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Abstract. Generative score spaces provide a principled method to ex-
ploit generative information, e.g., data distribution and hidden variables,
in discriminative classifiers. The underlying methodology is to derive
measures or score functions from generative models. The derived score
functions, spanning the so-called score space, provide features of a fixed
dimension for discriminative classification. In this paper, we propose a
simple yet effective score space which is essentially the sufficient statistics
of the adopted generative models and does not involve the parameters of
generative models. We further propose a discriminative learning method
for the score space that seeks to utilize label information by constraining
the classification margin over the score space. The form of score function
allows the formulation of simple learning rules, which are essentially the
same learning rules for a generative model with an extra posterior im-
posed over its hidden variables. Experimental evaluation of this approach
over two generative models shows that performance of the score space
approach coupled with the proposed discriminative learning method is
competitive with state-of-the-art classification methods.

Keywords: generative score space; sufficient statistics; discriminative
learning; classification

1 Introduction

Probabilistic generative models and discriminative models are two complemen-
tary [1] and important paradigms in machine learning. Generative models are
designed to model data distribution, particularly good at dealing with missing
data and structured data, e.g., tree structure data or sequences with variable
length. They seek to explain data in terms of hierarchical models with hidden
variables. These hidden variables encode higher order information related to
observed data that could be informative in the identification of data samples.
Further, generative models can be used to construct classifier by means of the
maximum a posteriori (MAP) decision rule, resulting in naive Bayes or MAP
classifier. However, generative models in general are inferior to discriminative
classifiers [2, 3] which are designed to directly capture the decision boundaries
among different classes. Discriminative classifiers can adapt to complex data
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using furnished or learned kernel similarity. The feature spaces underlying the
kernels are generally implicit.

To integrate the capabilities of generative and discriminative models, several
schemes [4–7] have been proposed. Among them, generative score spaces [8–12]
provide necessary explicit feature mappings required in many practical appli-
cations [13, 8] and is the focus of this paper. These explicit feature mappings
or score functions are derived from the generative models of the data distribu-
tion. Their values, i.e., features, are then delivered to discriminative classifiers
to perform classification. While score spaces have shown promising performance
in a variety of challenging applications [14, 8, 15], discriminative learning ap-
proaches [16, 6, 17–19] which can exploit label information in general perform
better and still furnish state-of-the-art performance.

In this paper, we propose a score space method with an effective score space
and a discriminative learning approach. The score space is spanned by the suffi-
cient statistics of an adopted generative model, and is called sufficient statistics
score space (SS). Its score function is a function over random variables, which
is distinct from earlier methods [8, 10, 11] in which the scores are functions over
random variables and model parameters. We propose a discriminative learning
approach to learn the score space by subjecting the classifier over score space
to margin constraints. The simple form of the score function results in simple
learning rules, which are the same as those for the generative models but with a
discriminative posterior imposed over the hidden variables. This posterior in fact
introduces a mechanism to generate a more suitable score space for classification.

Further, we will establish the following properties of the score space: (1) the
classification error of a zero-loss linear classifier over the score space is at least
as low as that of a MAP classifier; (2) the MAP estimation of the linear classifier
weights implied in our discriminative learning approach results in an expression
of classifier weights that are equal to the weights of the linear SVMs classifiers
over the discriminative score space; (3) the discriminative learning approach
favors generative models with less hidden variables.

2 Related Works

2.1 Generative Score Spaces

Generative score space [11, 12, 20, 14, 8, 10] is a class of methods developed to ex-
ploit information provided by generative models for discriminative classification.
Score functions or feature mappings are functions defined over the observed data,
and the hidden variables and parameters of the generative models. The spaces
spanned by the score functions are called score spaces or feature spaces.

The score functions generally are measures over generative models. Fisher
score (FS) [11] derives score functions by measuring how model parameters affect
the log likelihood. Let x ∈ RD be the observed variable and P (x | θ) be its
marginal distribution parameterized by a vector θ, the i-th component of FS is
the differential with respect to the parameter θi,

Φi(x, θ) = ∇θi logP (x | θ)
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Table 1. Summary of related discriminative learning approaches.

