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Abstract. In this paper, we address the problem of classifying entities
belonging to networked datasets. We show that assortativity is posi-
tively correlated with classification performance and how we are able
to improve classification accuracy by increasing the assortativity of the
network. Our method to increase assortativity is based on modifying the
weights of the edges using a scoring function. We evaluate the ability of
different functions to serve for this purpose. Experimental results show
that, for the appropriated functions, classification on networks with mod-
ified weights outperforms the classification using the original weights.

1 Introduction

Relational classification deals with the problem of classifying networked data,
that is, data containing a set of entities that are interlinked with each other. Net-
worked data can be found almost everywhere: from authorship networks, that
link authors sharing a common paper, to the now very popular Online Social
Networks, where users are mainly linked by friendship. Some traditional machine
learning techniques, that deal with independent entities, have been adapted to
handle networked datasets, and new algorithms have also been proposed to man-
age this kind of data. Classification is not an exception. In the last years, many
algorithms have been proposed to take advantage of the linked nature of these
datasets in order to perform classification [1–4].

In this paper, we build on these existing techniques and propose a method to
increase assortativity mixing according to the node class labels. Prior works [5,
6] have suggested that assortativity with respect to class labels is an indicator
of the level of performance that a relational classifier is able to achieve. So after
proposing a method to increase assortativity, we will evaluate to what extents
this statement is true. We will conduct a systematic analysis of the performances
obtained when classifying different datasets with multiple configurations of the
classifier, and we will show how these performances correlate with the assor-
tativity obtained in both the original graphs and those modified to increase
assortativity. Assortativity has been proposed as a metric to perform automatic
edge selection [5] because preliminary results showed that choosing those edges



for which higher assortativity was obtained resulted in higher classification per-
formance. However, this preliminary study already showed that the procedure
does not always lead to the best possible performance. It is thus interesting to
evaluate to what extent assortativity is positively correlated with classification
performance.

The contribution of this paper is threefold. First, we propose a method to
increase both node and edge assortativity by modifying the weights of the edges.
This method is based on the usage of scoring functions. We investigate several
scoring functions abilities to increase assortativity for different datasets. Second,
we evaluate the correlation between the level of assortativity found in a graph
and the obtained performance when trying to classify nodes of that graph. We
evaluate correlation for datasets modeling different entities and relationships and
for multiple relational classifiers. Third, we compare the classification results
of the increased assortativity graphs with the original graphs and analyze the
performance improvement.

The rest of the paper is organized as follows. Section 2 describes our pro-
posal for increasing assortativity by modifying the weights of the edges of the
graph. Then, Section 3 presents the experimental results supporting our claims.
First, Section 3.1 presents the datasets used in the experiments. Then, Section
3.2 demonstrates how the proposed method is able to increase assortativity. In
Section 3.3, we define the classification problem that we are facing in order to
show, in Section 3.4, how assortativity is positively correlated with classifica-
tion performance. After that, Section 3.5 demonstrates the effects of using the
proposed method on classification performance. Finally, Section 4 reviews the
related work and Section 5 presents the conclusions and lines for further work.

2 Modifying Edges’ Weight to Increase Assortativity

This section describes the proposed procedure for increasing assortativity. After
defining the notation and the concept of assortativity, we present the set of
scoring functions that we use to test our technique. Then, we show how to
compute the new weights taking into account the results of the scoring functions.

2.1 Notation

Given a graph G = (V,Ew), the set of vertexes V represents the entities in the
networked dataset and the set of edges Ew represents the relationships between
those entities. Since we are dealing with weighted graphs, edges are pairs of
vertexes with an associated weight e = (vi, vj , wij) s.t (vi, vj) ∈ V ×V and wij ∈
R. Because we are dealing with undirected graphs, symmetry is assumed, e =
(vi, vj , wij) = (vj , vi, wji). Let us denote by Γ (vi) the set of adjacent nodes of
vi, that is, Γ (vi) = {vj ∈ V s.t. ∃e = (vi, vj , wij) ∈ E with wij 6= 0}. Finally,
we will use the words entities, nodes, or vertexes interchangeably through the
rest of this paper, as we will do with edges, relationships, and links.



