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Abstract. Independent component analysis (ICA) is a popular unsu-
pervised learning method. This paper extends it to multilinear mode-
wise ICA (MMICA) for tensors and explores two architectures in learning
and recognition. MMICA models tensor data as mixtures generated from
modewise source matrices that encode statistically independent informa-
tion. Its sources have more compact representations than the sources in
ICA. We embed ICA into the multilinear principal component analysis
framework to solve for each source matrix alternatively with a few itera-
tions. Then we obtain mixing tensors through regularized inverses of the
source matrices. Simulations on synthetic data show that MMICA can
estimate hidden sources accurately from structured tensor data. More-
over, in face recognition experiments, it outperforms competing solutions
with both architectures.

Keywords: independent component analysis, mixing model, tensor, mul-
tilinear subspace learning, unsupervised learning

1 Introduction

Independent component analysis (ICA) is an important unsupervised learning
method for finding representational components of data with maximum sta-
tistical independence [1]. While principal component analysis (PCA) [2] gives
independent components (ICs) only for Gaussian data, ICA finds ICs for the
general case of non-Gaussian data [3]. ICA can be performed under two dif-
ferent architectures for image representation and recognition [4]. Architecture I
treats images as random variables and pixels as random trials to find spatially
local basis images that are statistically independent. Architecture II treats pix-
els as random variables and images as random trials to find factorial code that
reflects global properties.

Real-world data are often specified in a high-dimensional space while they are
highly constrained to a subspace [5]. Thus, dimensionality reduction is frequently
employed to transform a high-dimensional data set into a low-dimensional sub-
space while retaining most of the underlying structure. As the number of ICs
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found by ICA typically corresponds to the dimension of the input, dimensionality
reduction in ICA is usually achieved through PCA [4].

Recently, there has been a surge of interest in learning subspace of multidi-
mensional data, i.e., tensor data, from their natural multidimensional represen-
tations. Examples are 2-D/3-D images, videos, and multi-way social networks
[6, 7]. Multilinear subspace learning of tensor data operates on natural tensor
representations without reshaping into vectors. Thus, it can obtain simpler and
more compact representations, and handle big data more efficiently [6]. There
have been many multilinear extensions of PCA [8–12], linear discriminant anal-
ysis [13–17], and canonical correlation analysis [18–20]. In contrast, multilinear
extensions of ICA have not been well addressed, though several works deal with
the ICA problem using tensor-based approaches.

In [21], ICA mixing matrix is identified by decomposing the higher-order cu-
mulant tensor for vector-valued observation data. In [22], a tensor probabilistic
ICA algorithm was formulated for fMRI analysis, with selected voxels repre-
sented as very-high-dimensional vectors. The multilinear ICA (MICA) model
in [23] analyzes multiple factors for image ensembles organized into a tensor
according to different image formation factors such as people, views, and illumi-
nations. It requires a large number of samples for training, e.g., 36 well-selected
samples per class in [23]. Furthermore, MICA represents images as vectors and
needs to know the forming factors. In this sense, MICA is a supervised learn-
ing method requiring data to be labeled with such information. In unsupervised
learning without labels, it degenerates to classical ICA. Another work with the
same name MICA in [24] uses a multilinear expansion of the probability density
function of source statistics but represents data as vectors too. To the best of
our knowledge, the only multilinear ICA formulation based on tensor input data
is the directional tensor ICA (DTICA) in [25, 26], which estimates two mixing
matrices for images. It forms row and column directional images by shifting the
rows/columns and applies FastICA [27] to row/column vectors. As in [4], PCA is
used for dimensionality reduction in DTICA. Neither MICA in [23] nor DTICA
has demonstrated blind source separation capability, a classical application
of ICA.

This paper aims to develop a multilinear extension of ICA that can do blind
source separation for tensors with appropriate modeling. For example, Fig. 1(a)
shows ten mixtures generated from two simple binary patterns in Fig. 1(b) with
a multilinear mixing model similar to classical ICA. We propose a multilinear
modewise ICA (MMICA) model for tensor data with modewise ICs that can
model this generation process like ICA. We then develop an MMICA algorithm
to estimate these modewise ICs, i.e., to estimate the sources in Fig. 1(b) from
the observed mixtures in Fig. 1(a). As an ICA extension to tensors, MMICA can
be applied to domains where ICA has been applied in the past.

