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Abstract. ‘Gait’ is a person’s manner of walking. Patients may have an
abnormal gait due to a range of physical impairment or brain damage.
Clinical gait analysis (CGA) is a technique for identifying the underly-
ing impairments that affect a patient’s gait pattern. The CGA is critical
for treatment planning. Essentially, CGA tries to use patients’ physical
examination results, known as static data, to interpret the dynamic char-
acteristics in an abnormal gait, known as dynamic data. This process is
carried out by gait analysis experts, mainly based on their experience
which may lead to subjective diagnoses. To facilitate the automation of
this process and form a relatively objective diagnosis, this paper pro-
poses a new probabilistic correlated static-dynamic model (CSDM) to
discover correlated relationships between the dynamic characteristics of
gait and their root cause in the static data space. We propose an EM-
based algorithm to learn the parameters of the CSDM. One of the main
advantages of the CSDM is its ability to provide intuitive knowledge.
For example, the CSDM can describe what kinds of static data will lead
to what kinds of hidden gait patterns in the form of a decision tree,
which helps us to infer dynamic characteristics based on static data. Our
initial experiments indicate that the CSDM is promising for discovering
the correlated relationship between physical examination (static) and
gait (dynamic) data.

Keywords: Probabilistic graphical model, Correlated static-dynamic
model (CSDM), Clinical gait analysis (CGA), EM algorithm, Decision
tree

1 Introduction

The past 20 years have witnessed a burgeoning interest in clinical gait analysis
for children with cerebral palsy (CP). The aim of clinical gait analysis is to
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Table 1: An Excerpt Data Set from the Static Data

Subject Internal Rotation r Internal Rotation l Anteversion r · · · Knee Flexors l

1 58 63 25 · · · 3+

2 60 71 15 · · · 4

3 53 52 29 · · · 3

...
...

...
...

...
...

determine a patient’s impairments to plan manageable treatment. Usually, two
types of data are used in clinical gait analysis: static data, which is the physical
examination data that is measured when the patient is not walking, such as the
shape of the femur and the strength of the abductor muscles. Table 1 shows an
excerpt data set from the static data. From the table, we can see that there are
many attribute values for each subject. The other type of data is dynamic data,
which records the dynamic characteristics that evolve during a gait trial and
usually can be displayed in curves. Figure 1 shows gait curve examples for one
subject. Gait curves are recorded from multiple dimensions (i.e., from different
parts of the body), such as the pelvis and hips. Since each subject has multiple
trials, there are multiple curves for each dimension. In addition, each dimension
has both the left and right side of the body. Thus, the total number of curves for
each dimension is the number of trials multiplied by two. We use the red line to
denote the dynamic of the left side and the blue line to denote the counterpart
of the right side. Figure 1(a)-(d) show 4 different dimensions of the dynamics.
Each curve in each dimension represents the corresponding dynamics of one trial
for the left or right part. The grey shaded area termed as normal describes the
dynamic curve obtained from healthy people with a range of +/- 1 standard
deviations for each observation point. From the example data shown above, we
can see that describing the relationship between the static and dynamic data in
the clinical gait data is not intuitive.

In practice, static data is used to explain abnormal features in dynamic data.
In other words, gait analysis experts try to discover the correlated relationships
between static and dynamic data for further clinical diagnosis. This process has
been conducted empirically by clinical experts and thus is qualitative. In this
paper, we make an initial exploration to discover the quantitative correlated
relationships between the static data and dynamic curves.

The rest of the paper is organize as following: The next section reviews the
work related to this paper and Section 3 follows by the problem formalization.
Then, Section 4 proposes a probabilistic graphical model to simulate the gener-
ating process of the data and gives an EM-based recipe for learning the model
given training data. Experimental results on both synthetic and real-world data
sets are reported in Section 5 and Section 6 concludes this paper.
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Figure 1: Example Gait Curves for One Patient with 6 Trials: (a) The Pelvic Tilt
Dimension; (b) The Hip Flexion Dimension; (c) The Knee Flexion Dimension;
(d) The Dorsiflexion Dimension.

2 Related Work

Recent research in CGA [3, 5, 13, 12] have made initial attempts at the automat-
ic discovery of correlated relationships in clinical gait data by machine learning
methods such as multiple linear regression [5] and fuzzy decision trees [12]. How-
ever, previous researchers usually preprocessed the gait data and discarded the
dynamic characteristics of that data, which fails to explore the correlated rela-
tionship between static data and dynamic curves. To the best of our knowledge,
our work is a first attempt to explore this correlated relationship comprehen-
sively.

