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Abstract. Modeling how information propagates in social networks driven by
peer influence, is a fundamental research question towards understanding the
structure and dynamics of these complex networks, as well as developing viral
marketing applications. Existing literature studies influence at the level of indi-
viduals, mostly ignoring the existence of a community structure in which multiple
nodes may exhibit a common influence pattern.
In this paper we introduce CSI, a model for analyzing information propagation
and social influence at the granularity of communities. CSI builds over a novel
propagation model that generalizes the classic Independent Cascade model to
deal with groups of nodes (instead of single nodes) influence. Given a social net-
work and a database of past information propagation, we propose a hierarchical
approach to detect a set of communities and their reciprocal influence strength.
CSI provides a higher level and more intuitive description of the influence dy-
namics, thus representing a powerful tool to summarize and investigate patterns
of influence in large social networks. The evaluation on various datasets suggests
the effectiveness of the proposed approach in modeling information propagation
at the level of communities. It further enables to detect interesting patterns of
influence, such as the communities that play a key role in the overall diffusion
process, or that are likely to start information cascades.

1 Introduction

Understanding the dynamics of influence in online social networks is becoming an in-
teresting point of convergence for different subjects, including social science, statistical
analysis and computational marketing. Social influence analysis is receiving a growing
attention by both academic and industrial communities, mainly due to the wide range
of applications, e.g personalized recommendations, viral marketing, feed ranking, and
scenarios in which influence plays an important role in predicting users’ behavior. Most
of the networks of interests for this analysis are very large, with millions of edges.
Therefore, graph summarization techniques are needed in order to help the analysis by
highlighting the main properties of the influence dynamics and recurring patterns. Most
of the research in graph summarization has focused on finding abstraction of a graph
(e.g., by aggregating nodes in meta-nodes) that preserves the structural properties of
the original graph, or properties defined as aggregates over the node attributes. In this



paper instead, our goal is to devise a graph summarization paradigm for the analysis of
the phenomena of information propagation and social influence. More in concrete, we
aim to find an abstraction which, although being coarser than the original data, it still
describes well a database of past propagation traces. Our technique provides the data
analyst with a compact, and yet meaningful, view of the patterns of influence and infor-
mation diffusion over the considered network, where members of the same community
tend to play the same role in the information propagation process.

Towards this goal, we extend the well known Independent Cascade model [10],
to study influence at the level of communities. Briefly, the community structure de-
tected by our approach reflects macro influence propagation patterns. A community
is identified by a set of connected nodes that share a similar influence tendency over
nodes belonging to other communities. The strength of influence relationships between
communities can be used to understand the importance of their connection. Moreover,
by directly modeling community-level influence relationships, we can provide an high
level picture of the global diffusion process over the network, and a summary of the
main influence patterns that shape the underlying process of information propagation.

The main contributes of this paper are the following:

– We introduce the CSI (Community-level Social Influence) model, which extends
the peer-influence relationships that define the Independent Cascade model at the
granularity of communities.

– We devise a greedy algorithm which explores a given hierarchical partitioning of
the network and provides as output the community structure that achieves a good
balance between the accuracy in describing observed propagation data, and a com-
pact representation of the influence relationships.

– Given a set of disjoint communities, we devise an Expectation-Maximization algo-
rithm to effectively learn the strength of their pairwise influence relationships.

– Through an experimental evaluation on three real-world datasets, we show the ef-
fectiveness of our approach, which is able to provide a meaningful and compact
summary of the influence patterns on the considered networks.

The rest of the paper is organized as follows. We briefly review related prior art in Sec. 2.
In Sec. 3, we formally define the problem tackled in this paper while our algorithm is
presented in Sec. 4. The experimental evaluation is in Sec. 5. Finally, Sec. 6 concludes
the paper with a summary of our major findings and future direction of research.

2 Related Work

Social influence and the phenomenon of influence-driven propagations in social net-
works have received considerable attention in the last years. One of the key problems
in this area is the identification of a set of influential users in a given social network.
Domingos and Richardson [4] approach the problem with Markov random fields, while
Kempe et al. [10] frame influence maximization as a discrete optimization problem.
Another vein of study has focused on the problem of learning the influence probabili-
ties on every edge of a social network given an observed log of propagations over this
network [16, 18, 7, 20]. In this paper we use the method by Saito et al. [16].