Methods Feature Mapping Dis. Learn. Criterion

FKL [19] “partially” explicit 1-NN
LM-HMM [6] - large-margin
disHMM [16] - min. hinge-loss
Med-LDA [17] topic variable max-margin
disLDA [18] - conditional max. likelihood

Free energy score space (FESS) [8] is based on the measures on how well a
data point fits random variables. The resulting score functions are the summa-
tion terms of the log likelihood function. Posterior divergence (PD) [10] derives
a set of comprehensive measures that are connected to both FS and FESS. An-
other variant class of these methods derives the score function based on class-
conditional models, with a model trained for each class, seeking to utilize the
label information. The score functions in [20] are log likelihood functions. TOP
kernel (TK) [12] extends FS to operate on the MAP discriminant function in-
stead of the log likelihood function. FS was operated on class-conditional models
in [14]. These score spaces, working with classifiers, combine and integrate the
capabilities from generative and discriminative models, with competitive results
in a variety of challenging tasks [14, 8, 15] such as image recognition. However,
these methods learn score spaces and the classifier separately, and might not
fully exploit and utilize the label information.

2.2 Discriminative Learning

Several discriminative learning approaches [16, 6, 17–19] have been proposed to
exploit the capabilities of generative models and discriminative models simulta-
neously. Gales et al. [21] comprehensively reviewed the discriminative learning
approaches for speech recognition. Table 1 provides a summary of these ap-
proaches. Although several discriminative learning criteria are involved, margin
based criteria [6, 17] exhibit highly competitive performance.

Fisher kernel learning (FKL) [19] is most related to our approach. It proposed
a discriminative learning method for Fisher kernel by minimizing the error rate
of 1-nearest neighbor (1-NN) classifiers. We observed that, when the learned
kernel or score space working with SVMs or its variants, the potential of this
method can be further exploited. A potential improvement for this method is to
replace the error measure of the 1-NN classifier with the error measure or some
criteria of a classifier that will be used to perform classification.

3 Sufficient Statistics Score Space

We here describe how to formulate the sufficient statistics score space, starting
from the variational lower bound of generative models. The idea is to decompose
the log likelihood into parameter-based parts and variable-based parts.
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3.1 Variational Inference of Exponential Family

We consider a general case where P (x; θ) is a hierarchical generative model.
Let P (x,h; θ) be its joint distribution with a set of hidden variables h and the
parameter vector θ. In this case, it is usually difficult to obtain the close form
of P (x; θ) since the integration is usually intractable. A practical method is to
resort to the lower bound of logP (x; θ). We here use the lower bound given by
variational inference [22], for sample xt,

logP (xt; θ)≥KL(Q(ht)‖P (xt,ht; θ)) = F t(Q, θ), (1)

where ht indicates that it depends on xt [8]; Q(ht) is the approximate distri-
bution of the real posterior P (ht |xt, θ); F t(Q, θ) is the negative free energy
function or the lower bound of logP (xt; θ). It is worth noting that, the approx-
imation of the real posterior P (ht |xt, θ) using Q(ht) and of the the real log
likelihood logP (xt; θ) using the lower bound F t(Q, θ) is often satisfied. In fact,
the approximation error can be zero since Q(ht) exactly equals to P (ht |xt, θ)
and F t(Q, θ) exactly equals to logP (xt; θ) when using exact inference. Learning
generative models based on the variational lower bound can be expressed as,

max
Q,θ

∑
t
F t(Q, θ) = max

Q,θ

∑
t
−KL(Q(ht)‖P (xt,ht; θ)) (2)

An assumption here, as also made in most probabilistic generative mod-
els [23], is that the joint distribution P (x,h; θ) of a generative model belongs to
the exponential family, written as [23],

P (x,h; θ) = exp{α(θ)TT (x,h) +A(θ)} (3)

where α(θ) is a vector-valued function; T (x,h) is the vector of sufficient statistics
over x and h; A(θ) is a scalar function. Since P (x,h) = P (x |h)P (h), P (h) also
belongs to exponential family, P (h; θh) = exp{α(θh)TT (h) + A(θh)}. As was
done in [24], we assume that, for a sample xt, the approximate posterior Q(ht)
shares the same form as P (h; θh), but with different parameters,

Q(ht) = exp{α(θth)TT (ht) +A(θth)} (4)

where θth is a vector of parameters and depends on the sample xt. Substituting
Eqs. (3) and (4) into Eq. (1), it can be verified that,

F t(Q, θ)=EQ(ht)[α(θ)TT (xt,ht) +A(θ)− α(θth)TT (ht)−A(θth)]

=EQ(ht)[α(θ)TT (xt,ht)− 1Tdiag(α(θth))T (ht)−A(θth) +A(θ)]