This work is inspired by previous attempts in multilinear extensions of ICA
and motivated by the compact representations of multilinear subspace learning
methods. The MMICA model, to be presented in Section 2, assumes that tensor
observation data have rich structures and they are mixtures generated from
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(a)

(b)

Fig. 1. The structured data in (a) are all mixtures generated from the source data
in (b) with a multilinear mixing model. MMICA can recover the sources in (b) from
observed mixtures in (a).

simple modewise sources, as illustrated in Fig. 1. We formulate the MMICA
algorithm in Section 3 as an extension of multilinear PCA (MPCA) [10] to the
non-Gaussian case by embedding ICA into MPCA to deal with non-Gaussianity
of data in each mode. Also, we explore two architectures suggested in [4] for
MMICA. Next, we discuss the differences with related works in Section 4. Finally,
in Section 5, we show the blind source separation capability of MMICA through
simulations and its recognition capability on real face data.

Note: for convenience of discussion, the acronym MICA below refers to the
method in [23] rather than that in [24].

2 Multilinear Mixing Model for Tensors

2.1 Notations and fundamentals

We briefly introduce some notations and operations needed. For more details,
please refer to [6, 28–30].

Vectors are denoted by lowercase boldface letters, e.g., x; matrices by upper-
case boldface, e.g., U; and tensors by calligraphic letters, e.g., A. Their elements
are denoted with indices in parentheses. Indices are denoted by lowercase let-
ters and span the range from 1 to the uppercase letter of the index whenever
appropriate, e.g., n = 1, 2, ..., N .

Multidimensional arrays are referred to as tensors in mathematics. The num-
ber of dimensions N defines the order of a tensor. Tensor is a generalization of
vector and matrix. Vectors are first-order tensors, and matrices are second-order
tensors. An Nth-order tensor is denoted as A ∈ RI1×I2×...×IN . It is addressed
by N indices in, n = 1, ..., N , and each in addresses the n-mode of A.

The n-mode product of a tensor A by a matrix U ∈ RJn×In , denoted by
A×n U, is a tensor with entries [29]:

(A×n U)(i1, ..., in−1, jn, in+1, ..., iN ) =
∑
in

A(i1, ..., iN ) ·U(jn, in). (1)



4 Haiping Lu

The n-mode vectors of A are the In-dimensional vectors obtained by varying
in while keeping all the other indices fixed. The n-mode unfolded matrix of A,
denoted as A(n) ∈ RIn×(I1×...×In−1×In+1×...×IN ), is formed with the n-mode
vectors of A as its column vectors. An n-mode matrix or vector is denoted as
A(n) or a(n), respectively. A rank-one tensor A equals to the outer product
(denoted by ‘◦’) of N vectors [29]:

A = u(1) ◦ u(2) ◦ ... ◦ u(N), (2)

which means that

A(i1, i2, ..., iN ) = u(1)(i1) · u(2)(i2) · ... · u(N)(iN ) (3)

for all values of indices.

2.2 MMICA model for tensor mixtures

The simplified noise-free ICA model [3] assumes that we observe M linear mix-
tures {xm} (m = 1, ...,M) of P sources {sp} (the latent variables):

xm = am1
s1 + am2

s2 + ...+ amP
sP , (4)

where each mixture xm and each IC (source) sp are random scalar variables.
The P sources {sp} are assumed to be independent. In ICA for random vector
variables {xm}, each xm is a mixture of P independent vector sources {sp}:

xm = am1s1 + am2s2 + ...+ amP
sP . (5)

For random Nth-order tensor variables {Xm} of dimension I1 × ...× IN , we
propose a mixing model similar to (4) and (5) assuming P tensor variables {Sp}
as the sources:

Xm = am1
S1 + am2

S2 + ...+ amP
SP . (6)

Real-world tensor data often have rich structures. Therefore, we assume that the
source tensors have compact representation as rank-one tensors (see (2)). For a
simpler model, we further assume that these simple rank-one tensors are formed
by P1×P2× ...×PN = P vectors with one set in each mode, where the n-mode

set has Pn independent column vectors: {s(n)pn , pn = 1, ..., Pn}, and each source
tensor is the outer product of N vectors, one from each mode, i.e.,

Sp = s(1)p1
◦ s(2)p2

◦ ... ◦ s(N)
pN

. (7)

Next, we form an Nth-order mixing tensor Am ∈ RP1×P2×...×PN by stacking all
the P mixing parameters {am1