Although our goal is that of summarizing the social graph, our work could also be
collocated in the wide community detection literature: for a thorough survey of the topic
we refer the reader to [5]. While the bulk of this literature only focuses on the struc-
ture of the social graph, a recent paper [1] is the first to define a community-detection
mechanism that exploits information propagation traces to find better communities. Our
contribution in this paper is different as we aim at modeling community-to-community
influence, while the goal of [1] is to find good communities w.r.t. the graph structure
and information propagation.

Finally, many tasks in machine learning and data mining involve finding simple
and interpretable models that nonetheless provide a good fit to observed data. In graph
summarization the objective is to provide a coarse representation of a graph for further
analysis. Tian et al. [19] as well as Zhang et al. [21] consider algorithms to build graph
summaries based on node attributes, while Navlakha et al. [13] use MDL to find good
structural summaries of graphs. In [14] this method is applied to study protein inter-
action networks. Our work is also related to research that uses a taxonomy to impose
the right level of granularity to the model being learned. Garriga et al. [6] consider the
problem of feature selection for regression models given a taxonomy over the indepen-
dent variables, while Bonchi et al. [2] use a hierarchical decomposition a state space
to simplify Markov models. Lavrač et al. [11] construct interpretable rules by selecting
attributes with the help of a hierarchical ontology.

3 Community-level Social Influence Model

We first (Sec. 3.1) recall the independent cascade propagation model [10], that is at
the basis of our proposal. Then we introduce CSI (Sec. 3.2), our model that general-
izes peer-influence to the community level: we devise the procedure for learning the
parameters of the model (Sec. 3.3), and we discuss model selection (Sec. 3.4).

3.1 Preliminaries: The Independent Cascade (IC) Model

Let G = (V,E) denote a directed network, where V is the set of vertices and E ⊆
V × V denotes a set of directed arcs. Each arc (u, v) ∈ E represents an influence
relationship, i.e u is a potential influencer for v, and it is associated with a probability
p(u, v) representing the strength of such influence relationship. Let D = {α1, · · · , αr}
denote a log of observed propagation traces over theG. For each trace α the log contains
the activation time of each node tα(v), where tα(v) = ∞ if v does not become active
in trace α.

We assume that each propagation trace in D is initiated by a special node Ω 6∈ V ,
which models a source of influence that is external to the network. More specifically,
we have tα(Ω) < tα(v) for each α ∈ D and v ∈ V . Time unfolds in discrete steps.
At time t = 0 all vertices in V are inactive, and Ω makes an attempt to activate every
vertex v ∈ V and succeeds with probability p(Ω, v). At subsequent time steps, when
a node u becomes active, it makes one attempt at influencing each inactive neighbor v
with probability p(u, v). Multiple nodes may try to activate, independently, the same
node at the same time. If at least one attempt to activate node v at time t succeeds, then



v becomes active at t+ 1. Therefore, at a given time step, each node is either active or
inactive, and active nodes never become inactive again.

Note that we have not specified the function p in detail. The independent cascade
model can be instantiated with an arbitrary choice of p, but these come with different
trade-offs. Kempe et al. [10] use a uniform probability q in their experiments, that is,
p(u, v) = q for all (u, v) ∈ E. On the other hand, Saito et al. [16] estimate a sepa-
rate probability p(u, v) for every (u, v) ∈ E from a set of observed traces. These two
approaches can be viewed as opposite ends of a complexity scale. Using a single pa-
rameter leads to a simple but potentially inaccurate model, while estimating a different
probability for each arc might provide a good fit but at the price of risking to overfit,
due to the very large number of parameters [12, 8].

Next we introduce our CSI model, that shifts the modeling of influence strength
from node-to-node, to community-to-community. In our community-based variant of
the IC model, all vertices that belong to the same cluster are assumed to have identical
influence probabilities towards other clusters.

3.2 The CSI Model

We start by introducing the likelihood of a single trace α when expressed as a function
of single edge probability: this is needed to define the problem that we tackle in this
paper.