Classification is one of the basic techniques in data mining processes. Clas-
sification problems consist on assigning labels to entities for which the label
is initially unknown. Given a set of labeled samples, the goal is to assign la-
bels to the rest of the samples in the dataset. More formally, we denote by
C = {ck, for k = 1, · · · ,m} the set of all possible categories an entity can
be labeled with. Then, there exist a set of nodes Vl ⊂ V for which the map-
ping A : Vl → C is known before classification takes place, and a set of nodes
Vnl = V \ Vl for which the mapping is unknown.1 The goal of the classifica-
tion process is to discover this latter mapping, or a probability distribution over
it. Notice that with this definition, the only uncertainty introduced is the class
membership of the nodes in Vnl.

2.2 Assortativity

Assortativity mixing is the tendency for entities in a network to be connected
to other entities that are like them in some way [7]. This phenomenon has been
much studied for social networks, where users show a preference to link, follow,
or listen to other users who are like them. When dealing with social networks,
assortativity is usually known as homophily. Assortativity (or dissortativity, the
tendency of nodes to be linked to other nodes that are not like them) has been
reported in many kinds of networks. For instance, degree dissortativity has been
observed in protein networks, neural networks, and metabolic networks [7].

Assortativity mixing can be computed according to an enumerative charac-
teristic or a scalar characteristic. In the latter case, degree assortativity is of
special interest because of its consequences on the structure of the network. In
this paper, we are interested on the first alternative, assortativity according to
an enumerative characteristic, where assortativity will be related to the class
label of the nodes for which the classification will take place. From now on, we
will refer to the assortativity regarding the class labels as merely assortativity.

The first hypothesis that we want to test is if it is possible to increase the
assortativity of a graph with respect to the class labels assigned to its nodes
without knowing these class labels. That is, given a graph G = (V,Ew) for which
all class labels are unknown, we want to see if it is possible to design a process
that results in a new graph G′ = (V,E′w) that presents higher assortativity than
G. This scenario is even more restrictive than the usual within-network node
classification scenario, where some of the labels will be known in advance. Note
that although the described process does not need any class label, we make use
of these class labels to evaluate its performance (i.e. to compute assortativity).

In order to compute edge assortativity [7] for a given graph G = (V,E) for
which the mapping A : V → C is known for all V, an edge assortativity matrix e
of size |C|×|C| is constructed. Each cell eij contains the fraction of all edges that
link nodes of class ci to nodes of class cj , normalized such that

∑
∀i,j eij = 1.

Values ai and bi are defined as the fraction of each type of end of an edge that

1 Note that l stands for labeled and nl stands for not labeled.



is attached to vertexes of type ci : ai =
∑
∀j eij and bi =

∑
∀i eij . The (edge)

assortativity coefficient AE is then defined as:

AE =

∑
∀i eii −

∑
∀i aibi

1−
∑
∀i aibi

Because AE measures assortativity across edges and not across nodes, a node
assortativity metric, AN , is defined in [5]. AN is computed in the same way, now
using the node assortativity matrix e∗ instead of the edge assortativity matrix
e. There are also weighted versions of these metrics that take into account not
only if there exists an edge between two nodes but also the weight of that edge.
Through the rest of the paper, we make use of these weighted versions.

2.3 Scoring Functions

In order to increase both node and edge assortativity in a graph, our proposal is
to modify the weights of the edges of the graph, so that the new weight is able
to better quantify the strength of the relationship that the edges represent. So
we need to find functions that quantify this strength. We make use of functions
that receive as input an unweighted unlabeled graph G = (V,E) and return a
symmetric score, s(vi, vj) = s(vj , vi), for every pair of nodes in V , such that it
quantifies, somehow, the strength of the relationship between nodes vj and vi.
Surely, strength is a very general word and, as a consequence, many functions
meet the requirements to be used as scoring functions.

The set of scoring functions chosen to test our hypothesis was inspired from
those used to solve the link prediction problem in Online Social Networks (OSN).
OSN are very dynamic by nature. Over time, new members join the network
and new relationships are created both between new and old members. The
link prediction problem for OSN consists on inferring which new links are more
likely to appear in the future in a network given only its current state [8]. One
of the approaches that has been followed to deal with this problem is to define
functions that evaluate how likely it is, for a given pair of nodes, to create a
new link. After applying these functions to every pair of nodes in the network,
the algorithm predicts that those pairs of nodes for which the function returns
higher values are the ones who are going to create a new link in the near future.
The used functions try to evaluate the proximity or similarity of the nodes, with
the idea in mind that two nodes that are proximal are more likely to create a
connection in the future than two distant nodes. Depending on which metric is
used to define proximity, many link prediction models are created.