=α(θ)TEQ(ht)[T (xt,ht)]−1Tdiag(α(θth))EQ(ht)[T (ht)]−A(θth)+A(θ)]

=ηTEQ(ht)[φ(xt,ht)] = ηTΦ(xt) (5)

where η = (α(θ)T ,−1T ,−1, A(θ))T only depends on parameter θ; φt(xt,ht) is a
function over xt, ht and θth, depending on xt,

φ(xt,ht) = (T (xt,ht)T , (diag(α(θth))T (ht))T , A(θth), 1)T (6)
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Note that ht and θth depend on the specific sample xt. Therefore they reflect
some attributes or encode some information related to xt. Φ(xt) is the score
function or feature mapping, taking the following form,

Φ(xt) = EQ(ht)[φ(xt,ht)] (7)

The function Φ(xt) is termed as sufficient statistics score function since its main
components are sufficient statistics T (x,h) and T (h). F t(Q, θ) is decomposed
into the linear combination of η which depends on all training samples and the
score function Φ(xt) which depends on the sample xt.

The above formulation is based on the variational inference in Eq. (1) and the
approximate posterior in Eq. (4). The approximation works well when the real
log likelihood are intractable [8, 10], and equals to the real log likelihood exactly
when using exact inference. The derived score function in Eq. (7) is compatible
with other inference methods as we can estimate the posterior (Eq. (4)) using
the outputs of those methods, e.g., using the samples drawn by Gibbs sampling.

3.2 Error Rate Comparison with MAP Classification

As score spaces typically work with linear classifiers, [12] proposed a method to
analyze the classification error of a linear classifier y = sign(wTΦ(x) + b) where
w ∈ Rd is the weight and b ∈ R is the bias. We assume that w and b are learned
by an optimal learning algorithm on a sufficiently large training set. Letting
Ψ(a) be the zero-one loss function that outputs 1 if a > 0 and 0 otherwise, the
classification error can be expressed as,

R(Φ) = min
w,b

Ex,yΨ [−y(wTΦ(x) + b)],

where Ex,y denotes the expectation over the true distribution. Note that R(Φ)
is exactly the test error if the test set and the training set share the same
distribution. We assume this condition holds, as was done in [12, 8, 10].

Previous works [12, 8, 10] have shown that, in the case that the model is
trained using samples from the positive class and the log likelihood logP (x | y =
+1) is available, the error rate R(Φ) of a linear classifier operating on the score
space is at least as low as the error rate R(λ) of the MAP classifier,

R(λ) = Ex,yΨ [−y(P (y = +1 |x)− 1

2
)] = Ex,yΨ [−y(logP (y = +1 |x)− log

1

2
)]

= Ex,yΨ [−y(logP (x | y = +1)− log
1

2
)] = Ex,yΨ [−y(ηTΦ(x)− log

1

2
)]

≥ min
w,b

Ex,yΨ [−y(wTΦ(x) + b)] = R(Φ)

In the case that the exact log likelihood might be intractable, as shown in
Eq. (5), we resort to the lower bound F+1(x) and F−1(x) for a pair of mod-
els θ+1 and θ−1 that are respectively trained using the positive samples and
negative samples, and accordingly resort to the free energy test [8]. That is,
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ŷ = sign(F+1(x)− F−1(x)). Applying the formulation in Eq. (5), then we have
F+1(x) = ηT+1Φ+1(x) and F−1(x) = ηT−1Φ−1(x). We accordingly define the score
function over a pair of models as Φ(x) = (Φ+1(x)T , Φ−1(x)T )T . The above in-
equality R(Φ) ≤ R(λ) still holds,

R(λ) = Ex,yΨ [−y(F+1(x)−F−1(x))]

= Ex,yΨ [−y(ηT+1Φ+1(x)− ηT−1Φ−1(x))]

≥ min
x,y

Ex,yΨ [−y(wTΦ(x) + b)] = R(Φ)

The above justifications also hold for [11, 12, 8, 10] because F(x, θ) can be ex-
pressed as a linear combination of any of the score functions.

4 Learning Discriminative Score Space

To exploit label information, we propose a discriminative learning method that
learns score space as well as generative models under the classification margin
constraints of a linear classifier in the score space.

