
Properly Acting under Partial Observability with Action
Feasibility Constraints

Caroline Ponzoni Carvalho Chanel1,2 and Florent Teichteil-Königsbuch1

1 Onera – The French Aerospace Lab, Toulouse, France
{caroline.carvalho,florent.teichteil}@onera.fr

2 ISAE – Institut Supérieur de l’Aéronautique et de l’Espace, Toulouse, France

Abstract. We introduce Action-Constrained Partially Observable Markov Deci-
sion Process (AC-POMDP), which arose from studying critical robotic applica-
tions with damaging actions. AC-POMDPs restrict the optimized policy to only
apply feasible actions: each action is feasible in a subset of the state space, and
the agent can observe the set of applicable actions in the current hidden state,
in addition to standard observations. We present optimality equations for AC-
POMDPs, which imply to operate on α-vectors defined over many different be-
lief subspaces. We propose an algorithm named PreCondition Value Iteration
(PCVI), which fully exploits this specific property of AC-POMDPs about α-
vectors. We also designed a relaxed version of PCVI whose complexity is ex-
ponentially smaller than PCVI. Experimental results on POMDP robotic bench-
marks with action feasibility constraints exhibit the benefits of explicitly exploit-
ing the semantic richness of action-feasibility observations in AC-POMDPs over
equivalent but unstructured POMDPs.

Keywords: sequential decision-making, partially observable Markov decision
processes, safe robotics, action feasibility constraints, action preconditions

1 Introduction

In automated planning, dealing with action preconditions – those feasibility constraints
modeling the set of states where a given action is applicable – is an usual standard
[1–4]. They allow planning problems’ designers to explicitly express properties about
feasible actions as logic formulas, which is of first importance in real-life systems or
robots. Feasible actions are defined as [5]: neither physically impossible (e.g. flying to
Prague from a city without airport), nor forbidden for safety reasons (taking off without
sufficient fuel), nor suboptimal and thus useless (flying from Toulouse to Prague via
São Borja).

When constructing a solution plan, deciding whether an action is feasible in the
current state of the system is obvious if states are fully observable, by testing if the
current state is in the set of states where the action is feasible. However, if the agent
cannot know its current state with perfect precision, it must rather reason about its
belief state, that encodes all the different possible states in which the agent can be [6–
8]. Thus, solution strategies are defined over belief states but not states, whereas action
feasibility constraints are still defined over states. Therefore, additional information

from the environment is required to disambiguate the belief state insomuch the set of
feasible actions to insert in the plan can be deduced [9].

For example, consider an autonomous coast guard robot navigating along a cliff
with abysses, as shown in Figure 1(a). This example is a slight variation of the Hallway
problem [10], where surrounding walls are replaced by cliffs from which the robot may
fall down. The goal is to reach the star while being certain (i.e. with probability 1) not to
fall down a cliff: in the states near abysses, actions that might make the robot fall down
have to be prohibited because they are unsafe. Imagine that the belief state of the robot
includes states 1, 2, 3 depicted in Figure 1(a). Without sensing the configuration of sur-
rounding abysses, i.e. the feasible actions in the current hidden state, there is no way
for the robot to go south in order to sense the presence of the goal. The modeling so-
lution that guarantees to reach the goal while applying only safe actions is well-known
by researchers on planning under partial observability: it consists in adding informa-
tion about applicable actions in the agent’s observations, and in assigning near-infinite
costs to infeasible state-action pairs. Doing this, we are guaranteed that the maximum-
reward policy will: (i) sufficiently disambiguate the belief state in order to reach high
interesting rewards ; (ii) only apply feasible actions.

Despite the existence of well-known modeling principles to deal with action feasi-
bility constraints in partially observable planning, there is place for improvements by
noting that the set of observations has a specific structure in many real-life or robotic
applications: namely, the set of observations is factored in the form of Ω = O × Θ,
where, in the current hidden state, the agent can receive “standard” observations ran-
domly from O, and “feasibility” observations deterministically from Θ. For instance in
the coast guard problem, a laser or camera sensor will imperfectly locate the agent in
the grid, but provide a unique deterministic configuration of surrounding abysses, i.e.
set of feasible actions. Thus, this paper aims at benefiting from the specific structure of
the observation set to significantly reduce the complexity of finding an optimal policy.
We conduct this study with probabilistic settings, in the context of Partially Observable
Markov Decision Processes (POMDPs) [6, 7]. Our proposal is oriented towards the ex-
ploitation of the specific structure of the problem, whereas standard algorithms can still
solve the problem without using this information but far less efficiently.

1 2 3

a b c F

(a) coastal environment

a b c

F

(b) observations of abyss configurations; arrows
represent feasible actions in each configuration

Fig. 1. Coast guard robotic problem.

The remainder of the paper is organized as follows. First, we make explicit and for-
malize action feasibility constraints in a new model named Action-Constrained POMDPs
(AC-POMDPs), which is a subset of POMDPs. This richer model provides structured
observation sets and functions, as well as a sound optimization criterion, which properly
selects only policies whose actions are feasible in the current hidden state of the system.
Most importantly, this criterion reveals that optimizing AC-POMDPs can be reduced
to handle α-vectors that are defined over many different small belief subspaces, thus
significantly reducing computations. Then, we present a point-based algorithm named
PreCondition Value Iteration (PCVI), which takes advantage of the specific structure of
AC-POMDPs by implementing α-vector procedures that operate over different small
belief subspaces. In comparison, standard algorithms like PBVI - Point Based Value
Iteration - [11] operate on the full belief space. Finally, we propose a relaxed ver-
sion of PCVI, which computes a lower bound on the value function that totally re-
moves the set of action feasibility observations from computations, yielding additional
exponential-time speedups. Our experimental results on many benchmarks and on a real
aerial robotic problem, where action feasibility constraints are essential for safety rea-
sons, highlight the computational benefits of explicitly dealing with action feasibility
semantics in POMDPs.