The set of metrics that are used to define proximity in the link prediction
problem meets all the requirements for our scoring functions. What follows is a
short summary of the metrics we have chosen to experiment with.

Number of Common Neighbors (CN): Proximity is usually understood
in terms of describing the common neighborhood. The most direct metric to
measure the common neighborhood is the number of common neighbors, that
is, the cardinal of the intersection between each of the nodes’ neighbors sets:



scoreCN (vi, vj) = |Γ (vi) ∩ Γ (vj)|

This measure captures how many neighbors two nodes have in common, but
it does not take into account how many non shared neighbors do these nodes
have. In order to also include this information, Jaccard Index is defined.

Jaccard Index (JI): JI is defined as the size of the intersection between the
two nodes neighborhoods divided by the size of the union of the neighborhoods:

scoreJI(vi, vj) =
|Γ (vi) ∩ Γ (vj)|
|Γ (vi) ∪ Γ (vj)|

In a similar fashion, we could want to give higher score to nodes that share
low degree neighbors. Intuitively, it is more difficult that these low degree nodes
have the two evaluated nodes as neighbors than it is for higher degree nodes.

Adamic-Adar (AA): The adaptation to the link prediction model for the
Adamic-Adar metric [9] would take into account the degree of the shared neigh-
bors:

scoreAA(vi, vj) =
∑

vk∈Γ (vi)∩Γ (vj)

1

log (|Γ (vk)|)

However, other studies point metrics that do not follow this line of thought.
Instead of rewarding connections between low degree nodes, some models assume
that high degree nodes tend to create more new links.

Preferential Attachment (PA): The preferential attachment model pos-
tulates that the probability that a node vi creates a new link in the network is
proportional to the current degree of vi. Then, the probability that a new link
between two nodes is formed depends on the current degrees of these two nodes:

scorePA(vi, vj) = |Γ (vi)||Γ (vj)|

Apart from looking at the degree of the neighbors, we can also take into
account the density of the common neighbors subgraph.

Clustering Coefficient (CC): The CC of the common neighborhood cap-
tures the number of links existing between the common neighbors, taking into
account how many of those links could exist:

scoreCC(vi, vj) =
2 |{e = (vk, vl) ∈ E s.t. vk, vl ∈ Γ (vi) ∩ Γ (vj)}|

|Γ (vi) ∩ Γ (vj)|(|Γ (vi) ∩ Γ (vj)| − 1)

Note that all the proposed metrics are based on analyzing the common neigh-
borhood that any two nodes may share. Apart from these metrics, other topolog-
ical measures have been proposed to be used in link prediction. These measures
take into account distances between nodes, paths among them, or similarity. A
review of some of these metrics can be found in [8].



2.4 Modifying Edges’ Weight

Once we have a set of functions evaluating the strength of a relationship, we
need to define how to modify the original graph, which already has weights, so
that it includes the results of the scoring functions. We propose to modify each
weight by directly multiplying it by the result of the scoring function:

w′ij = scorefunc(vi, vj) ∗ wij

By doing so, we attain two different goals. On one hand, we ensure that no
new edges are created. Recall that the scoring function is defined for every pair
of nodes of the graph, whether they share a link or not. By multiplying the result
of the scoring function by the original weight, we guarantee that all nodes that
do not share a link in the original graph (and thus have w = 0) will not share
a link on the modified graph. On the other hand, we allow all scoring functions
to eliminate non-relevant edges by assigning them a score of 0.

3 Experimental Results

This section describes the methodology used to evaluate the proposed techniques
as well as the results of the experiments performed in order to do this evaluation.

3.1 Datasets

Table 1. Original datasets

Dataset |C| Edge set |V | |E|
WebKB Cornell 7 Cocitations 351 26832
WebKB Cornell 7 Links 351 1393
WebKB Texas 7 Cocitations 338 32988
WebKB Texas 7 Links 338 1002
WebKB Washington 7 Cocitations 434 30462
WebKB Washington 7 Links 434 1941
WebKB Wisconsin 7 Cocitations 354 33250
WebKB Wisconsin 7 Links 354 1155

IMDb 2 All 1441 48419
IMDb 2 Prodco 1441 20317

Industry 12 Pr 2189 13062
Industry 12 Yh 1798 14165

Cora 7 All 4240 71824
Cora 7 Cite 4240 22516

This paper’s experiments are based on several relational datasets which have
already been used in the past by the relational learning community. This allows



us to compare our results directly with those found on prior studies while pro-
viding a set of diverse graphs coming from different environments to prove our
claims.