4.1 The Learning Problem

First we will use a probabilistic classifier because of its compatibility with prob-
abilistic generative models. Let x be the input data and y ∈ {−1,+1} be the
output label; S = {(xt, yt)}t be the training set whose samples are indexed by
t. Let x be the augmented sample (xT , 1)T ; w be the weight including the bias;
γt be the desired margin for the sample xt. The classifier subject to margin
constraint is given by [4],

min
Q(w)Q(γt)

KL(Q(w)Q(γt)‖P (w)P (γt)) (8)

s.t. EQ(w)[y
twTxt] ≥ EQ(γt)[γ

t], ∀ t, (9)

where P (w) and Q(w) are the prior and posterior for the weight respectively;
P (γt) and Q(γt) are the prior and posterior for the margin respectively. The
margin γt is specified for xt. This formulation allows for a tunable and flexible
margin, which functions in a way similar to the soft margin in SVMs.

Now we have shown the objective functions of generative models (Eq. (1))
and the classifier (Eqs (8) and (9)). Learning discriminative score space subject
to margin constrains means we need to maximize Eq. (1) and minimize Eq. (8)
simultaneously, subject to Eq. (9). The learning problem can be expressed as,

min
Q,θ

∑
t
KL(Q(ht)‖P (xt,ht; θ)︸ ︷︷ ︸

KLθ (generative)

+ξKL(Q(w)Q(γt)‖P (w)P (γt))︸ ︷︷ ︸
KLw+KLγ (discriminative)

(10)

s.t. EQ
[
ytwTφ(xt,ht)− γt

]
≥0, ∀ t (11)

where Q = {Q(ht), Q(γt), Q(w)}. The first term in Eq. (10) is the objective
function for the generative model as in Eq. (2), where P (x,h; θ) is the joint
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distribution and Q(ht) is the approximate posterior. The second term of Eq. (10)
and the constraint Eq. (11) form the objective function of the classifier, where
P (γt) and P (w) are priors on the margins and the weights respectively. ξ > 0 is
a weight that tunes the balance between the generative model and the classifier.

4.2 Inference and Parameter Estimation

The quantities to be estimated in the objective function Eq. (10) and Eq. (11)
include Q(ht), Q(γt), Q(w) and θ. To estimate these quantities, we first specify
the priors P (w) and P (γt). Similar to that in [4], we set the priors,

P (w) = N (0, I), (12)

P (γt) = ce−c(a−γ
t) for γt ≤ a. (13)

where a, c are two parameters to be specified. The learning problem in Eq. (10)
and Eq. (11) takes the exact form of posterior regularization [25], and in principle
can be solved using EM-like procedures [25, 26]. In optimization [26], to estimate
Q(ht), Q(γt), Q(w) and θ, we alternatively solve sub-problems with respect to
some of these quantities while keeping the others fixed in each pass. The solution
of θ will benefit from the form of Φ(x) because Φ(x) and the constraints Eq. (11)
are not related to θ.

Posterior Q(ht) of hidden variables By fixing quantities Q(γt) and θ, the
solution of Q(ht,w) takes the following form [25, 4],

Q(ht,w) ∝ P (xt,ht; θ)P (w) · exp
{∑

t
λt
[
ytwTφt − EQ(γt)[γ

t]
]}
, (14)

where φt = φ(xt,ht), and λt is the Lagrange multiplier for the t-th inequality of
Eq. (11). Note that w follows a normal prior in Eq. (12), making the integration
Q(ht)=

∫
Q(ht,w)dw tractable,

Q(ht) ∝ P (xt,ht; θ)︸ ︷︷ ︸
∝ P (ht |xt,θ)

exp

{∑
t
λtEQ(γt)[γ

t]− 1

2

∑
t,t′
λtλt

′
ytyt

′
(φt)

T
φt

′
}

︸ ︷︷ ︸
∝ discriminative posterior

(15)

This formula shows that the posterior of hidden variables is proportional to the
product of (1) the joint distributions of the naive generative model and (2) an ex-
ponential term that is derived from the classifier and favors large margin. When
h is a set of discrete variables, the posterior and EQ(ht)[φ

t] are straightforward to
compute; when h is a set of continuous variables, without an analytical solution
in most cases, we resort to estimate the expectation EQ(ht)[φ

t] by,

EQ(ht)[φ(xt,ht)] ≈ 1

n

n∑
i=1

φ(xt,hti), (16)

where hti is the i-th sample of all the n samples drawn from the posterior Q(ht).
Gibbs-rejection sampling [27] can be very effective in drawing samples from
Eq. (15). A sample hti drawn from P (xt,ht; θ) will be accepted or rejected based
on the exponential term.
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Posterior Q(γt) of margins By fixing the quantities Q(ht) and θ, the poste-
rior Q(γt,w) can be solved, in the same way as in the solution of Q(ht,w). We
compute the posterior Q(γt) =