1.1 Related Work
Recently, researchers proposed a structured POMDP model, named Mixed-Observable
Markov Decision Processes (MOMDPs, see [12, 13]), which divides the observation
space Ω in visible and hidden parts: Ω = Ωv × Ωh. MOMDPs exploit the specific
structure of the observation set to reduce the dimension of the belief space, resulting in
significant computation gains. However, in our approach, the semantics of observation
variables are totally different: we assume Ω = O ×Θ, with Θ ⊆ 2A being a set of ap-
plicable actions from the set A of actions. Among algorithmic differences, MOMDPs’
α-vectors are all defined on the same subspace, whereas AC-POMDPs’ α-vectors are
each defined on different subspaces (see later). This noticeable difference suggests that
AC-POMDPs can not be simply viewed as MOMDPs for which visible observations
would be sets of feasible actions. Further work is needed to explicitly exploit the spe-
cific semantics of action-feasibility observations, as actually proposed in this paper.

Our work is also related to POMDP models that incorporate constraints on states or
on execution paths. Goal POMDPs [14] require the optimized policy to reach a set of
goal states from a given initial state. Constrained POMDPs [15] search for a policy max-
imizing the value function for a given reward function subject to inequality constraints
on value functions for different reward functions, which can be often interpreted as
constraining the optimized policy to some areas of the belief space. Thus, these models
put state-based constraints on the optimized policy, which are not directly related to
properties of feasible actions. On the contrary, our AC-POMDP model forces the op-
timized policy to apply only actions that are feasible in a given belief state, knowing
constraints on feasible state-action pairs. Our action-feasibility constraints are weaker
than Constrained POMDPs’ ones, which allows us to use a modified dynamic program-
ming schema that does not include the cumulative cost in the state space, contrary to
Constrained POMDPs. As a result, the complexity of solving Constrained POMDPs is
much higher than in AC-POMDPs.

2 Theoretical Backgrounds

Our work is built upon Partially Observable Markov Decision Processes (POMDPs),
which offer a sound mathematical model for sequential decision-making under proba-
bilistic partial observability. A POMDP [6, 7] is a tuple 〈S,A, Ω, T,O,R, b0〉, where: S
is the set of states;A is the set of actions;Ω is the set of observations; T : S×A×S →
[0, 1] is the transition function, such that: T (s, a, s′) = p(st+1 = s′|st = s, at = a);
O : Ω ×A× S → [0, 1] is the observation function such that: O(o, a, s′) = p(ot+1 =
o|st+1 = s′, at = a); R : S × A × S → R is the reward function associated with
transitions; b0 is the initial probability distribution over states. We denote ∆ ⊂ [0; 1]|S|

the (continuous) set of probability distributions over states, named belief space. Figure
2(a) depicts the dynamic influence diagram of a POMDP.

At each time step, the agent updates its current belief b according to the performed
action and the received observation, using Bayes’ rule :

boa(s
′) =

O(o, a, s′)
∑
s∈S T (s, a, s

′)b(s)∑
s∈S

∑
s′′∈S O(o, a, s′′)T (s, a, s′′)b(s)

(1)

Solving a POMDP consists in finding a policy function π : ∆ → A that maxi-
mizes a performance criterion. The expected discounted reward from any initial belief
V π(b) = Eπ [

∑∞
t=0 γ

tr(bt, π(bt)) | b0 = b] is usually optimized. The value of an op-
timal policy π∗ is defined by the optimal value function V ∗ that satisfies the Bellman
optimality equation:

V ∗(b) = max
a∈A

[
r(b, a) + γ

∑
o∈Ω

p(o|a, b)V ∗(boa)

]
(2)

where r(b, a) =
∑
s∈S b(s)

∑
s′∈S T (s, a, s

′)R(s, a, s′). This value function is proven
to be piecewise linear and convex over the belief space [6], so that at nth optimization
stage, the value function Vn can be parametrized as a set of hyperplanes over ∆ named
α-vectors. An α-vector and the associated action a(αin) define a region of the belief
space for which this vector maximizes Vn. Thus, the value of a belief b can be defined
as: Vn(b) = maxαin∈Vn b · α

i
n. The optimal policy at this step is then: πn(b) = a(αbn).

3 Action-Constrained POMDPs

In this section, we propose a more expressive POMDP model, named Action-Constrained
POMDP (AC-POMDP), which makes explicit the semantics of feasible actions in the
model. Namely, as common in robotic applications, it assumes that observation sym-
bols are factored in 2 parts: probabilistic observations informing about the hidden state,
and deterministic observations informing about the set of actions that are feasible in
the current hidden state. We will see that the second part implies to maximize the value
function over different belief subspaces, yielding computational savings over traditional
POMDP solvers.