All the experiments described in this paper are made using essentially 4 dif-
ferent datasets. For each of the datasets, various graphs can be created attending
on the kind of relationships taken into account to define the edges or the source
of information used to create the graph. This results in a total of 14 different
graphs to experiment with. Table 1 presents a short summary of the key prop-
erties of each dataset. Note that these datasets are of very different nature and
that the differences between graphs constructed using different edges or differ-
ent datasets are strongly pronounced. The fact that our assumptions hold for
most of the presented datasets is thus a good indicator of the soundness of the
presented techniques. The original datasets used in this paper can be found in
[10] together with a more detailed description of their content.

3.2 Assortativity Measurements

Table 2. Edge assortativity

Graph Original AA CC CN JI PA

Cornellcocite 0.22701 0.19305 0.21925 0.18095 0.24969 0.13277

Cornelllink 0.05404 0.05860 0.09348 0.11501 0.12689 −0.25756

Texascocite 0.46064 0.47667 0.45137 0.45240 0.61685 0.29227

Texaslink −0.03256 0.25315 0.29175 0.29279 0.50357 −0.22091

Washigntoncocite 0.30070 0.27731 0.29330 0.25166 0.36886 0.19694

Washingtonlink 0.08401 0.19725 0.05016 0.15769 0.43920 −0.29734

Wisconsincocite 0.57683 0.65363 0.58620 0.64662 0.74448 0.44479

Wisconsinlink 0.16045 0.45262 0.38430 0.50690 0.54182 0.21701

IMDball 0.30519 0.39482 0.33020 0.38908 0.44831 0.24412

IMDbprodco 0.50085 0.52631 0.49038 0.53462 0.50723 0.52579

Industrypr 0.44210 0.54537 0.47248 0.54325 0.53394 0.48832

Industryyh 0.44061 0.47978 0.41910 0.45753 0.51627 0.38919

Coracite 0.73664 0.81468 0.81058 0.80629 0.84720 0.65804

Coraall 0.65627 0.65103 0.64375 0.64624 0.67744 0.58648

Table 2 shows the obtained edge assortativity (AE) values for the original
graph as well as for the graphs modified using the scoring functions (in bold
type those of which assortativity improves w.r.t. the original graph). The first
thing to notice is that original graphs present very different edge assortativity
values, and even one of the graphs presents a negative value, although it is close
to 0. So we are dealing with graphs that do not show any kind of assortativity
nor dissortativity together with graphs that show very high assortativity (for



instance, coracite presents a value of 0.74). When analyzing the success of the
different scoring functions in increasing edge assortativity, we can observe that
using the Jaccard Index (JI) leads to an increase on AE for all graphs. Then,
there is a set of three graphs (Cornellcocite, Washingtoncocite, and Coraall) for
which none of the other scoring functions are able to increase AE . Apart from
Jaccard Index, both the Adamic-Adar metric (AA) and the size of the common
neighborhood (CN) are also quite successful, with 11 out of 14 and 10 out of
14 graphs showing an increase on assortativity, respectively. Finally, Clustering
Coefficient leads to an increase of AE on just half of the graphs, while Preferential
Attachment is able to do so for only 3 graphs.

The magnitude of the assortativity growth also differs depending on the used
scoring function. While JI usually leads to the biggest growth, that is not true
for all the cases. For instance, both CN and AA are able to surpass JI for the
IMDBprodco and Industrypr graphs.