∫
Q(γt,w)dw as,

Q(γt) ∝
∫
P (γt) exp

{
λtEQ(ht)

[
ytwTφt − γt

]}
dw

∝ exp
{
−
(
c− λt

)
(a− γt)

}
, (17)

For the exponential distribution P (γt) = ce−cγ
t

with γt ≥ 0 (Eq. (13)), the
mean of γt is EP (γt)[γ

t] = c−1. The expected margin can be similarly derived,

EQ(γt)[γ
t] = a−

(
c− λt

)−1
. (18)

which adapts to samples, for example, by taking negative values for incorrect
classification, which essentially implements a soft-margin.

Lagrange multipliers λ = {λ1, λ2, ..., λN} Every Lagrange multiplier here
corresponds to an inequality constraint. Fixing Q(ht), Q(γt) and θ leads to,

Q(w) =
1

Z(λ)
P (w) exp

{∑
t
λtEQ(ht,γt)

[
ytwTφt − γt

]}
,

where Z(λ) =
∫
Q(w)dw is the partition function. Then λ≥ 0 is obtained by

maximizing the objective function Jλ =− logZ(λ). Using the same integration
in Eq. (15), we have,

Jλ =
∑
t

λtEQ(γt)[γ
t]− 1

2

∑
t,t′

λtλt
′
ytyt

′
EQ(ht)[φ

t]TEQ(ht′ )[φ
t′ ]. (19)

This is a standard quadratic programming problem, which can be efficiently
solved. It differs from the dual form of SVMs because of the extra weight EQ[γt].

Parameters θ of generative models In the objective function Eq. (10)
and the constraint Eq. (11), only the term KLθ depend on the parameter θ. So
minimizing the objective function with respect to θ equals to minimizing KLθ
with respect to θ, not subjecting to any inequality constraint. The resulting
update rules for θ are the same as those for the original generative models.

The learning procedure of the proposed method is summarized in Algo-
rithm 1. The output is the parameter θ of a generative model. Given the gen-
erative model trained by Algorithm 1, we are now equipped to compute score
functions for test samples. The procedure constructing discriminative score space
is summarized in Algorithm 2.

4.3 Classifier Learning Rules

Given the discriminatively learned generative models and score spaces, there are
two ways to obtain classifiers over the score spaces: (1) train classifiers on the
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Algorithm 1 Discriminative learning of generative models

1: input: training data set S = {(xt, yt)}Nt=1

2: initialize parameters θ̂,u, λ
3: repeat
4: for t = 1 to N do
5: sample {hti}i from Q(ht) (Eq. (15))
6: estimate EQ(ht)[φ(xt,ht)] (Eq. (16))
7: compute EQ(γt)[γ

t] (Eq. (18))
8: end for
9: update λ (Eq. (19))

10: update θ̂ with {hti}ti using the rules of the original generative models
11: until convergence
12: output: θ̂

Algorithm 2 Construct discriminative sufficient statistics score spaces

1: input: generative model θ̂ and input data set {(xt, yt)}Ntt=1

2: for t = 1 to Nt do
3: sample {hti}i from Q(ht) (Eq. (15))
4: estimate Φ(xt) = EQ(ht)[φ(xt,ht)] (Eq. (16))
5: end for
6: output: {Φ(xt)}Ntt=1

score spaces using any standard method; (2) estimate SVMs like classifiers using
the quantities produced by Algorithm 1. We will now present the details of (2).

The learning problem in Eq. (10) and Eq. (11) already includes a linear
classifier with the following decision rule,

ŷ = sign(EQ(w)[w
TΦ(x)])

To estimate a classifier based on the quantities produced by Algorithm 1, we just
need to estimate the weight w. First, we specify the posterior of the classifier w
to be a Gaussian distribution with unit covariance matrix [28],

Qs(w) = N(u, I). (20)

where u is the mean to be estimated from training data. Considering the above
specification for Qs(w) and the specification for P (w) (Eq. (12)), it can be ver-
ified that KLw =KL(Q(w)‖P (w)) = 1

2uTu. This means that minimizing KLw

in Eq. (10) encourages u to have a short length. Under the above specifications,
the solution of w takes the following form.