When it comes to fit real data, some of the assumptions of the the theoretical IC
propagation model are hardly met. For instance time is not coarsely discrete, and we
cannot assume that in real data, if u activates at time t and it succeeds in influencing
some of its peers, then this will happen at time t+1. Following [12], we circumvent this
problem by adopting a delay threshold ∆ to distinguish between potential influencers
that may have triggered an activation, and those who have certainly failed. Let F+

α,u be
the set of u’s neighbors that potentially influenced u’s activation in the trace α:

F+
α,u = {v | (v, u) ∈ E, 0 ≤ tα(u)− tα(v) ≤ ∆}.

Similarly, we define as F−α,u the set of u’s neighbors who definitely failed in influencing
u on α:

F−α,u = {v | (v, u) ∈ E, tα(u)− tα(v) > ∆}.
Let p : V × V → [0, 1] denote a function that maps every pair of nodes to a

probability. The log likelihood of the traces in D given p can be expressed as

logL(D | p) =
∑
α∈D

logLα(p), (1)

because the traces are assumed to be i.i.d. The likelihood of a single trace α is

Lα(p) =
∏
v∈V

1− ∏
u∈F+

α,v

(1− p(u, v))

 ·
 ∏
u∈F−α,v

(1− p(u, v))

 . (2)

As we already anticipated, in the CSI model we shift the influence strength estima-
tion from node-to-node, to community-to-community. To this end, we use a hierarchical



decompositionH of the underlying networkG. In particular,H is a tree rooted at r, with
the nodes in V as leaves, and an arbitrary number of internal nodes. A cut h of H is a
set of edges of H, so that for every v ∈ V , one and only one edge e ∈ h belongs to the
path from the root r to v. Therefore, the removal of the edges in h from H disconnects
every v ∈ V from r.

Let C(H) denote the set of all possible cuts of H. Each h ∈ C(H) induces thus a
partition Ph of the network G, so that all vertices in V that are below the same edge
e ∈ h inH belong to the same cluster ce ⊆ V . Let a(v) denote the cluster to which the
node v ∈ V belongs to in the partition Ph.

In the CSI model, all vertices that belong to the same cluster are assumed to have
identical influence probabilities towards other clusters. Given a function p̃h : Ph ×
Ph → [0, 1] that assigns a probability between any two clusters of the partition Ph, we
define

ph(u, v) = p̃h (a(u), a(v)) .

Below, in Section 3.3, we will show that given G, H, the cut h, and D, we can find
p̃h using an expectation maximization (EM) algorithm. For the moment we can assume
that p̃h is induced by h in a deterministic way, because our aim is to define our problem
in terms of finding an optimal cut h∗ ∈ C(H).

A straightforward observation is that the likelihood defined in equations 1 and 2 is
maximized by the cut at the leaf level ofH. Reducing the number of pairwise influence
probabilities used by the model can only result in a lower likelihood. Therefore, we
use a model selection function f that takes into account both likelihood as well as the
complexity of the model. We discuss choices for f later in Section 3.4. Note that since
the network G and the hierarchyH remain fixed, model complexity is only affected by
the cut h ∈ C(H).

Example 1. Figures 1 and 2 illustrate a possible input for our problem and a possible
output, i.e., a CSI model, respectively. In particular in the example, the cut h1 corre-
sponds to the leaf level model where each single node of the social graph constitutes a
state of the CSI model: this is the maximum likelihood cut. However, this would cor-
respond to the standard IC model and is not our goal. In the picture two other cuts are
shown, where h2 corresponds to the clustering {{A,F}, {D,E}, {BC}, {H}, {I},
{J,K}, {L,M}}, and the cut h3 results in the CSI model in Figure 2 , which in our
example is the “best” model according to the model selection function f .

Now we have all necessary ingredients to formally state the problem addressed in
this paper.

Problem 1 (Learning a CSI model). Given a network G = (V,E), a log of propagation
traces D across this network, a hierarchical partitioning H of G, and a model selection
function f , find the optimal cut ofH defined as

h∗ = argmin
h∈C(H)

f (L(D, ph), h) .

We do not formally address the complexity of the problem in this paper. An ex-
haustive enumeration of all possible cuts is infeasible, since the size of C(H) can be
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Fig. 1: An example of input for our problem: a social graph G (here represented as
undirected, but we can always consider each undirected edge as the corresponding two
directed arcs), a hierarchy H over G, and a log D of observed propagation traces over
the social graph G
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Fig. 2: A possible CSI model resulting from the input of Figure 1 and corresponding to
the cut h3. The arcs tickness represent the strength of the influence along that arc, i.e.,
the ticker the arc, the larger the associated probability

exponential in the size of V . Moreover, using the structure of H is complicated by the
possibly complex interplay between the likelihood and the model selection function f .
Designing efficient algorithms might be possible, at least for some choices of f , but we
leave those as future work.