, am2
, ..., amP

} in (6) into an Nth-order tensor so
its size P1 × P2 × ... × PN = P . Correspondingly, we form the n-mode source

matrix S(n) ∈ RIn×Pn with independent columns {s(n)pn , pn = 1, ..., Pn}. We can
then write the multilinear mixing model (6) in a form of the tensor-to-tensor-
projection [6], an adaption of the Tucker decomposition model [31] to subspace
learning, as

Xm = Am ×1 S(1) ×2 S(2) × ...×N S(N), (8)

We name this model as the MMICA model.
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2.3 Regularized estimation of mixing tensor

When applying MMICA to learning and recognition, we estimate the source
matrices {S(n)} from M observed mixtures {Xm} (to be described in Sec. 3). To
get the mixing tensor Am from an observation tensor Xm based on {S(n)}, we
use (8) to get

Am = Xm ×1 S(1)+ ×2 S(2)+ × ...×N S(N)+ , (9)

where S(n)+ = (S(n)T S(n))−1S(n)T is the left inverse of S(n). The superscript ‘T ’

denotes the transpose of a matrix1. As S(n)T S(n) can be poorly conditioned in
practice, we introduce a regularized left inverse of S(n) to reduce the estimation
variance by adding some small bias as [32, 33]

S(n)+

r = (S(n)T S(n) + ηIPn
)−1S(n)T , (10)

where η is a small regularization parameter and IPn
is an identity matrix of size

Pn × Pn. Thus, the mixing tensor is approximated as

Âm = Xm ×1 S(1)+

r ×2 S(2)+

r × ...×N S(N)+

r . (11)

3 MMICA Algorithm

3.1 MMICA by embedding ICA into MPCA

We solve the MMICA problem by embedding ICA into the MPCA framework
[10], following the PCA+ICA in [4]. The procedures are centering, initialization
of source matrices, partial multilinear projection, modewise PCA, and modewise
ICA. Modewise ICA can be carried out in two architectures as in [4], where
Architecture I is commonly used for traditional blind source separation task
of ICA and Architecture II is for estimation of ICs for images2. The MMICA
algorithm is summarized in Algorithm 1, with details described below.

The input to MMICA is a set ofM tensor data samples {Xm ∈ RI1×...×IN ,m =
1, ...,M}. We need to specify two parameters: one is Q, the percentage of energy
to be kept in PCA, and the other is K, the maximum number of iterations. Input
data are centered first as in ICA or MPCA by subtracting the sample mean

X̄ =
1

M

M∑
m=1

Xm. (12)

There is no other data manipulation involved, such as data re-sampling and
re-arrangement in DTICA [26].

1 Only real-valued data are considered in this paper.
2 We refer to the code at: http://mplab.ucsd.edu/∼marni/icaFacesCode.tar
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Algorithm 1 Multilinear Modewise ICA (MMICA)

Input: M tensor samples {Xm ∈ RI1×...×IN ,m = 1, ...,M}, the percentage of energy
to be kept in PCA Q, the maximum number of iterations K.
� Center the input samples by subtracting the mean X̄ .
� Initialize source matrices S(n) = IIn and Pn = In for n = 1, ..., N .
for k = 1 to K do

for n = 1 to N do
• Calculate partial multilinear projection Ãm according to (13) for m = 1, ...,M .
• Form Ã with columns consisting of n-mode vectors from {Ãm,m = 1, ...,M}.
• Perform PCA on Ã and keep Q% of the total energy. Obtain U with the first
R eigenvectors as its columns. Update Pn = R.
• Architecture I : Perform FastICA on UT to get A and W. Set S(n) = UA.
• Architecture II : Get V = UT Ã and perform FastICA on VT to get A and
W. Set S(n) = UWT .

end for
end for
Output: {S(n), n = 1, ..., N}

3.2 Iterative alternating estimation

In the MMICA model (8), data are generated from allN source matrices {S(n), n =
1, ..., N} rather than any one of them individually. Unfortunately, we can not
determine these N matrices simultaneously, except when N = 1 where it is de-
generated to the classical ICA. Estimating S(n) in a particular mode n needs the
knowledge of other source matrices {S(j), j 6= n}. Therefore, to solve MMICA,
we follow the iterative alternating projection method [6]. We estimate S(n) condi-
tioned on all the other source matrices {S(j), j 6= n}, alternating between modes.
This is significantly different from DTICA [26], which is non-iterative.