Table 3. Node assortativity

Graph Original AA CC CN JI PA

Cornellcocite 0.15595 0.17092 0.15571 0.16393 0.20798 0.12103

Cornelllink1 0.03999 0.08155 0.03542 0.12417 0.12070 −0.12177

Texascocite 0.39393 0.44062 0.37213 0.42317 0.55223 0.28926

Texaslink1 0.04574 0.24626 0.21532 0.29777 0.48132 −0.12948

Washingtoncocite 0.16165 0.19945 0.14190 0.17674 0.21560 0.15828

Washingtonlink 0.02381 0.13928 0.03976 0.10134 0.36904 −0.14483

Wisconsincocite 0.45537 0.55342 0.46367 0.55227 0.60544 0.39855

Wisconsinlink 0.19886 0.41702 0.32907 0.47819 0.50172 0.20973

IMDball 0.29626 0.38699 0.32643 0.38093 0.44384 0.23210

IMDbprodco 0.50011 0.52696 0.49147 0.53516 0.50827 0.52552

Industrypr 0.38282 0.38206 0.35325 0.37290 0.38263 0.38222

Industryyh 0.38541 0.35086 0.37761 0.32570 0.42881 0.24248

Coracite 0.72968 0.81079 0.81299 0.80202 0.84906 0.65219

Coraall 0.64420 0.63709 0.63393 0.63092 0.67066 0.55912

Table 3 shows the obtained values for node assortativity (AN ). In this case,
there is a graph (Industrypr) for which none of the modified graphs are able
to surpass the original graph assortativity. Nonetheless, AN does not decrease
substantially for any of the modified graphs, so no negative consequences will
appear by using the modifications. Leaving aside this graph, results for AN are
similar than those showed for AE . Graphs modified using JI exhibit higher AN
than the original ones for all datasets, and both the AA and the CN are able to
increase AN for most of the graphs (11 out of 14 and 10 out of 14, respectively).
Graphs modified using CC and PA do not show an increase on AN for most of
the graphs.



We have shown that it is possible to increase both edge and node assortativity
without knowing the node class labels. Using Jaccard Index as a scoring function
results in a general increase on (node and edge) assortativity. The usage of the
CN and AA as scoring functions also leads to an increase on assortativity for
most of the graphs, although this increase can not be observed for all them. In
these cases where assortativity does not increase, it is worth to note that the
magnitude of the decrease is small. The graphs modified using CC as scoring
function do not show a significant increase in assortativity, so this metric does
not seem to be a good alternative to use with general graphs. Lastly, the use of
PA as a scoring function must be discarded, as it does not show any improvement
over the non-modified graph.

The poor performance of PA in increasing assortativity may be explained by
the fact that preferential attachment is a model of network growth, that is, it
explains how likely it is for a node to get new links, but, unlike the other scoring
functions, it does not quantify the strength of the created link in any manner.
On the contrary, the relationships involving very high degree nodes (which get
high scores when using PA), will most likely be very weak connections. Note that
all the other scoring functions, although they can be used to predict the creation
of non existing links, also quantify, in some way, the strength of the relationship
between any two nodes.

3.3 Classification Algorithms

We use the Netkit toolkit [5] as the relational classification framework. By using
Netkit, we are able to systematically test different classifiers and compare the
results. Classifiers in Netkit are comprised by a local classifier (LC), a relational
classifier (RL), and a collective inference procedure (CI). Each of the different
modules can be instantiated with many components. In our experiments, we
allow the LC to be instantiated with either classpriors (cp) or uniform (unif);
the RL component can be instantiated with Weighted-Vote Relational Neighbor
Classifier (wvrn), its Probabilistic version (prn), the Class-distribution Rela-
tional Neighbor Classifier2 (cdrn-norm-cos), and Network-Only Bayes Clas-
sifier (no-bayes); the IC module can be specified with Relaxation Labeling
(relaxLabel), Iterative Classification (it), or without any inference method
(null).3 This give us 2× 4× 3 = 24 different full classifiers. For the rest of the
paper, we will use the term full classifier (fc) to refer to a specific instantiation
of the three modules (LC-RC-CI).

In order to measure classification accuracy or performance of each classifier
we use the percentage of (initially unlabeled) nodes in the test set that the
classifier is able to correctly classify. Since our datasets contain the class labels
for all nodes, we are able to compute this accuracy by taking the labels as the
ground of truth.

2 With Normalized values of neighbor-class and using the cosine distance metric.
3 Readers can refer to the original Netkit paper [5] for a full explanation of these

modules.



3.4 Correlation Between Assortativity and Performance

Once we have shown in Section 3.2 that it is possible to increase assortativity,
we have to analyze if this increase in assortativity leads to an increase on classi-
fication performance. Intuitively, this is almost tautological for some relational
classifiers [5], but the relation is not so obvious for some other classifiers. In order
to test our second hypothesis, namely, that assortativity is positively correlated
with classification performance, we compute assortativity as in Section 3.2 and
classification performances as described in Section 3.3.