Finally, it is worth noting that the two extreme cases outlined above, i.e., all links
have the same probability, or all links have a different probability can be modeled in our
framework. The cut h1 in Figure 1 places all vertices of G in separate clusters, which
corresponds to the most complex model with a separate influence probability on every
edge. The cuts h2 and h3 induce models with a lower granularity. Finally, a cut right
above the root of H (assuming that there is a “super-root” above r) places all vertices
in the same cluster, which results in the simplest possible model with a constant p(u, v)
for each arc (u, v).



3.3 Learning Inter-community Influence Strength

Next we devise an expectation-maximization (EM) approach for estimating the pair-
wise influence strength among the clusters of nodes, i.e., the parameters of the CSI
model. We assume that the clusters have been induced by a cut of a given hierarchical
decompositionH of G as discussed above, but the EM method presented in this section
can be applied to an arbitrary disjoint partition of V . Recall that a(v) denotes the cluster
where v ∈ V , and let A(x) ⊆ V denote the set of vertices that belong to cluster x ∈ P .

Consider a single trace α ∈ D. According to the discrete-time independent cascade
model, each user u such that u ∈ F+

α,v performs an independent attempt to activate v.
If v becomes active then at least one of the influencers in F+

α,v was successful, but we
don’t know which one. Hence, we introduce a probability distribution ϕα,v over the
nodes in F+

α,v , where ϕα,v,u represents the probability that in trace α the activation of
v was due to the success of the activation trial performed by u.

We use these probabilities to derive a standard EM algorithm. For a given cut
h, each u ∈ F+

α,v succeeds in activating v on the considered trace with probability
ph(a(u), a(v)) and fails with probability (1 − ph(a(u), a(v))). By exploiting users’
responsabilities ϕα,v,u, we can define the complete expectation (log)likelihood of the
observed propagation as follows:

Q(p̃h; p̃
old
h ) =

∑
α∈D

∑
v

 ∑
u∈F+

α,v

(
ϕα,v,u log p̃h(a(u), a(v))+

(1− ϕα,v,u) log (1− p̃h(a(u), a(v)))

)
+

∑
u∈F−α,v

log (1− p̃h(a(u), a(v)))

 .

(3)

Given an estimate of every ϕα,v,u, we can determine the p̃h which maximizes Eq.3 by

solving ∂Q(p̃h;p̃
old
h )

∂p̃h(x,y)
= 0 for all pair of clusters x, y ∈ Ph. This gives the following

estimate of p̃h(x, y):

p̃h(x, y) =
1

|S+
x,y|+ |S−x,y|

∑
α∈D

∑
v∈A(y)

∑
u∈F+

α,v
u∈A(x)

ϕα,v,u, (4)

where

S+
x,y =

∑
α

∑
v∈A(y)

∑
u∈A(x)

I(u ∈ F+
α,v) and S−x,y =

∑
α

∑
v∈A(y)

∑
u∈A(x)

I(u ∈ F−α,v).

We still must provide an estimate for every ϕα,v,u. We do this on the basis of the as-
sumption that the probability distributions ϕα,v are independent of the partition P . That
is, if u is believed to be the activator for v in the trace α, this belief should not change for
different ways of clustering the two nodes. Therefore, we estimate the ϕα,v,us from the



model where every v ∈ V belongs to its own cluster, because this will lead to estimates
that only depend on the network structure. Denote this model by p̃l. We obtain:

ϕα,v,u =
p̃l(v, u)

1−
∏
w∈F+

α,u(1−p̃l(w,u))
. (5)

Thus we design the following procedure:

– Run the EM algorithm without imposing a clustering structure (which is equivalent
to the estimation proposed in [16]) to obtain p̃l(u, v)∀(u, v) ∈ E.

– Compute each ϕα,v,u using Equation 5.
– For different partitions P , keep the ϕα,v,u fixed, and update p̃(x, y) according to

Eq.4.