Initialization: Since all source matrices depend on each other in estimation,
we need to initialize them before proceeding. We adopt a simple strategy to
initialize the n-mode source matrix S(n) to an identity matrix IIn of size In×In.
Thus, the n-mode source dimension Pn is initialized to In.

Modewise processing: In each iteration, we process modewise from 1-mode
to N -mode, a simple mode ordering used by many other algorithms [6]. For a
particular mode n, we have all other source matrices {S(j), j 6= n} fixed and
estimate S(n) by first calculating the partial multilinear projection based on (11)
as

Ãm = Xm ×1 S(1)+

r ...×n−1 S(n−1)+

r ×n+1 S(n+1)+

r ...×N S(N)+

r . (13)

Next, we form a matrix Ã ∈ RIn×(M×
∏N

j=1,j 6=n Pj) by concatenating {Ãm(n),m =

1, ...,M}, the n-mode unfolded matrix of {Ãm}, so that the columns of Ã consist
of n-mode vectors from {Ãm}. We then perform PCA on Ã and keep Q percent
of the total energy/variations, resulting a PCA basis matrix U ∈ RIn×R with R
leading eigenvectors. Subsequently, we update the n-mode source dimension as
Pn = R.
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3.3 Two architectures

ICA can be performed under two architectures [4] and so can MMICA. We
use the popular FastICA [27] to maximize the modewise non-Gaussianity for
modewise IC estimation. FastICA takes a data matrix in and returns a mixing
matrix A and a separating matrix W. They can be used under two architectures
in MMICA in the following ways:

– Architecture I: FastICA on UT gives mixing matrix A and separating
matrix W. Thus, we set the n-mode source matrix as

S(n) = UA. (14)

– Architecture II: We first obtain the PCA projection as V = UT Ã, and
FastICA on VT gives A and W. Hence, we set the n-mode source matrix as

S(n) = UWT . (15)

3.4 Discussion on MMICA

Identifiability and number of ICs: Following ICA [1], the independent col-
umn vectors of modewise source matrices in MMICA are identifiable up to per-
mutation and scaling if they (except one at most) have non-Gaussian distribu-
tions and the number of mixtures is no smaller than the number of ICs to be
estimated. However, MMICA can not estimate the number of modewise ICs, as
in the general case of ICA. When this number is unknown, we determine it by
specifying Q in PCA, as described above.

Convergence and termination: The convergence problem is difficult in
ICA. To the best of our knowledge, for FastICA, local convergence analysis is
only available for the so-called one-unit case, which considers only one row of
the separating matrix [34]. Here, we provide empirical results on the convergence
properties of MMICA in Sec. 5, where it converges in one iteration in studies on
synthetic data while its classification accuracy stabilizes in just a few iterations
in face recognition experiments. Thus, we terminate the iteration by setting K,
the maximum number of iterations, to a small number for efficiency.

3.5 Feature selection for classification

After obtaining the separated source matrices {S(n)}, we have the MMICA repre-
sentation (coordinates in the mixing tensor) Â of a sample X from (11). Though
we can use Â directly for classification tasks, we can select a subspace for the
convenience of comparison with linear learning algorithms and also for better
classification accuracy, as pointed out in [4]. Thus, we further select and sort
MMICA features through the same class discriminability as in [4, 25, 26] to study
its classification performance.

We can view the MMICA representation Â ∈ RP1×...×PN as being projected

through
∏N

n=1 Pn elementary multilinear projections (EMPs) {s(n)pn , n = 1, ..., N}
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[12], where s
(n)
pn is the pnth column of S(n). For each component Â(p1, ..., pN ), ex-

tracted by EMP {s(n)pn , n = 1, ..., N}, we define a class discriminability γp1p2...pN

as the ratio of between-class variability to within-class variability, measured by
scatters calculated from the training samples:

γp1...pN
=

∑C
c=1Nc ·

[
¯̂Ac(p1, ..., pN )− ¯̂A(p1, ..., pN )

]2
∑M

m=1

[
Âm(p1, ..., pN )− ¯̂Acm(p1, ..., pN )

]2 , (16)

where C is the number of classes, M is the number of training samples, Nc is
the number of samples for class c and cm is the class label for the mth training
sample Xm. Âm is the mixing tensor for Xm. The mean feature tensor

¯̂A =
1

M

∑
m

Âm (17)

and the class mean feature tensor

¯̂Ac =
1

Nc

∑
m,cm=c

Âm. (18)

We arrange the entries in Â into a feature vector â according to the magni-
tude of γp1...pN

in descending order. The first P entries of â, i.e., the P most
discriminable components, are selected for classification tasks.