3.1 AC-POMDPs: Model and Optimization Criterion

An Action-Constrained POMDP is defined as a tuple 〈S, (As)s∈S , Ω, T,O, I, R, b0, Θ0〉,
where, in contrast to POMDPs: (As)s∈S is the set of applicable action sets, such that
As is the set of actions that are feasible in a given state s; Ω = O × Θ is the set of
observations, such that Θ ⊆ 2A; observations in O and in Θ are independent given any
next state and applied action ; O : O × A × S → [0, 1] is the observation function
such that: O(o, a, s′) = p(ot+1 = o|st+1 = s′, at = a); I : Θ × S → {0, 1} is the
feasibility function: I(θ, s′) = p(θt+1 = θ | st+1 = s′) = 1 if θ = As′ , otherwise 0 ;
Θ0 is the initial set of applicable actions, observed before applying the first action. Like
similar approaches in non-deterministic settings [9], Θ0 is required to safely apply the
first action. For convenience, we also define the action feasibility function F such that
F(a, s) = 1 if and only if a ∈ As.

Figure 2(b) represents an AC-POMDP as a controlled stochastic process. The action
at executed at time t is constrained to belong to the observed set of feasible actions θt.
The next observed set θt+1 is equal to the set of actions Ast+1

that are feasible in the
hidden state st+1, which stochastically results from applying action at in state st. The
other part of observations (ot and ot+1) are stochastically received in the same way as
in POMDPs.

Contrary to POMDPs, policies of AC-POMDPs are constrained to only execute
actions that are feasible in the current hidden state. Given the history ht = (ω0 =
(o0, θ0), · · · , ωt = (ot, θt)) of observations up to time t, we define the set of feasible
policies as:

Πht = {π ∈ A∆ : ∀ 0 6 i 6 t, π(bi(o0, · · · , oi)) ∈ θi}

where bi(o0, · · · , oi) is the belief state resulting from observing (o0, · · · , oi). Thus,
solving an AC-POMDP consists in finding a policy π∗ such that, for all b ∈ ∆ and
θ ∈ Θ0:

π∗(b, θ) ∈ argmax
π∈Πh∞

E

[
+∞∑
t=0

γtr(bt, π(bt) | b0 = b, θ0 = θ

]
(3)

st st+1

p(st+1|st, at)

ot ot+1

p(
o t

+
1
|s t

+
1
, a
t
)

at

r(st, at, st+1)

(a) The POMDP model

st st+1

p(st+1|st, at)

ωt

ot

θt

ωt+1

ot+1

θt+1

p(
o t

+
1
|s t

+
1
, a
t
)

at

r(st, at, st+1)

a
t ∈

θ
t

θ t
+
1
=
A
s t

+
1

(b) The AC-POMDP model

Fig. 2. Dynamic influence diagrams of POMDPs and AC-POMDPs

3.2 Belief State Update

As in POMDPs, we should compute the new belief state of the agent, noted bωa , after
applying an action a in belief state b and receiving an observation ω = (o, θ).

Theorem 1. Let b be the belief state at a given time step, a the action applied by the
agent at this time step, and ω = (o, θ) the pair of observations immediately received.
The next belief state, for all possible next state s′, is:

b(o,θ)a (s′) =
I(θ, s′)boa(s′)∑

s′′∈S I(θ, s′′)boa(s′′)
(4)

with boa equal to the expression given in eq. 1.

Proof.

b(o,θ)a (s′) = Pr(st+1 = s′|ot+1 = o, θt+1 = θ, bt = b, at = a)

=
Pr(st+1 = s′, ot+1 = o, θt+1 = θ|bt = b, at = a)

Pr(ot+1 = o, θt+1 = θ|bt = b, at = a)

=
U(s′, o, θ|b, a)∑

s′′∈S U(s′′, o, θ|b, a)
(5)

with U(s, o, θ|b, a) = Pr(st+1 = s, ot+1 = o, θt+1 = θ|bt = b, at = a). As observa-
tion symbols o and θ are assumed to be independent given any next state and applied
action a, we can factorize U in the form of:

U(s, o, θ|b, a)× 1

Pr(ot+1 = o|bt = b, at = a)
=

Pr(θt+1 = θ|st+1 = s, bt = b, at = a)︸ ︷︷ ︸
I(θ,s)

×

Pr(ot+1 = o|st+1 = s, bt = b, at = a)× Pr(st+1 = s|bt = b, at = a)

Pr(ot+1 = o|bt = b, at = a)︸ ︷︷ ︸
boa(s)

Finally, by replacing s by s′ and s′′ in resp. the numerator and the denominator of eq.
5, and by multiplying both of them by Pr(ot+1 = o|bt = b, at = a), which is assumed
to be non-zero exactly as in the standard POMDP theory, we get the intended result.

The previous theorem highlights two important properties. First, Equation 4 clearly
shows that the observation of the set of feasible actions in the current hidden state, due
to its deterministic nature, acts like a binary mask on the belief state. Intuitively, we can
benefit of this property to significantly speedup computations in comparison with a flat
observation model (ie. standard POMDPs), by optimizing the value function only over
the relevant belief subspace. To this purpose, we will actually present later algorithms
that manipulate α-vectors over many different belief subspaces.

Second, following from eq. 4, we will prove that at any given time step, all states
s′ whose belief is non-zero have the same set of feasible actions. This property shows

that executing policies in AC-POMDPs is coherent with the proposed framework. Most
importantly, at optimization time, we can deduce without ambiguity the set of ac-
tions over which we maximize the value function for the current belief state. Note
that this primordial property would not be true if the agent would not observe the set
of feasible actions, which gives a theoretical justification of observing them in real
robotic applications. More formally, let us define the support of the belief state as:
σ(b

(o,θ)
a) = {s′ ∈ S : b

(o,θ)
a (s′) > 0}, used in the following theorem.

Theorem 2. Let b(o,θ)a be the belief at a given time step. For any two states s′1 and s′2
in σ(b(o,θ)a), we have: As′1 = As′2 .