We are interested in analyzing the correlation between assortativity and clas-
sification performance. We expect that when assortativity increases, classifica-
tion performance also increases. So we want to discover if the function that
describes the relationship between these two variables is monotonically increas-
ing. However, we are not concerned on finding the exact function that describes
this relationship.

Spearman’s rank correlation coefficient is a measure of statistical dependence
between two variables that assesses how well this relationship can be described
using a monotonic function [11]. The Spearman’s coefficient can take values be-
tween −1 and 1, with −1 describing a perfect decreasing monotonic function
and 1 characterizing a perfect increasing monotonic function.4 So we can use
the Spearman’s rank correlation coefficient to asses whether assortativity is pos-
itively correlated with performance.

In the interest of comparing classification performance between different
datasets, we use the notion of relative error reduction as defined in [5]:

ERREL(fc,D, r) =
base error(D)− error(fc,D, r)

base error(D)

The base error for a given dataset D is the error committed when predicting
that all samples belong to the most prevalent class. The error for a given dataset
D, a full classifier fc, and a labeled ratio r is the error committed when trying to
classify the 1− r% remaining samples with the specific configuration described
by fc. Note that although the error reduction metric is not bounded, its value
is inside the [0, 1] interval when base error(D) ≥ error(fc,D, r), which is the
most common scenario.

Although classification performance increased with the labeled set ratio (as
we will see in Section 3.5), no significant differences where observed on the corre-
lation between performance and assortativity for different r values. Table 4 shows
the Spearman’s rank correlation coefficient between the node and edge assorta-
tivity of each of the graphs and the error reduction achieved when classifying
those graphs with the different full classifiers. Results presented on the table
correspond to the experiments with r set to 35%. Each of the values represents
the correlation between the 84 graphs5 assortativity values and the 100−run

4 When data does not contain repeated values.
5 Notice that the total number of graphs tested comes from the 14 original graphs

plus the ones obtained using each of the 5 scoring functions.



mean performance obtained when classifying those graphs. As it was expected,
we found a positive correlation between both edge and node assortativity for all
full classifiers, with the Spearman’s rank coefficient ranging between 0.44 and
0.73 for node assortativity and between 0.44 and 0.71 for edge assortativity.

Table 4. Spearman’s rank correlation coefficient between error reduction and assorta-
tivity (r=0.35)

Full classifier AN AE Full classifier AN AE

cprior-wvrn-it 0.6264 0.6315 unif-wvrn-it 0.5986 0.6049

cprior-prn-it 0.4481 0.4474 unif-prn-it 0.4448 0.4417

cprior-nobayes-it 0.4949 0.5054 unif-nobayes-it 0.5002 0.5121

cprior-cdrn-norm-it 0.7362 0.7175 unif-cdrn-norm-it 0.6819 0.6676

cprior-wvrn-relaxLabel 0.5213 0.5171 unif-wvrn-relaxLabel 0.5355 0.5415

cprior-prn-relaxLabel 0.4534 0.4831 unif-prn-relaxLabel 0.4423 0.4757

cprior-nobayes-relaxLabel 0.5100 0.5357 unif-nobayes-relaxLabel 0.5205 0.5471

cprior-cdrn-norm-relaxLabl 0.4863 0.5015 unif-cdrn-norm-relaxLabl 0.4894 0.4848

cprior-wvrn-null 0.5318 0.5304 unif-wvrn-null 0.5390 0.5491

cprior-prn-null 0.4627 0.4893 unif-prn-null 0.4669 0.5016

cprior-nobayes-null 0.5103 0.5342 unif-nobayes-null 0.5431 0.5644

cprior-cdrn-norm-null 0.4963 0.5063 unif-cdrn-norm-null 0.4956 0.4903

The Spearman’s rank correlation coefficient is positive and greater than 0.44
for all the classifiers, which denotes that there exists a positive correlation be-
tween both node and edge assortativity and classification performance. The
strength of this correlation varies depending on the specific classifier configu-
ration. However, the values are quite high considering that different datasets are
compared together. Although relative error reduction is used instead of classifi-
cation accuracy, which already tries to compensate the differences between base
errors on the different datasets, the different nature of the used graphs introduces
additional complexity. When evaluating the different datasets independently6,
we found that the correlation was almost perfect for some datasets and worse for
some other datasets. For instance, Cornellcocite, Texascocite, and IMDball showed
a correlation of 0.9429 (node assortativity and relative error reduction for the
cp-wvrn-it configuration), while other datasets such as the four university ones
with link edges showed very low correlation, or even a negative one.