4 Differences with Related Works

MMICA is different from MICA, DTICA and ICA in several aspects, as discussed
in the following.

4.1 MMICA vs. MICA

The origin of MMICA in (8) traces back to the higher-order singular value de-
composition (HOSVD) [29] and Tucker decomposition [31]. Therefore, it shares
mathematical similarity with MICA [23] and DTICA [25, 26], which are both
based on HOSVD. However, the MMICA model represents multidimensional
data as tensors while the MICA model represents them as vectors (e.g., 2D
faces are represented as 8560 × 1 vectors in [23]). Thus, ‘N ’ in MMICA repre-
sents the order (number of dimensions) of a single tensor sample, while ‘N ’ in
MICA represents the number of forming factors for an ensemble of many sam-
ples, with each sample represented as a vector. As mentioned in Sec. 1, MICA
is designed as a supervised learning method for data labeled with forming fac-
tors such as people (subject ID), views and illuminations so the tensor in [23]
is formed with four modes as pixels × people × views × illuminations. Thus,
MICA degenerates to ICA when these factors are unknown, i.e., in unsupervised
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learning. In contrast, MMICA is an unsupervised learning method that does not
require such labels. Furthermore, hidden sources are not defined in [23]. Hence,
the MICA model can not interpret tensor data as in (6) and it cannot perform
blind source separation for tensors while MMICA can do so.

4.2 MMICA vs. DTICA

MMICA and DTICA both model a number of tensors with a generative model.
DTICA models tensor mixtures with N mixing matrices and one single source
tensor, built from a factor-analysis point of view. In contrast, MMICA models
tensor mixtures with one single mixing tensor and N source matrices, built
from an independent-component-analysis point of view. Thus, MMICA can be
interpreted in a similar manner as the classical ICA model [3] and perform
blind source separation while DTICA cannot be similarly interpreted as mixing
several sources and separate sources since its model only involves one single
source tensor. Furthermore, the MMICA algorithm is iterative while the DTICA
algorithm is noniterative, and DTICA requires resampling while MMICA does
not require. In addition, DTICA is only formulated for one architecture while
we have formulated both architectures for MMICA. Lastly, MMICA makes use
of regularization to get better results than DTICA.

4.3 MMICA vs. ICA

From (4) to (8), while the classical ICA model assumes that the sources are
mutually independent, the MMICA model assumes that the sources are struc-
tured tensors formed from modewise matrices with independent columns instead,
which has a simpler and more compact representation when N > 1. For the
same number of mixing parameters P =

∏N
n=1 Pn, the sources {S(n)} to esti-

mate in MMICA have a size of
∑N

n=1 (In × Pn) while those in ICA have a size

of
(∏N

n=1 In

)
×
(∏N

n=1 Pn

)
. E.g., for N = 3, P = 8, {Pn = 2} and {In = 10},

MMICA sources have a size of 60, while ICA sources have a size of 8000, which is
about 132 times larger. For N = 3, P = 125, {Pn = 5} and {In = 100}, MMICA
sources have a size of 1.5 × 103, while ICA sources have a size of 1.25 × 108,
which is about 8.3× 104 times larger.

5 Experiments

MMICA is applicable to tensors of any order, such as videos, 3-D images, and
multi-way social networks [6, 7]. In particular, MMICA can be applied to domains
where ICA has been applied in the past, such as biometrics [4], bioinformatics
[35], and neuroimaging [36]. For easy visual illustration, this paper studies 2-D
images only, which are matrix data, i.e., second-order tensor data (N = 2). We
evaluate MMICA on both synthetic and real data. For synthetic data, we study
its capability in estimating hidden sources given their mixtures. For real data, we
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Fig. 2. Blind source separation on synthetic data: (a) true 1-mode source, (b) MMICA
estimate of 1-mode source, (c) equivalent patterns of 1-mode MMICA estimate, (d)
true 2-mode source, (e) MMICA estimate of 2-mode source, (f) equivalent patterns of
2-mode MMICA estimate. (The pattern matched with the true source is enclosed with
an oval.)

test it on face recognition, which is widely-used for learning algorithm evaluation
[8, 14, 25, 26] with practical importance in security-related applications such as
biometric authentication and surveillance.