Proof. Suppose that As′1 6= As′2 . Thus, by definition, I(θ, s′1) 6= I(θ, s′2). If I(θ, s′1) =
0, then b

(o,θ)
a (s′1) = 0 according to eq. 4, which contradicts s′1 ∈ σ(b

(o,θ)
a). Thus,

I(θ, s′1) = 1, but then I(θ, s′2) = 0, so that b(o,θ)a (s′2) = 0: again, this is a contradiction
with s′2 ∈ σ(b

(o,θ)
a).

3.3 Optimality Equation
Theorem 2 allows us to adapt dynamic programming equations of POMDPs to AC-
POMDPs, by “just” maximizing the value function over the set of feasible actions in
the current belief state, instead of considering all actions. This adaptation may seem
very simplistic in appearance, but it is absolutely not if we consider that it would defi-
nitely not be possible without Theorem 2, ie., by deduction, without observing the set
of feasible actions at any decision epoch. Specifically, since all states in the support of
the belief state have the same set of feasible actions, we can deduce the set of feasible
actions from a given belief state b, noted Ab without ambiguity: ∀ s ∈ σ(b),Ab = As.
Therefore, AC-POMDP policies defined in eq. 3 can be functions of only b by abusing
the notation: π(b) = π(b,Ab).
Theorem 3.

V ∗(b) = max
a∈Ab

r(b, a) + γ
∑
o∈O
θ∈Θ

p(o, θ | a, b)V ∗
(
b(o,θ)a

) (6)

with b(o,θ)a given in eq. 4 and:
p(o, θ | a, b) =

∑
s′∈S

I(θ, s′)O(o, a, s′)
∑
s∈S

T (s, a, s′)b(s) (7)

Proof. According to Theorem 2, the set of applicable actions observed just before com-
puting b, i.e. θt−1, can be deduced from b without ambiguity from the support of b:
θt−1 = Ab = As for any s ∈ σ(b). Since optimal policies are constrained to ap-
ply only applicable actions (see eq. 3), the candidate greedy actions that maximize the
value function must be chosen in Ab. Then, eq. 6 can be obtained in a similar way
to POMDPs, considering (o, θ) as a joint observation. Eq. 7 is proven using a similar
reasoning to the proof of Theorem 1:

p(o, θ|a, b) = Pr(θ|a, b)Pr(o|a, b) =
∑
s′∈S Pr(θ|s′)Pr(s′|o, a, b)Pr(o|a, b)

=
∑
s′∈S Pr(θ|s′)Pr(s′, o|a, b) =

∑
s′∈S Pr(θ|s′)Pr(o|s′, a)Pr(s′|a, b)

=
∑
s′∈S I(θ, s′)O(o, a, s′)

∑
s∈S T (s, a, s

′)b(s)

4 PreCondition Value Iteration

We implemented a point-based algorithm to solve AC-POMDPs, which can be viewed
as an adaptation of PBVI [11] to the update equations of Theorem 3. The ideas behind
this adaptation are yet independent from PBVI, and could have been applied to gener-
alize any modern α-vector-based POMDP planner, like Perseus [16], HSVI2 [17], or
SARSOP [18]. The pseudo-code is given in Algorithm 1.

The expansion of B is performed in a way similar to PBVI (see Line 9 of the Al-
gorithm 1). First, for each point b ∈ B, a state s is drawn from the belief distribution
b. Second, for each action a in Ab := As,∀s ∈ σ(b), a successor state s′ is drawn
from the transition model T (s, a, s), and a pair of observations (θ, o) is drawn using
I(θ, s′), p(o|s′, a) and p(s′|s, a). Knowing (b, a, θ, o), we can calculate the new belief
set {ba0 , ..., baj}. Finally, the farthest point from all points already in B is chosen and
integrated into B.

Apart from the fact that observations are structured in the form of pairs of “stan-
dard” observations o and “feasible action set” observations θ, and that the expansion
of B is performed mostly as in PBVI, there are mainly two differences between our
PCVI algorithm and standard point-based algorithms. First, the projections Γ a,(o,θ) are
computed only for actions in Ab,∀b ∈ B, which can save many projections compared
with PBVI that generates them for all a ∈ ∪s∈SAs. In the same vein, the backup value
function Vk for a given belief b ∈ B, is computed only for actions in Ab (see Line
8), contrary to PBVI that uses all actions of the problem. Remember that, according to
Theorem 2, Ab is computed at optimization time by choosing any state s ∈ σ(b) and
assigning Ab = As.

The second difference to standard approaches is much more significant in terms of
complexity improvements, and is the biggest benefit of reasoning with explicit action
feasibility constraints. By explicitly exploiting the semantics of the AC-POMDP model,

Algorithm 1: PreCondition Value Iteration (PCVI)
1 k ← 0; Initialize Vk=0 ← ∅; Initialize B with b0;
2 repeat
3 k ← k + 1; Vk ← ∅;
4 for a ∈ (Ab)b∈B and (o, θ) ∈ O ×Θ do

5 Γ a,(o,θ) ← α
a,(o,θ)
i (s) =

γF(a, s)
∑
s′:I(θ,s′)6=0

T (s, a, s′)O(o, a, s′)α′i(s
′), ∀α′i ∈ Vk−1, aαi ∈ θ ;

6 for b ∈ B, a ∈ Ab do
7 Γ ab ← Γ a,∗ +

∑
o∈O
θ∈Θ

argmax
α∈Γa,(o,θ)

(α · b), ∀a ∈ Ab ;

8 Vk ← argmax
αa
b
∈Γa

b
,∀a∈Ab

(αab · b), ∀b ∈ B ;