Probabilistic models related to this paper exists, for example, hidden Markov
models (HMMs) [11] and conditional random fields (CRFs) [6]. Since these mod-
els focus on modeling dynamic curves, they cannot be applied directly here. By
contrast, the aim of this paper is to jointly model the static and dynamic data
considering their correlated relationships.

3 Problem Statement

The following terms are defined:

– A static profile is a collection of static physical examination features of one
subject denoted by y = (y1, y2, · · · , yL), where the subscript i (1 ≤ i ≤
L) denotes the ith attribute of the physical examination features, e.g., the
Internal Rotation r attribute in Table 1.

– A gait profile is a collection of M gait trials made by one subject denoted by
X1:M = {X1,X2, · · · ,XM}.

– A gait trial (cycle) is multivariate time series denoted by
Xm = (xm1,xm2, · · · ,xmN ), where xmj (1 ≤ m ≤ M and 1 ≤ j ≤ N) is the

jth vector observation of the time series and xmj =
[
xm1j xm2j · · · xmDj

]T
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(D is the number of the dimensions for dynamic data and N is the length of
the time series). For example, one dimension of the multivariate time series
(xmj1, xmj2, · · · , xmjN ) (1 ≤ j ≤ D) can be plotted as one curve in Fig-
ure 1(a) and represents the dynamics of that dimension for one trial. Xm

can be seen as a collection of such curves in different dimensions.

Our goal was to develop a probabilistic model p(X1:M ,y) that considers
the correlated relationships between the static profile (i.e., static data) and the
corresponding gait profile (i.e., dynamic data). In other words, we aim to produce
a probabilistic model that assigns ‘similar’ data high probability.

4 Proposed Model

4.1 Motivation

The basic idea is to construct the data generating process based on the domain
knowledge gained by gait experts and model the process. Specifically, static
profile y of a subject determines the generation of that subject’s potential gait
pattern. We denote this hidden gait pattern as a latent variable h, a vector
whose elements hg (1 ≤ g ≤ G)5 are 0 or 1 and sum to 1, where G is the number
of hidden gait patterns. The generation of the corresponding gait profile X1:M

is then determined by this latent variable h. In other words, the gait pattern is
characterized by a distribution on the gait data. Due to the high dimensionality
of p(X1:M |h), the generating process of it is not intuitive. Thus, we need to
consider the corresponding physical process. According to [8], a gait trial can
usually be divided into a number of phases and each vector observation xmj

belongs to a certain state indicating its phase stage. These states are usually
not labeled and we thus introduce latent variables zmj (1 ≤ m ≤ M , 1 ≤
j ≤ Nm) for each vector observation xmj in each gait trial Xm. We thus have
two advantages: firstly, p(X1:M |h) can be decomposed into a set of conditional
probability distributions (CPDs) whose forms are intuitive to obtain; secondly,
the dynamic process of the gait trials are captured by utilizing the domain
knowledge.

4.2 The Correlated Static-Dynamic Model

We propose a novel correlated static-dynamic model (CSDM), which models the
above conjectured data generating process. As mentioned before, existing models
(e.g., HMMs and CRFs), cannot be directly used here. This is because HMMs
only model the dynamic data p(Xm) and CRFs only model the relationship
between Xm and zm, i.e., p(zm|Xm) (1 ≤ m ≤ M), which is different to our goal
of jointly modeling the static and gait profiles p(X1:M ,y). The graphical model
for the CSDM is shown in Figure 2 (subscript m is omitted for convenience).
We use conventional notation to represent the graphical model [2]. In Figure 2,

5 hg = 1 denotes the gth hidden gait pattern.
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Figure 2: The Graphical Model of the CSDM

each node represents a random variable (or group of random variables). For
instance, a static profile is represented as a node y. The directed links express
probabilistic causal relationships between these variables. For example, the arrow
from the static profile y to the hidden gait pattern variable h indicates their
causal relationships. For multiple variables that are of the same kind, we draw
a single representative node and then surround this with a plate, labeled with a
number indicating that there are many such kinds of nodes. An example can be
found in Figure 2 in which M trials Z1:M ,X1:M are indicated by a plate label
with M . Finally, we denote observed variables by shading the corresponding
nodes and the observed static profile y is shown as shaded node in Figure 2.
To further illustrate the domain knowledge-driven data generating process in
Figure 2, the generative process for a static profile y to generate a gait profile
X1:M is described as follows:

1. Generate the static profile y by p(y)
2. Generate the latent gait pattern h by p(h|y)
3. For each of the M trials

(a) Generate the initial phase state zm1 from p(zm1|h)
(b) Generate the corresponding gait observation xm1 by p(xm1|zm1,h)
(c) For each of the gait observations xmn (2 ≤ n ≤ N)

i. Generate the phase state zmn from p(zmn|zm,n−1,h)
ii. Generate the the corresponding gait observation xmn from

p(xmn|zmn,h)

4.3 The Parameters of the CSDM

The parameters (i.e., the variables after the semicolon of each CPD) governing
the CPDs of the CSDM are listed in the following6:

6 We assume p(y) = const and the const is normalized and determined empirically
from the data for convenience. Thus, we do not put it as a parameter.
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p(h|y;d) =
G∏

g=1

dg(y)
hg (1)

where dg (1 ≤ g ≤ G) is a set of mapping functions (y → dg(y) ≡ p(hg =
1|y)) and hg is the gth element of h. Since the input y of the functions is a
mixture of discrete and continuous values, it is not intuitive to assume the
format of the functions. Thus, here we use the form of a probability esti-
mation tree (PET) [9] to represent the CPD p(h|y;d). To be more specific,
the parameters governing the CPD is similar to the form “if y in some value
ranges, then the probability of hg = 1 is dg(y)”.

p(zm1|h;π) =
G∏

g=1

K∏
k=1

π
hg, zm1k

gk (2)

where π is a matrix of probabilities with elements πgk ≡ p(zm1k = 1|hg = 1).

p(zmn|zm,n−1, h;A) =
G∏

g=1

K∏
k=1

K∏
j=1

a
hg, zm,n−1,j , zmnk

gjk (3)

where A is a matrix of probabilities with elements
agjk ≡ p(zmnk = 1|zm,n−1,j = 1, hg = 1).

p(xml|zml, h;Φ) =

G∏
g=1

K∏
k=1

p(xml|ϕgk)
hg,zmlk (4)

where Φ is a matrix with elements ϕgk. For efficiency, in this paper, we
assume that p(xml;ϕgk) = N (xml;µgk,σgk), which is Gaussian distribution,
and thus ϕgk = (µgk,σgk).

Thus, the CSDM can be represented by the parameters θ = {d,π,A,µ,σ}.

4.4 Learning the CSDM

In this section we present the algorithm for learning the parameters of the CSDM,
given a collection of gait profiles Xs,1:M and corresponding static profiles ys

(1 ≤ s ≤ S) for different subjects. We assume each pair of gait and static
profiles are independent of every others since they are from different subjects
and share the same set of model parameters. Our goal is to find parameters θ
that maximize the log likelihood of the observed data X1:S,1:M ,y1:S

7.

L(θ) =
S∑

s=1

log p(Xs,1:M |ys;θ) (5)

7 We add the subscript s for representing the sth profile in the rest of the paper.
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Algorithm 1: The Learning Algorithm for the Proposed CSDM.

Input : An initial setting for the parameters θold

Output: Learned parameters θnew

1 while the convergence criterion is not satisfied do
2 Estep();
3 θnew = Mstep();

4 end

Directly optimizing the above function with respect to θ is very difficult
because of the involvement of latent variables [2]. We adopted an expectation-
maximization (EM)-based algorithm [4] to learn the parameters, yielding the
iterative method presented in Algorithm 1. First, the parameters θold need to
be initialized. Then in the E step, p(zs,1:M ,hs|Xs,1:M ,ys,θ

old) (1 ≤ s ≤ S) is

inferred given the parameters θold and will be used in M step. The M step then
obtains the new parameters θnew that maximize the Q(θ,θold) function with
respect to θ as follows:

Q(θ,θold) =
∑
s,h,z

p(zs,1:M ,hs|Xs,1:M ,ys; θ
old) log p(hs, zs,1:M ,Xs,1:M ,ys;θ)

(6)
The E and M steps iterate until the convergence criterion is satisfied. In this
manner, L(θ) is guaranteed to increase after each interaction.