5.1 Blind source separation on synthetic data

Data generation: This experiment studies whether MMICA can estimate source
matrices from synthetic mixture data generated according to (8). The source ma-
trices used are as shown in Fig. 1(b), which are reproduced in Figs. 2(a) and
2(d). Each source matrix is a randomly generated simple binary pattern of size
10×2 (In = 10, Pn = 2). We generated 100 mixtures (M = 100) according to (8)
by drawing the elements of mixing tensors randomly from a uniform distribution
on the unit interval. Figure 1(a) shows ten such mixtures as 8-bit gray images.

Hidden source recovery: We applied MMICA with Q = 100 using Ar-
chitecture I for this blind source separation task, followed by binarization to
obtain binary source patterns in Figs. 2(b) and 2(e). Since ICA estimation is
only unique up to sign and permutation [3], the estimated MMICA sources in
Figs. 2(b) and 2(e) are equivalent to the patterns in Figs. 2(c) and 2(f), respec-
tively. One pattern in Figs. 2(c) and 2(f) matches Figs. 2(a) and 2(d) exactly,
respectively. Thus, independent modewise source patterns are estimated cor-
rectly. To the best of our knowledge, this is the first multilinear extension of
ICA for tensor data with demonstrated capability of blind source separation.

Effects of iteration and regularization: For this binary source estimation
problem, MMICA has recovered the true hidden patterns with only one iteration,
showing good convergence. If there is no regularization (using (9)), the mixing
tensors can be recovered exactly. Using (11) with η = 10−3, the estimation has
a small average error of 0.005(±0.001).
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5.2 Face recognition studies

Data: The Pose, Illumination, and Expression (PIE) database [37] is widely
used for testing face recognition performance. It contains 68 individuals with
face images captured under varying pose, illumination and expression. As using
the full set leads to low recognition rates for all compared ICA algorithms, here
we report the results from a subset of medium difficulty, with five frontal or
near frontal poses (C05, C07, C09, C27, C29) under 14 illumination conditions
(05 to 14 and 18 to 21, excluding the poorest 7 illumination conditions). Thus,
there are about 70 (5×14) samples per subject and a total number of 4,754 face
images (with six faces missing). All face images were manually cropped, aligned
(with manually annotated eye coordinate) and normalized to 32×32 pixels, with
256 gray levels per pixel. We test face recognition performance under varying
number of training samples per subject, denoted by L.

Algorithms and settings: Since this paper focuses on examining ICA and
its extensions under both Architectures I and II, we evaluate MMICA against the
classical ICA, MICA in [23] and DTICA in [26]. For fair comparison, we consider
unsupervised learning only. Hence, training data are not labeled (with image
forming factors: poses, illuminations and expressions) and MICA degenerates to
the classical ICA in this case. Effectively, we have six algorithms to compare:
ICA1/MICA1, DTICA1 and MMICA1 for Architecture I, and ICA2/MICA2,
DTICA2 and MMICA2 for Architecture II. For DTICA, we form the directional
images with the amount of shift l = 2, as suggested in [26]. We fix the regular-
ization parameter in (10) as η = 10−3 for MMICA. All algorithms tested employ
FastICA version 2.53 [27] with identical (default) settings for fair comparison.
We test four values of Q (85, 90, 95, 98), the energy kept in PCA. For all six
algorithms, we sort extracted features in descending class discriminability γ in
(16) and take the first P features for recognition. To classify extracted features,
we use the nearest neighbor classifier with Euclidean distance measure.

Gray-level face images are naturally second-order tensors (matrices), i.e.,
N = 2. Therefore, they are input directly as 32 × 32 tensors to DTICA and
MMICA. For ICA/MICA, they are vectorized to 1024 × 1 vectors as input.
For each subject in a face recognition experiment, L(= 4, 6, 8, 10) samples were
randomly selected for training and the rest were used for testing. We report the
best results over Q and P , averaged from ten such random splits (repetitions).

Impact of iterations: We first study the effect of the number of iterations
K on the recognition performance of MMICA. Typical results are shown in Fig.
3 for up to 20 iterations with P = 60 and Q = 98. The figure shows that all
accuracy curves are stable with respect to K, while the first a few iterations are
more effective for MMICA2 than for MMICA1 in general. Based on this study,
we set K = 3 in MMICA to reduce the computational cost.

