (EM) We train a model as defined in section 2.3.2 using expectation max-
imization. The models were run for a maximum of 400 iterations but the
actual stopping criteria was chosen using the held-out validation data. That
is we picked the model resulting from the iteration that performed best in
validation data, which was less than 400 iterations (see table 2).

– (Bayesian) As a second model to compare we choose the winner algorithm of
a recent probabilistic automata competition 1. The winner algorithm [23] was
a Bayesian method that implements Collapsed Gibbs Sampling [14]. Since

1 http://ai.cs.umbc.edu/icgi2012/challenge/Pautomac



this method assumes discrete inputs, we discretize the continuous inputs
following the same approach that was discussed in the previous section for
WFST.

Figure 2 (Right) compares the performance of CWFST, EM and Bayesian
as a function of the number of states. As we can see CWFST outperforms both
the EM and Bayesian algorithms. The Bayesian algorithm seems to be able to
provide more compact models than EM (i.e. fewer number of states). Table 1
(Left) shows the performance of the best models for each learning algorithm.
Recall that we resorted to approximate max marginal inference. Given that
the average length of each sequence in the test sample is 10 it is still possible
(though costly) to perform exact inference. That is to compute: argmaxyP(y|x) =
argmaxyP(x; y) by doing exhaustive search. The last row of Table 1 (Left) shows
the accuracy of each model when the approximate inference is replaced by exact
inference. In all cases we see an improvement in between 1 % and 2 %. This seems
to suggest that the approximation is a good trade-off of accuracy vs inference
time. Table 2 shows accuracy of EM as a function of training time (for optimal
m and τ). For time comparison, the spectral training algorithm takes less than
30 seconds to train.

Table 1. Comparison with other methods

#states Acc Marginals Acc Exact
EM: 23 75.36% 76.32%
Bayesian: 5 74.67% 75.90%
CWFST: 31 79.36% 81.12%
FST: 31 67.09% 68.06%

Table 2. Training time (in seconds) and accuracy for Expectation Maximization for
optimal model with 23 states

iters: 1 20 60 80 140 180 200 210 400
time: 14s 300s 1100s 2000s 4200s 5400s 6000s 6400s 10000s
acc.: 68% 74% 73.8% 74.8% 75% 75.36*% 75.36% 75.31% 75.17%

6 Conclusions

In this paper we presented a novel spectral learning algorithm that allows to
exploit the representational power of latent variables to solve sequence tagging



problems where the input is a continuous sequence and the output is discrete.
Our approach is based on regarding the transition function of a weighted finite-
state sequence tagger as a linear combination of atomic transition functions.
We derive a spectral learning algorithm for this model from forward-backward
mappings. The resulting algorithm is both simple and fast. Intuitively, the atomic
transition functions operate on a soft partition of the input space. Experiments
on a real task have shown the effectiveness of the method and its ability to take
full advantage of these soft partitions.
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