Challenges of the Learning Algorithms The challenges of the above algo-
rithm is in the calculation of the E step and the M step. A standard forward-
backward inference algorithm [11] cannot be directly used here for the E step
because of the introduction of latent variables hs (1 ≤ s ≤ S). We provided a
modified forward-backward inference algorithm in Algorithm 2 considering the
involvement of hs (1 ≤ s ≤ S). In calculating the M step, it was difficult to
find an analytic solution for d(·). We utilized a heuristic algorithm to solve it in
Procedure estimatePET. The details of the implementation for E and M steps
are discussed in the following.

The E step Here we provide the detailed process of inferring the posterior dis-
tribution of the latent variables h1:S , z1:S,1:M given the parameters of the model

θold. Actually, we only infer some marginal posteriors instead of the joint poste-
rior p(zs,1:M ,hs|Xs,1:M ,ys,θ

old). This is because only these marginal posteriors
will be used in the following M-step. We define the following notations for these
marginal posteriors γ and ξ and auxiliary variables α and β (1 ≤ s ≤ S, 1 ≤
m ≤ M, 1 ≤ n ≤ N, 2 ≤ n

′ ≤ N, 1 ≤ j ≤ K, 1 ≤ k ≤ K, 1 ≤ g ≤ G):

αsgmnk = p(xsm1, · · · ,xsmn, zsmnk|hsg; θ
old) (7)

βsgmnk = p(xs,m,n+1, · · · ,xsmN |zsmnk, hsg; θ
old) (8)
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Procedure forward
input : A set of the parameters θ
output: The variables α

// Initialization;

αsgm1k = πgkN (xsm1;µgk,σgk) for all s, g, m and k;

1 for s=1 to S do // Induction

2 for g=1 to G do
3 for m=1 to M do
4 for n=1 to N-1 do
5 for k=1 to K do

6 αs,g,m,n+1,k =
∑K

j=1 αsgmnjagjkN (xs,m,n+1;µgk,σgk);

7 end

8 end

9 end

10 end

11 end

Procedure backward
input : A set of the parameters θ
output: The variables β

// Initialization;

βsgmNk = 1 for all s, g, m and k;
1 for s=1 to S do // Induction

2 for g=1 to G do
3 for m=1 to M do
4 for n=N-1 to 1 do
5 for j=1 to K do

6 βsgmnk =
∑K

j=1 agjkN (xs,m,n+1;µgk,σgk)βs,g,m,n+1,j ;

7 end

8 end

9 end

10 end

11 end

γsgmnk = p(zsmnk, hsg|Xsm,ys; θ
old) (9)

ξs,g,m,n′−1,j,n′ ,k = p(zs,m,n′−1,j , zsmn′k|hsg,Xsm,ys; θ
old) (10)

The inference algorithm is presented in Algorithm 2. Specifically, line 1 calls
Procedure forward to calculate the forward variables α, while line 2 calls Pro-
cedure backward to calculate the backward variables β. Then line3-15 calculate
the value of each element of the posteriors γ and ξ and the h∗

s (1 ≤ s) on the ba-
sis of the α, β and θold. These posteriors will be used in the M-step for updating
the parameters.
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Algorithm 2: Estep()

input : An initial setting for the parameters θold

output: Inferred posterior distributions γ, ξ and h∗
s (1 ≤ s ≤ S)

/* Calculation of α, β */

1 Call Procedure forward using θold as input;

2 Call Procedure backward using θold as input;
/* Calculation of γ, ξ and h∗

s (1 ≤ s ≤ S) */

3 for s=1 to S do
4 for g=1 to G do
5 for m=1 to M do

6 p(Xsm|hsg;θ
old) =

∑K
k=1 αsgmNk;

7 for n=1 to N do

8 γsgmnk =
αsgmnkβsgmnk

p(Xsm|hsg ;θold)
;

9 ξs,g,m,n−1,j,n,k =
αs,g,m,n−1,kN (x

smn
′ ;µgk,σgk)agjkβsgmnk

p(Xsm|hsg ;θold)
(n > 2);

10 end

11 end

12 end

13 p(hsg|ys;θ
old) =

∏M
m=1 p(Xsm|hsg;θ

old)

p(hsg|Xs,1:M ,ys;θ
old) =

p(hsg|ys;θ
old)p(hsg |ys;θ

old)∑G
g=1 p(hsg |ys;θold)p(hsg|ys;θold)