9 Expand B as in PBVI [11] ;

10 until
∥∥∥∥ max
αk∈Vk

αk · b− max
αk−1∈Vk−1

αk−1 · b
∥∥∥∥
b∈B

< ε;

PCVI is able to operate α-vectors defined on many different reduced belief subspaces.
Namely, since a given action a is defined only over a subset of states Sa = {s ∈ S :
F(a, s) = 1}, its corresponding α-vectors αa,(o,θ) are defined only over a reduced
belief subspace ∆a ⊂ [0; 1]Sa ⊂ [0; 1]S (see Figure 3(b)). In comparison, PBVI (or
any other algorithm for solving POMDPs) works with α-vectors that are defined over
the full belief space ∆ ⊂ [0; 1]S (see Figure 3(a)). To this respect, the recent MOMDP
model by [12] can be considered as a simpler algorithmic subclass of AC-POMDPs, be-
cause MOMDPs deal with α-vectors that are all defined over the same belief subspace,
whereas AC-POMDPs’ α-vectors operate over different belief subspaces.

More precisely, the set Γ a,(o,θ) of α-vectors of a given action a and observation
(o, θ), knowing the previously computed value function Vk−1, is defined as:

Γ a,(o,θ) ← α
a,(o,θ)
i (s) = γF(a, s)

∑
s′:I(θ,s′)6=0

T (s, a, s′)×

O(o, a, s′)α′i(s
′),∀α′i ∈ Vk−1, aαi ∈ θ (8)

This equation fundamentally differs from standard POMDP algorithms. Action feasibil-
ity constraints allow us to apply binary masks on the value function, in order to ensure
that values of α-vectors are computed only for the states where the corresponding ac-
tions are defined. Equation 8 shows that two masks are applied: (1) the mask I(θ, s′)
restricts the sum over next states s′ to the states where the action aα′i is feasible (the
agent observes the set θ of feasible actions, thus necessarily aα′i ∈ θ) ; (2) the mask

F(a, s) guarantees to compute the values of αa,(o,θ)i only for the states s where it is
defined, i.e. where a is feasible.

Note that this masking mechanism is very different from the masks used in HSVI2
[17]. In HSVI2, so-called masked α-vectors are just sparse vectors that compute and
record only the entries of α-vectors corresponding to non-zeros of b. In our case, we
explicitly mask (not by just using sparse representations of vectors) the irrelevant en-
tries of α-vectors that correspond to infeasible state-action pairs. In AC-POMDPs, the
entries of an α-vector, where the corresponding action is not feasible, are not simply
equal to zero but can have arbitrary irrelevant values that must be explicitly pruned by

s4

s1

s3

s2

αa1

αa2

αa3

(a) POMDPs: α-vectors are all defined
over the entire belief space.

s4

s1

s3

s2

αa1

αa2
αa3

(b) AC-POMDPs: α-vectors are defined
over different belief subspaces: a1 fea-
sible in all states; a2 feasible only in s2
and s3; a3 feasible only in s2.

Fig. 3. Domain of definition of α-vectors in POMDPs versus AC-POMDPs.

the F(a, s) masking function. In fact, HSVI2’s masking mechanism and ours can be
independently applied together.

More precisely, HSVI2’s masks automatically prune zero rewards using sparse vec-
tors. Yet, note that modeling infeasible actions in standard POMDP semantics requires
to assign near-infinite costs to infeasible actions. Thus, HSVI2 would still have to eval-
uate these near-infinite costs, which are non-zero and not pruned by its masking mech-
anism. On the contrary, PCVI’s masks automatically prune infeasible actions’ costs,
which are irrelevant in AC-POMDP semantics, via the function F(a, s). As a result,
masks of HSVI2 and PCVI are totally different, in such a way that infeasible actions’
costs are automatically discarded by PCVI but not by HSVI2.

4.1 Relaxed Lower Bound Computation

By studying eq. 6 more in depth, we are able to further benefit from the specific struc-
ture of AC-POMDPs’ observation model in order to provide a computationally efficient
lower bound on the value function. This lower bound, proposed in the following theo-
rem, depends only on the observation setO, instead of the full observation setO×Θ. As
a result, the computational gains are potentially exponential in the number of actions,
since Θ ⊆ 2A. The idea consists in swapping the max operator over α-vectors and
the sum over action-feasibility observations θ. This is related to – but different from –
the fast informed bound method proposed by Hauskrecht [19], which consists in swap-
ping the same max operator for the sum over states s in standard POMDPs, yielding an
upper bound on the value function but not a lower bound (since Hauskrecht’s swap is
reversed in comparison with ours). Note that Hauskrecht’s swap was designed for stan-
dard POMDPs, so that it does not reduce the complexity induced by action-feasibility
observations, contrary to our swap.

Theorem 4. Given the value function Vn, we have:

Vn+1(b) > max
a∈Ab

r(b, a) + γ
∑
o∈O

max
αn∈Vn

∑
s∈S
s′∈S

b(s)O(o, a, s′)T (s, a, s′)αn(s
′)

 (9)

Proof.