Proposition 1. Let Φ(x) = EQ(h)[φ(x,h)] be the score function derived from
(Algorithm 2) the discriminatively trained generative models (Algorithm 1). With
the specification in Eq. (20), the maximum a posteriori (MAP) estimation of w
in Eq. (10) takes the same form as the solution of the linear SVMs equipped with
the score function Φ(x).
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Proof. The solution of Q(w) can be expressed as,

Q(w) =
1

Z
P (w) exp

{∑
t
λtEQ(ht,γt)

[
ytwTφt − γt

]}
=

1

Z
P (w) exp(αTw − β), (21)

where Z =
∫
P (w) exp(αTw + β)dw is the partition function to ensure Q(w)

being a probabilistic distribution; α =
∑
t λ

tytEQ(ht)[φ
t] and β = EQ(γt)[γ

t].
Considering the specification Qs(w) in Eq. (20), the MAP estimation ŵ of w sat-
isfies ŵ = EQ(w)[w] = u and can be determined by minimizing the I-projection
between the specified posterior Eq. (20) and the derived posterior Eq. (21),

min
u

KL
[
Qs(w)‖ 1

Z
P (w) exp(αTw + β)

]
= min

u
EQs(w)

[
logQs(w)− log

1

Z
P (w) exp(αTw + β)

]
= min

u
EQs(w)

[
wTu− 1

2
uTu− (αTw + β)

]
+ logZ

= min
u

[1

2
uTu− αTu− β

]
+ logZ.

where Z does not depend on u. Letting ∂KL
∂u = 0, we has an analytical solution,

ŵ = u = α =
∑
t

λtytEQ(ht)[φ(xt,ht)]. (22)

This is equivalent to the solution of linear SVMs [2].

5 Experiments

We experimented with two generative models in the proposed framework in
the context of classification. As shown in Section 4.2 and Algorithm 1, we only
need to specify the feature mapping Φ for each adopted generative model. In
each experiment, we compare (1) the proposed sufficient statistics (SS) score
space which learns the score spaces (including generative models) and the dis-
criminative classifiers separately, under no discriminative constraint; (2) the dis-
criminative learning of SS subject to margin constraints (MSS), as proposed in
Section 4; (3) Fisher score (FS) method [11]; (4) free energy score space (FESS)
method [8] and other state-of-the-art methods. Here, we omit the comparison
with other hybrid methods [5, 10] due to the space limitation. For each problem,
we repeatedly test 20 rounds. In each round, training and test sets are formed
by random sampling from the dataset.

The MSS approach is proposed in the setting of binary classification. It is
straightforward to extend it to multi-class classification problems, by splitting
each multi-class problem into several binary problems and combine the MSS
features separately learned from each of the binary classification problems. The
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Table 2. Summary of classification accuracy (%) on sequence datasets. Discrete HMMs
are used to model the distribution of sequences. SS is the baseline version of the pro-
posed method without using discriminative learning.

Class C LM-HMM FKL [19] FS [11] FESS [8] SS MSS

Character 20 94.26 95.71 95.20 93.99 93.55 95.62
Hill Valley 2 58.71 54.00 63.60 55.41 53.39 65.68
Jap. Vowel 9 92.26 96.16 88.93 90.63 91.26 93.40
Hand Move. 15 78.10 75.22 79.11 79.89 78.00 82.22
Promoter Gene 2 67.92 69.81 63.38 65.77 65.35 74.23
Junction Gene 3 58.64 57.05 58.71 58.78 58.86 65.37
Protein Kinase 3 72.18 74.15 73.24 72.65 73.53 78.53
SCOP Protein 7 64.75 60.96 64.17 64.12 64.24 64.64
Chicken Shape 5 77.64 79.83 79.63 80.26 79.58 83.36

parameters (ξ = 1 (Eq. (10)), a = 1 and c = 6 (Eq. (13)), the number of topics
M of LDA (Section 5.2), the number of hidden states K of HMMs (Section 5.1))
used in the following experiments are chosen through an offline cross valida-
tion method, i.e., the parameters are chosen using cross validation on a dataset
and then applied to all datasets. The reasons of using offline rather that online
method are that (1) online cross validation for 5 parameters are computationally
very expensive; (2) offline method produces satisfied performance.