;

14 h∗
s = argmax

g
p(hsg|Xs,1:M ,ys;θ

old);

15 end

The M step Here we provide the detailed process for M step. Basically, it
updates the parameters by maximizing the Q(θ, θold) with respect to them. If
substituting the distributions with inferred marginal posteriors in theQ function,
we can obtain

Q(θ, θold) =
∑

s,h,zs,1:M

p(zs,1:M ,h|Xs,1:M ,ys;θ
old)

G∑
g=1

hsg log dg(y)

+
∑

s,g,m,k

γsgm1k log πgk

+
∑

s,g,m,j,k

N∑
n=2

ξs,g,m,n−1,j,n,k log agjk

+
∑

s,g,m,n,k

γsgmnk logN (xsmn;µgk,σgk) (11)

Then the update formula for parameters d,π,A,µ,σ can be obtained by
maximizing the Q with respect to them, respectively:

– Updating of d: Maximizing Q with respect to d is equivalent to maximizing
the first item of Equation 11. However, y is a mixture of discrete and con-
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Procedure estimatePET
input : The data tuple (ys, h

∗
s) (1 ≤ s ≤ S)

output: The learned PET d

1 while stopping rule is not satisfactory do
2 Examine all possible binary splits on every attribute of ys (1 ≤ s ≤ S);
3 Select a split with best optimization criterion;
4 Impose the split on the PET d;
5 Repeat recursively for the two child nodes;

6 end
7 for node in the PET d(·) do
8 Do Laplace correction on each node;
9 end

Algorithm 3: Mstep()

input : Inferred posterior distributions γ, ξ and h∗
s (1 ≤ s ≤ S)

output: The updated parameters θnew

1 Call Procedure estimatePET to update d(·);
2 Update π,A,µgk,σgk according to Equation 12-15;

tinuous values and it is impractical to find an analytic solution to d. Here
we consider a heuristic solution through the formation of probability esti-
mation trees (PETs), which is a decision tree [7] with a Laplace estimation
[10] of the probability on class memberships [9]. The heuristic algorithm for
estimating the PET is described in Procedure estimatePET.

– Updating of π, A, µ and σ: Maximization Q with respect to π,A,µ,σ
is easily achieved using appropriate Lagrange multipliers, respectively. The
results are as follows:

πgk =

∑
s,m,g

γsgm1k∑
s,m,k,g

γsgm1k
(12)

agjk =

∑
s,m,n,g

ξs,g,m,n−1,j,n,k∑
s,m,l,n,g ξs,g,m,n−1,j,n,k

(13)

µgk =

∑
s,m,g,n

γsgmnkxsmn∑
s,m,n,g

γsgmnk
(14)

σgk =

∑
s,m,g,n

γsgmnk(xsmn − µgk)(xsmn − µgk)
T

∑
s,m,n,g

γsgmnk
(15)

Algorithm 3 summarizes the whole process of the M step.
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Table 2: The Parameters for the Synthetic Data

d

if −50 ≤ y < −25, p(h1 = 1|y) = 1,
if −25 ≤ y < 0, p(h2 = 1|y) = 1,
if 0 ≤ y < 25, p(h1 = 1|y) = 1,
if 25 ≤ y < 50, p(h2 = 1|y) = 1.

π π1,1:2 =
[
0.5 0.5

]
π2,1:2 =

[
0.5 0.5

]
A a1,1:2,1:2 =

[
0.6 0.4
0.4 0.6

]
a2,1:2,1:2 =

[
0.4 0.6
0.6 0.4

]
µ µ1,1:2,1 =

[
0
3

]
µ2,1:2,1 =

[
1
4

]
σ σ1,1:2,1 =

[
1 1

]
σ2,1:2,1 =

[
1 1

]

5 Empirical Study

The aim of this study is to test:

– The feasibility of the learning algorithm for the CSDM. Since we have pro-
posed an iterative (i.e., EM-based) learning method, it is pivotal to show its
convergence on the gait data set.

– The predictability of the CSDM. The aim of the CSDM is to discover the
correlated relationship between the static and dynamic data. Thus, it is
interesting to validate its predictive power on other data falling outside the
scope of the training data set.

– The usability of the CSDM. Because the CSDM is designed to be used by
gait experts, we need to demonstrate intuitive knowledge extracted by the
CSDM.