Vn+1(b) = max
a∈Ab

r(b, a) +∑
o∈O
θ∈Θ

p(o, θ|a, b)Vn
(
b(o,θ)a

)

= max
a∈Ab

r(b, a) +∑
o∈O
θ∈Θ

p(o, θ|a, b) max
αn∈Vn

∑
s′∈S

b(o,θ)a (s′)αn(s
′)



> max
a∈Ab

r(b, a) +
∑
o∈O

max
αn∈Vn

∑
s′∈S
s∈S

O(o, a, s′)T (s, a, s′)b(s)αn(s
′)
∑
θ∈Θ

I(θ, s′)︸ ︷︷ ︸
=1



The computation of this lower bound is equivalent to ignoring projections on observa-
tions θ of feasible actions in Lines 5 and 7 of Algorithm 1, as if feasible actions were not
observed by the agent. In this way, projections are only computed for the observation
setO, instead of the full observation setO×Θ, which potentially yields an exponential
gain. Note that α-vectors are still defined only for the states where the corresponding
actions are defined, so that the relaxed PCVI algorithm is yet not equivalent to the stan-
dard PBVI algorithm. To emphasize this point, we give below the update equation of
the α-vectors that make up the lower bound value function. The set of α-vectors Γ a,o

only depends on o, but each α-vector αa,o of the set is computed by using the feasibility
function F(a, s):

Γ a,o ← αa,o(s) = γ
∑
s′∈S

T (s, a, s′)F(a, s)O(o, a, s′)α′i(s
′),∀αn ∈ Vn (10)

The lower bound relaxation of PCVI uses Eq. 10 in place of Eq. 8 in Line 5 of Alg. 1.
Line 7 is replaced with the following update: Γ ab ← Γ a,∗ +

∑
o∈O argmaxα∈Γa,o(α ·

b),∀a ∈ Ab. The resulting algorithm has the same complexity as standard POMDPs,
while guaranteeing that α-vectors and the optimized policy use only feasible actions.

5 Experimental Evaluations

We tested various robotic-like planning problems with action feasibility constraints,
which we modeled as AC-POMDPs and solved using our PCVI algorithm. In the subse-
quent figures, the unrelaxed and relaxed versions of PCVI are respectively noted PCVI1
and PCVI2. We compared our approach with equivalent standard POMDP models, as
defined by practitioners to deal with action feasibility constraints: observations of fea-
sible actions are incorporated in the set of observations, but the resulting observation
set is treated as an unstructured flat observation set; near-infinite costs are assigned to
infeasible state-action pairs in order to prevent the optimized policy from containing
illegal actions. Otherwise, there are no guarantees that the optimized policies of stan-
dard POMDP models do not apply infeasible actions. Standard POMDP models are
solved by PBVI [11] or HSVI2 [17]. We first prove that this translation is sound, before
presenting the actual experimental comparisons. We studied four performance criteria
depending on benchmarks: 1) the size of value function in terms of the number of α-
vectors it contains; 2) the evolution of Bellman error during computation of an optimal
policy; 3) the planning time up to convergence at ε = 0.5; 4) the statistical expected
accumulated rewards from the initial belief state by running 1000 simulations of the
optimized policy.

5.1 Translating AC-POMDPs into Equivalent POMDPs

LetM = 〈S, (As)s∈S , Ω = O ×Θ, T,O, I, R, b0, Θ0〉 be a given AC-POMDP. Con-
sider POMDP M̃ = 〈S, Ã, Ω = O ×Θ, T, Õ, R̃, b0, Θ0〉 = Ψ(M) where:

– Ã =
⋃
s∈S As;

– Õ : (O × Θ) × Ã × S → [0; 1] is the aggregated observation function, such that
Õ((o, θ), a, s′) = O(o, a, s′)I(θ, s′);

– R̃ : S × Ã × S → R is the modified reward function, such that R̃(s, a, s′) =

R(s, a, s′) if a ∈ As, otherwise R̃(s, a, s′) = −∞.

Then, based on POMDPs’ and AC-POMDPs’ optimality equations , we can easily prove
that any optimal policy for POMDP M̃ is optimal for the original AC-POMDPM.

Theorem 5. LetM be an AC-POMDP and M̃ = Ψ(M) its POMDP translation. Then
any optimal policy for M̃ is optimal forM.

Proof. Let π∗ be an optimal policy forM. According to Bellman eq. 2, we have:

π∗(b) ∈ argmax
a∈Ã

r̃(b, a) + γ
∑
o∈O
θ∈Θ

p̃((o, θ) | a, b)V π
∗
(b(o,θ)a)


with r̃(b, a) =

∑
s∈S b(s)

∑
s′∈S T (s, a, s

′)R̃(s, a, s′) and:

p̃((o, θ) | a, b) =
∑
s′∈S

Õ((o, θ), a, s′)
∑
s∈S

T (s, a, s′)b(s)

=
∑
s′∈S

O(o, a, s′)I(θ, s′)
∑
s∈S

T (s, a, s′)b(s)

= p(o, θ | a, b)

as defined in eq. 7.
Moreover, for a 6∈ Ab, r̃(b, a) = −∞: indeed, by definition ofAb, it means that there is
a state s ∈ σ(b), i.e. b(s) > 0, such that a 6∈ As and thus R̃(s, a, s′) = −∞ for all next
state s′. Consequently, the maximum value of the above max operator is necessarily
obtained for an action a∗ ∈ Ab. Finally, for all a ∈ Ab and states s ∈ σ(b) and s′ ∈ S,
R̃(s, a, s′) = R(s, a, s′), so that r̃(b, a) = r(b, a). Putting it all together, we have:

π∗(b) ∈ argmax
a∈Ab

r(b, a) + γ
∑
o∈O
θ∈Θ

p((o, θ) | a, b)V π
∗
(b(o,θ)a)


which means that V π

∗
is solution of the optimality equation of AC-POMDPs (eq. 6).