For score spaces FS, FESS and SS, we use the same scheme as [8], i.e.,
train a generative model for each class and combine the features obtained from
these models. This scheme is empirically validated to be more effective than the
score space derived from one generative model of all samples. For all score space
methods (FS, FESS, SS, MSS), we use linear SVMs (libsvm toolbox [29]) as
the classifier. For localized multiple kernel learning (LMKL) [3], Fisher kernel
learning (FKL) [19] and FESS, we use the authors’ implementations, which can
be downloaded from their websites. FS-HMMs, FS-LDA, LM-HMMs [6] and the
proposed methods are implemented by ourselves.

5.1 Sequence Recognition: Hidden Markov Models

In the first experiment, we learn the score space for sequence recognition with
hidden Markov models (HMMs) [30] as the generative model. Let x be the
sequence with length Lx. We here consider the discrete case where xl is a vector
of binary indicators of states at position l along the sequence, i.e., xlk = 1 if the
k-th of the K possible observed states is selected at position l. ql is the binary
indicator for hidden states, where qli = 1 if the i-th of the M possible hidden
states is selected at position l. The joint distribution is given by,

P (x,q; θ) =

M∏
i=1

π
q0i
i ·

Lx−1∏
l=0

M,M∏
i,j=1

a
qliq

l+1
j

ij ·
Lx∏
l=0

M,K∏
i,k=1

b
qlix

l
k

ik

where θ = {πi, aij , bik}ijk. Let π̂ = {π̂i}i, â = {âij}ij and b̂ = {b̂ik}ik respec-
tively be the initial, state transition and emission probabilities of the approxi-
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mate posterior. The score function is Φ(x) = EQ(q)[φ(x,q)], where,

φ(x,q) = vec

({
q0i ,

Lx−1∑
l=0

qliq
l+1
j ,

Lx∑
l=0

qlix
l
k,

q0i log π̂i,

Lx−1∑
l=0

qliq
l+1
j log âij ,

Tx∑
l=0

qlix
l
k log b̂ik

}
i,k

)
.

Given the hidden states of the input sequence inferred with the Baum-Welch
algorithm [31], it is easy to estimate the posterior probabilities, i.e. initial, tran-
sition, and emission probabilities conditioned on x. Using the sampling distribu-
tion in Eq. (15), we are able to draw examples of hidden states and re-estimate
their posterior. The quantity EQ(z)[·] can be computed effectively since z is a
discrete variable.

We compare the performance of SS and MSS against that of FS, FESS,
FKL [19] and large margin HMM (LM-HMM) [6]. The number of hidden states
M is set to be M=3 for MSS and M=10 for FS, FESS and SS based on cross-
validation performance as shown in Fig. (1). For FKL and LM-HMM, we chose
M from 2, 5, 10 using offline cross validation. We randomly select 50% samples
for training and the rest for testing. The learned score space is evaluated on
9 sequence datasets where SCOP protein is obtained from ASTRAL database
with similar sequences reduced by a E-value threshold of 10−25; the chicken piece
shape dataset is collected by [32]; the rest are obtained from UCI database. For
FS, FESS, SS and MSS, the datasets with continuous values are quantized to
state sequences for the discrete HMMs, i.e., 8 states for chicken piece shape
and 20-40 states for other datasets. For FKL, we use continuous HMMs for
continuous data and discrete HMMs which is implemented by configuring the
graph of MRF for state sequence data.

The results are reported in Table 2. Our SS’s performance is competitive
against FS and FESS, even though it does not utilize the parameters of genera-
tive models as was done in FS and FESS. Our MSS outperforms other methods
in 8 of the 13 experiments. The improvement of MSS over SS is brought about
by the discriminative learning paradigm. The comparison between MSS against
LM-HMM or FKL is particularly worth noting because both LM-HMM and FKL
are methods that learn generative models and discriminative models jointly. We
should also note that the data representation used in FKL is slightly different
with that used in MSS. That is, FKL uses continuous data on the first 4 datasets
while MSS quantities them into discrete data, and thus its performance might
suffer from this quantization. Further, MSS is effective for a small number of
hidden states and thus is more efficient to train, even with limited samples. We
will discuss these issues more in Section 5.3.

5.2 Image Recognition: Latent Dirichlet Allocation

We also evaluate the framework when Latent Dirichlet Allocation (LDA) [34] is
used as its generative model in the context of image scene recognition. In this
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Table 3. Classification accuracy (%) on OT, Scene-15 and UIUC-sports datasets.