3.5 Increasing Classification Performance

Once we have showed that we are able to increase assortativity using our scoring
functions and that assortativity is positively correlated with performance, we
want to observe the results of our third hypothesis, namely, that using scoring
functions to correct weights can improve relational classification. In order to
evaluate the degree in which using scoring functions improves networked classifi-
cation, we use the 24 different full classifiers with all the available graphs. Since

6 We omit these individual results due to space constraints.



(a) cp-cdrn-it (b) cp-noB-it (c) cp-prn-it (d) cp-wvrn-it

(e) cp-cdrn-null (f) cp-noB-null (g) cp-prn-null (h) cp-wvrn-null

(i) cp-cdrn-rL (j) cp-noB-rL (k) cp-prn-rL (l) cp-wvrn-rL

(m) unif-cdrn-it (n) unif-noB-it (o) unif-prn-it (p) unif-wvrn-it

(q) unif-cdrn-null (r) unif-noB-null (s) unif-prn-null (t) unif-wvrn-null

(u) unif-cdrn-rL (v) unif-noB-rL (w) unif-prn-rL (x) unif-wvrn-rL

Fig. 1. Performances comparison for all the classifiers and the different graph variations
for the Cornellcocite dataset: Original ( ), AA ( ), CC ( ), CN ( ), JI ( ), PA
( )



we have 14 original graphs and 5 different variations of each of these graphs
can be obtained by using the different scoring functions, all the experiments are
done with 14 × 6 graphs. For each graph and classifier, we repeat the process
of selecting new train and test sets 100 times and define the performance of the
full classifier with respect to a given graph and a labeled ratio r as the mean
of these 100 different runs. We repeated the process for different labeled ratios
(train set sizes): 20%, 35%, 50%, and 65%.

Figure 1 shows the results of this classification for Cornellcocite dataset. First,
we can see that for all the classifiers but those using Network-Only Bayes (noB),
classification accuracy increases as the training set size grows. As the labeled
ratio increases, best models can be built and more correct information is available
to do the predictions.

Second, we can appreciate that the performance offered by the scoring func-
tions strongly depends on the specific relational classifier (RL) used. Graphs
showing the results for the same RL instantiation and different LC and IC com-
ponents present very similar curves.

For cdrn-cos and wvrn, the graph modified with JI leads to the best perfor-
mance; the graphs modified with AA, CC and CN give similar results than the
original graph, sometimes showing slightly better performance than the original
graph; PA modifications offer the worst results, not being able to increase per-
formance over the original graph. Performance when using prn is also consistent
when varying the LC and IC components: the graph modified with JI always
offers the best accuracy, sometimes increasing performance over 10%; CC is
slightly better than the original graph; and AA, CN, and PA do not overcome
the performance achieved with the original graph. Network-Only Bayes results
are the same for all the LC-IC variations.

Independently of the selected full classifier, the graph modified with Prefer-
ential Attachment always offers worse performance than all the other graphs.
This is consistent with the results showed in Section 3.2, where we could observe
that the assortativity values always decreased when using PA as scoring func-
tion. This is also true for the graphs modified with JI, where we could see that
assortativity always increased along with performance.

Due to space constrains, we are not able to include the results for all the
datasets. The results for the other datasets showed the same consistency when
using the same relational classifier and varying the LC and IC components. JI
also regularly performed better than all the other alternatives for all fc when
testing Washingtoncocite, Wisconsincocite, Texascocite, and IMDball.

7 JI was over-
come by CC for some specific full classifiers for Texaslink and Cornelllink datasets,
and sometimes for other modified graphs or even for the original graph for the
Washingtonlink and Wisconsinlink datasets. However, for both Cora and Indus-
try datasets, the graph modified with JI did not show a significant improvement
over the original graph.

7 The exceptions were 2 out of 24 fc in Texascocite for which the original graph per-
formed better than JI, and some specific r values and classifiers in IMDball.



4 Related Work

The problem of classifying networked data has been a recent focus of activity
in the machine learning research community, with special interest on adapting
traditional machine learning techniques to networked data classification.