5.2 Multi-Target Detection, Identification and Inspection

We first present a real robotic mission, which we solved and actually achieved with
real aerial robots. This mission, sketched in Figure 4, is especially interesting because
robot’s actions are feasible only on a subset of states for safety reasons (accident risk,
regulations specific to the test terrain). An autonomous helicopter has to detect, identify
then inspect a specific car in an environment composed of different zones, which can
possibly contain cars of different models (see Figure 4(a)). The helicopter can receive
“standard” observations from an image processing algorithm [20] (see Figure 4(b)):
no car detected, car detected but not identified, car identified as another model. Four
different actions can be performed: go to a given zone, feasible only at altitude 40
meters; land, feasible only at altitude 30 meters and requiring that the helicopter can

z1
z2

z3

(a) possible scenario
input detection ROI matching

(b) image processing

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 1000 2000 3000 4000 5000 6000 7000

time (s)

PBVI
PCVI1
PCVI2

(c) Value function size

 0

 20

 40

 60

 80

 100

 0 1000 2000 3000 4000 5000 6000 7000

time (s)

PBVI
PCVI1
PCVI2

(d) Bellman error evolution

Fig. 4. Multi-target detection, identification & inspection

land in the zone over which it flies; increase the view angle of the observed car by 45
degrees, feasible only at altitude 30 meters; change altitude, without constraints. The
action feasibility constraints only depend on the helicopter’s altitude and on the fact that
the zone below the helicopter is safe for landing (no obstacles). Thus, the helicopter is
equipped of a laser that gives the current altitude, which is directly interpreted as a set
of applicable actions for this altitude. Similarly, a simple image processing algorithm
based on texture analysis allows the helicopter to known whether the landing action is
feasible or not. Note that these “feasibility” observations are totally independent from
the ones that give information about cars’ detection and identification.

We ran PBVI and PCVI on the scenario of Figure 4(a), which actually contains
the target car, parked in zone z2. Figure 4(c) shows that PBVI’s value function grows
faster than PCVI’s one, especially PCVI2. The latter ignores observations of feasible
actions during optimization, thus producing much less α-vectors than PCVI1 or PBVI.
Concerning planning time up to convergence, Figure 4(d) shows that PBVI’s rate of
convergence is lower than PCVI’s ones. This is due to the fact that PCVI backups the
value function using a smaller number of α-vectors, and uses masks to restrict α-vectors
to be defined only over their relevant belief subspaces.

5.3 Classical Benchmarks: hallway and maze

We modified classical benchmarks from the literature that have a similar structure to
our coast guard benchmark (see Figure 1(a)), namely hallway and the 2-floor “4x5x2”
maze [21], where we forbade the robot to hit walls in order to prevent damages. These
problems have identical actions and observations, but differ in the number of states.

 0

 20

 40

 60

 80

 100

 0 0.5 1 1.5 2 2.5 3

time (s)

PBVI
PCVI1
PCVI2

(a) Value function size

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.5 1 1.5 2 2.5 3

time (s)

PBVI
PCVI1
PCVI2

(b) Bellman error evolution

Fig. 5. The maze domain

Actions consist in going either north, south, east or west. Each observation is composed
of 2 symbols: the first one, which is noisy, indicates if the robot is at the goal state;
the second is perfectly sensed and informs the robot of the topology of walls around
it, which is totally equivalent to informing the robot of the set of feasible actions in its
current hidden state, as represented in Figure 1(b).

Results are presented in Figures 5 and 6. On the maze domain, the value func-
tion’s sizes of PCVI1 and PCVI2 are nearly the same, yet much less than PBVI (see
Figure 5(a)). Since PCVI2 ignores observations of feasible actions when operating on
α-vectors, this result suggests that there are a few number of such possible observations
in this domain. However, Figure 5(b) shows that PCVI2 converges significantly faster
than PCVI1, which is itself more efficient than PBVI. Remember that PCVI1 solves
the exact same problem as PBVI, yet by explicitly exploiting the semantics of feasi-
ble actions, whereas PCVI2 solves a relaxed simpler problem. PBVI can not reason
about action feasibility constraints, which are lost in the equivalent but flat unstructured
POMDP model.

Concerning the hallway domain, PCVI2 outperforms PCVI1, which is itself better
than PBVI, both in terms of value function size and convergence rates. In comparison
with the maze domain, PCVI2 is now able to generate significantly less α-vectors than
PCVI1, because the number of different possible sets of feasible observations that can
be observed (and ignored by PCVI2) is quite large.

 5

 10

 15

 20

 25

 30

 35

 40

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

time (s)

PBVI
PCVI1
PCVI2

(a) Value function size

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

time (s)

PBVI
PCVI1
PCVI2

(b) Bellman error evolution

Fig. 6. The hallway domain

5.4 Larger Navigation Problems

Finally, we tested random navigation problems whose domain is identical to hallway
and maze, except that many cells are obstacles that can damage the robot. The prob-
lems have also many more states. The robot can observe obstacles around it, using for
instance a circular laser sensor. This time, we compared PCVI with HSVI2 [17], which
is a heuristic point-based planner that proved to be very efficient in many domains of the
literature. As PCVI is adapted from PBVI, which is generally outperformed by HSVI2,
we could expect that PVCI would perform poorly in comparison with HSVI2. But Fig-
ure 7(a) shows that PCVI2’s planning time is actually comparable to HSVI2 for the
largest problems, and is even 10 times faster on 2 problems (logarithmic scale). More-
over, HSVI2’s policies are very poor on many problems (see Figure 7(b)), especially
for the “25x30” problem for which PCVI gets a similar planning time.