5.1 Experimental Settings

we sampled the synthetic data from the true parameters listed in Table 2. We
varied the s0 for different sample sizes (e.g., s0 = 100, 500, 1500) to represent
relatively small, medium and large data sets. The real-world data set we used
was provided by the gait lab at the Royal Children’s Hospital, Melbourne8. We
have collected a subset of static and dynamic data for 99 patients. The static
data subset consisted of 8 attributes summarized in Table 3. There were at most
6 gait trials for each subject and each gait trial had 101 vector observations.
In principle, curves for both left and right sides may be included. However, for
simplicity and consistency, we only used the right side curves of the hip rotation
dimension for analysis in this pilot study.

8 http://www.rch.org.au/gait/
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Table 3: Description of the Static Data

Name of Attributes Data Type Value Range

internalrotation r (ir r) continuous 23 to 90

internalrotation l (ir l) continuous 20 to 94

externalrotation r (er r) continuous -5 to 57

externalrotation l (er l) continuous -26 to 51

anteversion r (a r) continuous 10 to 50

anteversion l (a l) continuous 4 to 45

hipabductors r (h r) discrete -1 to 5

hipabductors l (h l) discrete -1 to 5

5.2 Experimental Results

Convergence of the Learning Process For each iteration, we calculate the
averaged log-likelihood as 1

S

∑S
s=1

∑M
m=1 log p(Xsm,ys;θ

old), where θold is the
parameters updated from last iteration. Figure 3(a) shows the CSDM against
the iteration numbers for different sample sizes of the synthetic data and Fig-
ure 3(b) shows the results of the averaged log-likelihoods for CSDMs using d-
ifferent numbers (represented as G) of hidden gait patterns. As expected, the
averaged log-likelihood is not monotonic all the time, since part of the learning
process uses a heuristic algorithm. However, the best averaged log-likelihoods
are usually achieved after at most 5 iterations, which proves the convergence
of the proposed learning algorithm. It can be seen from Figure 3(a), a larger
sample size will lead to a higher log-likelihood for the learning algorithm. For
the real-world data set, G = 49 shows the fastest convergence rate of the three
settings for CSDMs.

Predictive Performance We measured the CSDM predictive accuracy in
terms of how well the future gait profile can be predicted given the static profile
and learned parameters. Since the final prediction is a set of complex variables,

we measure the predictive log-likelihood
∑S

′

s′=1 log p(Xs′ ,1:M |ys′ ;θ) in the test-

ing data with S
′
static and gait profiles, where θ is learned from the training

data. Then, the following can be obtained by using Bayes rule:

log p(Xs′ ,1:M |ys′ ;θ) = log(
∑
g

p(hs′g|ys′ ;θ)p(Xs′ ,1:M |hs′g;θ)) (16)

where p(hs′g|ys′ ;θ) and p(Xs′ ,1:M |hs′g;θ) can be calculated by using the line
13 and 14 of Algorithm 2 (i.e., E step).

Without loss of generality, we proposed a baseline algorithm which ignored
the static data for modeling and prediction to compare with our proposed

9 The number of G is suggested by gait experts not exceeding 4.
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Figure 3: Log-likelihood for the CSDM against the iteration numbers for different
numbers of hidden gait pattern G.

z1 z2 · · · zN

x1 x2 · · · xN

S ×M

Figure 4: The Graphical Model for the Baseline Algorithm.

method. The baseline model is a standard HMM with multiple observation se-
quences, whose graphical model is depicted in Figure 4. It assumes all the gait
trials are independently generated from an HMM. Using the standard algorithm
provided in [1, 11], we can learn the parameters of the baseline model, denoted
as θ0 from the training data. Accordingly, the predictive averaged log-likelihood

for new gait trials can be calculated as
∑S

′

s′=1 log p(Xs′ ,1:M ;θ0).
We compare the CSDM with the alternating baseline scheme, an HMM with

multiple sequences. We report on averages over 10 times 5-fold cross validations
for the synthetic and real-world data, respectively. As shown in Table 4(a), all the
CSDMs outperformed the baseline algorithm significantly. This may be because
the proposed CSDM captures the correlated relationships existing in the data
rather than ignoring them. Similarly, it can be observed from Table 4(b) that
all the CSDMs achieved higher log-likelihoods than their counterparts of the
baseline model. This proves the predictive power of our proposed CSDM on
real-world data.
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Table 4: The Comparison of the Log-likelihoods