Dataset C PHOW [33] Med-LDA[17] FS [11] FESS [8] SS MSS

OT 8 87.21 89.50 86.42 88.89 88.25 90.36
Scene-15 15 79.83 81.05 78.68 81.92 79.25 83.64
UIUC-sports 8 80.04 82.79 79.91 82.18 80.34 84.67

task, visual words are used to represent images as is typically done in computer
vision. The LDA version in [35] is used to model the distribution of visual words,
with each topic associated with a particular distribution. We sample topic vari-
ables using collapsed Gibbs sampling [35], and reject examples according to the
rule stipulated in Eq. (15). Differing from [35], we update model parameters α
and β in each iteration. In order to make it compatible with [35], we only use
word and topic to construct feature mapping Φ(wd· ),

φ = vec
({
zkdn, w

d
nz
k
dn, 1

}
n,k

)
,

where w and z denote word and topic respectively. d, n and k index image, word
and topic respectively. For FS [11] and FESS [8], we extract features from the
trained LDA model and use them with linear SVM.

The OT scene dataset, Scene-15 dataset and UIUC-sports dataset are used
for evaluation. They contains 8, 15 and 8 categories respectively. For each image,
dense SIFT descriptors [36] are extracted from 20×20 grid patches over 4 scales.
The descriptors are clustered (using K-mean on randomly selected descriptors)
into 200 visual words in a code book. An image is represented by a histogram
of the frequency of the observed visual words. The number of topics is set to
K = 10 for MSS and K = 50 for FS, FESS and SS throughout the experiment.
For OT, Scene-15 and UIUC-sports datasets, 5%, 100, 70 images per category
are randomly selected as training set and the rest as test set in each test.

The evaluation results are reported in Table 3. PHOW [33] is a state-of-the-
art feature descriptor for scene recognition, and Med-LDA [17] is a discriminative
learning approach for LDA that has been shown to be superior to disLDA [18].
MSS outperforms all compared methods on all three datasets. The performance
of SS is slightly inferior to FESS but slightly better than FS, which indicates
that even though SS does not fully exploit the model parameters, it still captures
rich generative information. We also evaluate the feature mapping as a function
of the number of samples and topics, as shown in Fig. 2, and show that MSS
works well with few topics (hidden variables).

5.3 Computational Efficiency

The proposed discriminative learning method is an iterative process, involving
the inference step and the parameter estimation step, where the parameter esti-
mation is slower because it needs to solve a quadratic programming and update
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the generative model. Learning can be greatly sped up in the following way.
Instead of cycling through the steps T times, we can pre-train the generative
models (e.g. with T iterations) and then launch Algorithm 1 for a few iterations,
about 10 iterations empirically.

The performance of a score space, to some extent, depends on the number of
hidden variables (e.g., the number of topics in LDA and the number of hidden
states in HMMs) in the generative model used [10, 19]. We investigate this de-
pendency by evaluating the method’s performance as a function of the number
of hidden variables. We evaluate the score space using two classification schemes:
(1) multi-class classification; (2) splitting the multi-class problem into a group of
binary classification problems and averaging their results. We find that the two
methods of evaluation share very similar trend, and report only experimental
results based on (2) in Fig. 1 (HMMs), and Fig. 2 (LDA). Overall, we found the
proposed method works well with generative models with a few hidden variables,
fewer than other methods required, which also makes our method more efficient.
In addition, as shown in Fig. 1 and Fig. 2, MSS’s performance over other meth-
ods is robust against the percentage of total samples used as training samples.
Empirically, The MSS-HMM and MSS-LDA can be faster than MAP-HMM and
MAP-LDA in part because the number of topics or hidden variables are smaller.

6 Conclusions

In this paper, we derive a new score space (SS) by decomposing the lower bound
of the log likelihood into a linear combination of two parts. The first part is
related to model parameters while the second part is related data samples. The
second part, based mainly on sufficient statistics, provides the score functions to
span the score space. This decomposition allows us to develop a computation-
ally tractable method to learn score space discriminatively, subject to margin
constraints of a classifier over the score space. We provide an EM-like algorithm
for inference and learning, where the posterior introduced by discriminative fac-
tors (margin constraints) feed-back discriminative information to tune the score
space. This method works well with a small number of hidden variables, which
makes inference and learning fast and efficient. We show that this approach is
competitive against other state-of-the-art methods in a variety of datasets.
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