In [5], the authors present a relational classifier toolkit. Beyond the actual
toolkit itself and by describing each of its modules, the authors review different
algorithms that can be used to classify networked data.

Many algorithms for relational classifiers have been proposed in the past.

In [1] the authors present the Relational Neighbor (RL) classifier based on
the principle of homophily, where the probability of a sample belonging to a
given class is proportional to the number of neighbors of that sample belonging
to the same class.

The Weighted Vote Relational Classifier (WVRN) estimates class-membership
of a node as the weighted mean of the class-membership probabilities of the
neighbors of that node.

The Class-Distribution Relational Neighbor classifier (CDRN) is presented
in [5], where the probability of class membership of a node is estimated by the
similarity of its class vector with the class reference vector. The class vector of
a node is defined as the vector of summed linkage weights to the various classes
and the class reference vector for a given class is the average of the class vectors
for nodes known to be of that class.

Network Only Bayes classifier (nBC) [2] uses naive Bayes classification based
on the classes of the nodes’ neighbors to classify hyperlinked documents.

In [4] the Network-Only Link-Based classification (nLB) is presented, which
uses regularized logistic regression models to classify networked data.

Since in relational classification problems entities are interlinked, the pre-
dicted class of a specific node may have consequences on the prediction of another
node’s class. For this reason, the method of independently classifying entities,
which may be of use in traditional machine learning approaches, may not be the
best way to deal with interlinked data. The process of simultaneously classifying
a set of linked entities is known as collective inference. It has been shown that
collective inference improves classification accuracy [12].

Collective inference may improve probabilistic inference in networked data
[12]. Many CI methods are used in relational learning: Gibbs sampling [13],
relaxation labeling [2], and iterative classification [4, 14] are the most used.

Relational classification has been applied to email classification [15], with
a dataset of mails being linked only by parent-children relationships; to topic
classification of hypertext documents [2]; to predict movie success with IMDb
data, linking movies with a shared production company [1, 5]; to sub-topic pre-
diction in machine learning papers [5]; to age, gender, and location prediction of
bloggers [16]; and many other networked data classification problems.



5 Conclusions

We have showed that it is possible to increase the assortativity of a graph ac-
cording to the node class labels with a very simple technique based on the usage
of scoring functions. We have evaluated different scoring functions and demon-
strated that using Jaccard Index (JI) always results in an increase on edge as-
sortativity and, on all datasets but one, also in node assortativity. The usage of
Common Neighbors (CN) and Adamic-Adar (AA) also leads to an increase on
both node and edge assortativity for most of the tested datasets.

Although we have showed that there is a positive correlation between an
increase on assortativity and an increase on classification performance, this cor-
relation is not perfect (which supports preliminary tests done in [5]). Note that
while we are dealing with a single assortativity value for each graph, many vari-
ables are involved in the performance obtained when classifying: from the spe-
cific configuration that the classifier adopts to the effect of choosing a concrete
split of the training and test samples. So each assortativity value is compared
against multiple classification performance results obtained when using different
full classifiers.

Regarding the performance improvements achieved when using the modified
graphs, the experiments showed that using Jaccard Index to modify the weights
of the edges results in a general improvement of classification performance, al-
though not for absolutely all the possible classifier configurations and datasets.
The performance improvement when using CC, AA, and CN as scoring func-
tions strongly depended on the selected dataset and, in a lesser extent, on the
relational classifier instantiated. This opens an interesting line for future work:
trying to identify the set of graph properties that determine which classifier (and
scoring function) will lead to the best performance results.

Moreover, in this paper we were focused on evaluating different scoring func-
tions and their effect on assortativity and performance. However, no specific ef-
forts were devoted to construct the best possible scoring function. In this sense,
a combination of the scoring functions that offered the best results may lead to
a higher increase on classification performance. Trying to find the best possible
scoring function is left as future work.

The techniques described in this paper can be applied to directed graphs
following the naive procedure of computing the scoring functions over the un-
derlying undirected graph obtained when omitting the direction of the edges.
Since afterwards the results of the scoring functions are multiplied by the origi-
nal weight in order to compute the new weight, edges between the same nodes
differing only on the direction could be able to obtain different modified weights.
Although the procedure seems feasible, it will be interesting to think about other
techniques improving this naive approach.
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