(a) The Synthetic Data

s0 = 100 s0 = 500 s0 = 1500

CSDM -8016 -40090 -120310

Baseline -8025 -40132 -120420

(b) The Real-world Data

G = 2 G = 3 G = 4

CSDM -1310 -1388 -1299

Baseline -1426 -1502 -1426

Extracting Knowledge from the CSDM In this section, we provide an
illustrative example of extracting intuitive knowledge from a CSDM on the gait
data. Our real-world data are described in Section 5.1. We used the EM algorithm
described in Section 4.4 to find the model parameters for a 4-hidden-gait-pattern
CSDM as suggested by gait experts. Given the learned CSDM, we can extract
the intuitive knowledge from the data set to answer the following questions:

– What kinds of static data will lead to what kinds of hidden gait patterns?
– What does the gait look like for each hidden gait pattern?

The first question is actually asking what is p(h|y;θ) (and subscript s is
omitted since all s share the same parameters). Figure 5(a) shows an answer
to the first question in the form of a decision tree representation. This tree10

decides hidden gait patterns based on the 8 features of the static data (e.g., ir r,
er r and a r) used in the data set. To decide the hidden gait patterns based on
the static data, start at the top node, represented by a triangle (△). The first
decision is whether ir r is smaller than 57. If so, follow the left branch, and see
that the tree classifies the data as gait pattern 2. If, however, anteversion exceeds
57, then follow the right branch to the lower-right triangle node. Here the tree
asks whether er r is is smaller than 21.5. If so, then follow the right branch to
see the question of next node until the tree classifies the data as ones of the gait
patterns. For other nodes, the gait patterns can be decided in similar manners.

The second question is actually asking argmax
g

p(hsg|Xs,1:M ,ys;θ) (1 ≤ s ≤
S). In other words, we need to infer which gait trials belong to the corresponding
hidden gait patterns in the corpus. We use line 14 described in Algorithm 2
to obtain the hidden gait pattern names of the gait trials. We can then plot
representative gaits for each hidden gait pattern to answer the second question
above, as shown in Figures 5(b)-5(e). Figure 5(e) shows a collection of gaits for
the hidden gait pattern 4. We can see that most of them fall into the normal
area, which may indicate that these gaits are good. Figure 5(c) shows a collection
of gaits for the hidden gait pattern 2 and most of them are a little below the
normal area, indicating that these gaits are not as good. By contrast, most of the
gaits in Figure 5(b) representing hidden gait pattern 1 fall outside the normal
area and are abnormal gaits. Figure 5(d) shows that the representative gaits

10 For simplicity, we do not display the fully tree and only display the gait pattern with
the highest probability.
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Figure 5: Extracted Knowledge from the CSDM: (a) The Decision Tree to Pre-
dict Gait Patterns Given the Static Data, (b)-(e) Representative Gaits for Gait
Pattern 1-4.

for hidden gait pattern 3 are slightly above the normal area, which indicates
these gaits are only slightly abnormal. Most subjects displaying pattern 1 and
some subjects displaying pattern 3 would be susceptible to have surgery. By
extracting the different paths that lead to those two patterns from the decision
tree in Figure 5(a), we can infer what combinations of static data may have
clinical implications.

6 Conclusions and Future Work

This paper presents a new probabilistic graphical model (i.e., CSDM) for quanti-
tatively discovering the correlated relationship between static physical examina-
tion data and dynamic gait data in clinical gait analysis. To learn the parameters
of the CSDM on a training data set, we proposed an EM-based algorithm. One
of the main advantages of the CSDM is its ability to provide intuitive knowl-
edge. For example, the CSDM informs us what kinds of static data will lead to
what kinds of hidden gait patterns and what the gaits look like for each hidden
gait pattern. The experiments on both synthetic and real-world data (excerpt-
ed from patient records at the Royal Children’s Hospital, Melbourne) showed



16 Yin Song et al.

promising results in terms of learning convergence, predictive performance and
knowledge discovery. One direction for future work is to improve the CSDM with
semi-supervised learning. Currently the CSDM is learned totally unsupervised,
which may generate unexpected results due to its highly stochastic nature. Fur-
ther collaboration with gait analysis experts may alleviate this problem through
manual labeling of some examples. We also plan to collect more real-world data
and include all static and dynamic outputs from clinical gait analysis.
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