Recognition results: Figures 4(a) and 4(b) show the best average recog-
nition rates for each algorithm with up to 300 features tested (P = 1, ..., 300)
for Architectures I and II, respectively. The error bars indicate the standard de-

3 Code at http://www.cis.hut.fi/projects/ica/fastica/code/FastICA 2.5.zip
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(a) (b)

Fig. 3. The impact of iteration numbers on the face recognition accuracy of MMICA
with (a) Architecture I (MMICA1) and (b) Architecture II (MMICA2), for L =
4, 6, 8, 10.

(a) (b)

Fig. 4. The average face recognition accuracy comparison of ICA/MICA, DTICA and
MMICA for L = 4, 6, 8, 10 from ten repetitions with (a) Architecture I and (b) Archi-
tecture II. The error bars in (a) and (b) indicate the standard deviations. The results
are the best ones for each method from testing four values of Q (85, 90, 95, 98) and
300 values of P (1,...,300).

viations. Different performance variation is observed for two architectures. Us-
ing Architecture I, both DTICA1 and MMICA1 outperform ICA1/MICA1 by
around 4% on average. MMICA1 outperforms ICA1/MICA1 by 5.3%, 4.9%, 4.1%
and 3.5% for L = 4, 6, 8 and 10, respectively, with more advantage for a smaller
L. However, the performance difference between DTICA1 and MMICA1 is small
(< 1% on average). Using Architecture II, DTICA2 is inferior to ICA2/MICA2
in all cases. MMICA2 outperforms ICA2/MICA2 by 7.7%, 5.7%, 4.0% and 2.6%
(mean=5%) for L = 4, 6, 8 and 10, respectively, again showing superior perfor-
mance for a smaller L.
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(a)

(b)

(c)

(d)

(e)

(f)

Fig. 5. Eight most discriminable bases obtained from the PIE database with L = 10
for (a) ICA1/MICA1, (b) ICA2/MICA2, (c) DTICA1, (d) DTICA2, (e) MMICA1, and
(f) MMICA2.

5.3 Feature characteristics

Next, we examine the characteristics of learned features to gain some insight.
Figure 5 depicts the eight most discriminable projection bases as 8-bit gray-level
images for ICA/MICA, DTICA and MMICA obtained from the PIE database
with L = 10 using Architectures I and II.

In Figs. 5(a), 5(c) and 5(e), similar to the observations in [4], each projection
basis reflects the closeness of each pixel to a cluster of pixels having similar
behavior across images. Therefore, these bases are sparse for all three algorithms.
In particular, several DTICA1 bases share similar characteristics with MMICA1
bases, showing more structured information than ICA1/MICA1 bases. This may
partly be the reason for their closer recognition performance.

With Architecture II, more global properties are encoded. Each ICA-based
projection basis attempts to capture a cluster of similar images or image patches,
as in Figs. 5(b), 5(d) and 5(f). While this architecture generates more face-
like bases for ICA2/MICA2, we found that DTICA2 and MMICA2 bases are
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quite different, where each basis captures a particular local pattern of the face
image instead. DTICA2 and MMICA2 bases have strong structures due to their
multilinear nature, with MMICA2 sparser than DTICA2 on the whole. Although
each MMICA basis has a size of 32 + 32 =64 while each ICA/MICA basis has
a size of 32 × 32 =1024, which means 15 times larger, the simpler MMICA
bases have achieved much better recognition performance than the more complex
ICA/MICA bases. A possible explanation is that the recognition task here has
the small sample size problem, where the number of samples is small relative
to the size of variables to be estimated. Sparser bases have more compact size,
leading to less overfitting and better generalization.

6 Conclusions

We have introduced the multilinear modewise ICA for tensor data using a mul-
tilinear mixing model. MMICA extracts modewise independent sources directly
from tensor representations through an iterative alternating projection method.
We solved this problem by embedding ICA into the MPCA framework and ex-
amined two ICA architectures. Studies on synthetic data indicate that MMICA
can recover hidden sources from their mixtures accurately. Moreover, experi-
ments on face recognition show different behaviors under different architectures.
Using Architecture I, MMICA has similar performance as DTICA while they
both outperform ICA/MICA. For Architecture II, MMICA gives the best per-
formance and it is particularly effective when there are only a small number
of samples for training. We further examined the extracted features in order to
understand the implications and found that MMICA features are sparser and
more structured even with Architecture II.
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