Most interestingly, PCVI1 and PCVI2 get similar expected cumulated rewards, as
shown in Figure 7(b). Thus, in grid-like problems, on which many robotic applications
are based, ignoring the observation of feasible actions at optimization time has no im-
pact on the quality of the optimized policy. Note that PCVI2’s solution policy is still
guaranteed to contain only feasible actions in each possible belief state: independently
from the relaxed lower bound used in place of the optimal value function, PCVI2’s
α-vectors are anyway defined only over the belief subspace where the corresponding
action is feasible. Thus, it can never be the case that the policy is deduced from inco-
herent α-vectors.

 0.1

 1

 10

 100

 1000

 10000

10x10 15x10 15x15 15x20 20x20 20x25 25x25 25x30 30x30

grid’s dimensions

HSVI
PBVI

PCVI1
PCVI2

(a) Planning time (seconds)

-10

-8

-6

-4

-2

 0

 2

 4

 6

 8

 10

10x10 15x10 15x15 15x20 20x20 20x25 25x25 25x30 30x30

grid’s dimensions

HSVI
PBVI

PCVI1
PCVI2

(b) Expected cumulated rewards

Fig. 7. Experiments with various navigation problems

6 Conclusion

We studied a subclass of probabilistic sequential decision-making problems under par-
tial observability, for which the agent’s observations contain symbols that represent the
set of applicable actions in the current hidden state. This class of problems appears to
be very useful at least in autonomous robotics, where such observation symbols are typ-
ically obtained from specific or dedicated sensors. Knowing whether action feasibility
constraints are only convenient modeling or algorithmic means, is an open question.
However, it has been shown in a multi-agent context, that action feasibility constraints
can not be equivalently modeled using additional observation symbols and near-infinite
costs on infeasible state-action pairs [5]. In any case, exploiting the knowledge of action
preconditions can bring a lot, especially in partially observable domains.

References

1. Ghallab, M., Nau, D., Traverso, P.: Automated Planning: theory and practice. Morgan
Kaufmann (2004)

2. Fikes, R., Nilsson, N.J.: STRIPS: A new approach to the application of theorem proving to
problem solving. Artif. Intell. 2(3/4) (1971) 189–208

3. Younes, H., Littman, M.: PPDDL1.0: An extension to PDDL for expressing planning do-
mains with probabilistic effects. In: In Proc. of ICAPS. (2003)

4. Sanner, S.: Relational Dynamic Influence Diagram Language (RDDL): Language Descrip-
tion. http://users.cecs.anu.edu.au/∼ssanner/IPPC 2011/RDDL.pdf (2010)

5. Pralet, C., Schiex, T., Verfaillie, G.: Sequential Decision-Making Problems - Representation
and Solution. Wiley (2009)

6. Sondik, E.: The optimal control of partially observable Markov processes (1971)
7. Kaelbling, L., Littman, M., Cassandra, A.: Planning and acting in partially observable

stochastic domains. AIJ 101(1-2) (1998)
8. Palacios, H., Geffner, H.: Compiling uncertainty away in conformant planning problems

with bounded width. J. Artif. Int. Res. 35(1) (August 2009) 623–675
9. Pralet, C., Verfaillie, G., Lemaıtre, M., Infantes, G.: Constraint-based Controller Synthesis

in Non-Deterministic and Partially Observable Domains. Proc. of ECAI (2010)
10. Littman, M.L., Cassandra, A.R., Kaelbling, L.P.: Learning policies for partially observable

environments: Scaling up. In: ICML. (1995) 362–370
11. Pineau, J., Gordon, G., Thrun, S.: Point-based value iteration: An anytime algorithm for

POMDPs. In: Proc. of IJCAI. (2003)
12. Ong, S.C.W., Png, S.W., Hsu, D., Lee, W.S.: Planning under uncertainty for robotic tasks

with mixed observability. Int. J. Rob. Res. 29(8) (July 2010) 1053–1068
13. Araya-Lopez, M., Thomas, V., Buffet, O., Charpillet, F.: A Closer Look at MOMDPs. In:

Proc. of the 22nd IEEE International Conference on Tools with Artificial Intelligence - Vol-
ume 02. ICTAI ’10, Washington, DC, USA, IEEE Computer Society (2010) 197–204

14. Bonet, B., Geffner, H.: Solving pomdps: Rtdp-bel vs. point-based algorithms. In: Pro-
ceedings of the 21st international jont conference on Artifical intelligence. IJCAI’09, San
Francisco, CA, USA, Morgan Kaufmann Publishers Inc. (2009) 1641–1646

15. Kim, D., Lee, J., Kim, K.E., Poupart, P.: Point-based value iteration for constrained pomdps.
In: IJCAI. (2011) 1968–1974

16. Spaan, M., Vlassis, N.: Perseus: Randomized point-based value iteration for POMDPs. JAIR
24 (2005) 195–220

17. Smith, T., Simmons, R.G.: Point-based POMDP algorithms: Improved analysis and imple-
mentation. In: Proc. UAI. (2005)

18. Kurniawati, H., Hsu, D., Lee, W.: SARSOP: Efficient point-based POMDP planning by
approximating optimally reachable belief spaces. In: Proc. RSS. (2008)

19. Hauskrecht, M.: Value-function approximations for partially observable markov decision
processes. J. Artif. Intell. Res. (JAIR) 13 (2000) 33–94

20. Saux, B., Sanfourche, M.: Robust vehicle categorization from aerial images by 3d-template
matching and multiple classifier system. In: 7th International Symposium on Image and
Signal Processing and Analysis (ISPA). (2011) 466–470

21. Cassandra, A.R.: POMDP’s Homepage. http://www.pomdp.org/pomdp/index.shtml (1999)