3.4 Model Selection

Recall that the likelihood logL(D | ph) is maximized for the cut h that places every
node in its own cluster. We need thus a way to address the trade-off between fit and
model complexity. Two principled approaches to this are Bayesian Information Crite-
rion (BIC) and Minimum Description Length (MDL), which we both use in this paper.

We instantiate BIC [17] as follows: BIC = −2 logL(D | ph) + |h| log(|D|).
In the basic two-part MDL [15], we first use the model, in our case the cut h, to

encode the observed data (the traces in D), and then encode the model itself. We denote
the encoding length of D given h by L(D | h), and the encoding length of the cut by
L(h).

To apply MDL in our context, we must specify both L(D | h) as well as L(h). A
standard result is that we can simply use the log-likelihood of D given h as L(D | h)
(see e.g. [3]). That is, we let L(D | h) = logL(D | ph). The encoding length L(h)
of the cut h is defined as the number of bits needed to communicate h to a receiving
party. We assume that the recipient already has the hierarchy H as well as the network
G. We must send every edge in h using |h| · log(|H|) bits, as well as the influence
probabilities between all pairs of communities where this probability is nonzero. If there
areX ≤ |h|2 such pairs, we useX (2 log(|h|) + C) bits (probabilities are encoded with
C bits each) for the probabilities. The total encoding length of h is thus:

L(h) = |h| · log(|H|) +X (2 log(|h|) + C) .

MDL favors the model that minimizes the combined encoding: L(D | h) + L(h).

4 Algorithm

In the previous section, we introduced the CSI model and discussed how to evaluate
different cuts of h ∈ C(H) of the hierarchical decomposition of the network. However,
as mentioned in Sec. 3, the search space C(H) can in general be exponential in the size
of V , making exhaustive search infeasible. Next we present a heuristic algorithm that
performs a bottom-up greedy visit of C(H), and provides the best solution found as
output.



In our implementation,H is always a binary tree, but the approach applies to general
trees as well. The procedure starts from the cut corresponding to the leaf level; at each
iteration we compute all the possible cuts which can be obtained from the current one
by merging communities that share a same parent in the hierarchy. Since H is a binary
tree, each merge will involve exactly two communities. More formally, given a cut
h = {e1, · · · , e|h|} ∈ C(H), let M(h) denote the set of candidate merges available
from the cut h:

M(h) = {〈y, y′〉 : (x, y) ∈ h ∧ (x, y′) ∈ h, x 6= r}

where r is the root ofH. A simple greedy heuristic would pick the merge inM(h) that
results in the best value of the objective function. However, evaluating our objective
function is computationally intensive, because it involves re-estimating model parame-
ters, and computing the likelihood of D given those parameters. This is too slow to be
useful in practice.

To speed-up the algorithm, we make use of the following observation: in an “ideal
merge” (with respect to the outgoing influence patterns) the two communities exhibit
exactly the same influence probabilities with other communities. That is, if for some y
and y′ we have p(y, z) = p(y′, z) and p(z, y) = p(z, y′) for every z, merging the com-
munities y and y′ does not affect the likelihood of D at all. In practice these influence
probabilities are never exactly identical, but we can still find a merge where they are as
similar as possible. Rather than computing the entire objective function for every pos-
sible merge inM(h), we find the merge that is the best in terms of the above condition.
To this end we use a similarity function defined as

similarity(y, y′, p) =
∑
z

(p(y, z)p(y′, z) + p(z, y)p(z, y′)) , (6)

which can be thought of as the dot product between the influence probability vectors
associated with communities y and y′.

Our whole procedure, summarized in Algorithm 1, finds in each iteration the best
merge using Eq. 6 and updates the model given this. The resulting cut as well as the
corresponding parameters are stored in a set, denoted L. Once the algorithm reaches
the root of H, it evaluates the objective function for every cut in the set L and returns
the one having the best value. The function updateModel runs the estimation procedure
described in Section 3.3.

5 Experimental Evaluation

CSI provides a compact description of influence patterns in the underlying network; in
the following we will describe how this approach can be exploited for several purposes,
including data understanding and characterization of information propagation flow.
Datasets. The evaluation focuses on three datasets where each dataset comprises of a
network G and the propagation log D. The first dataset has been extracted from Yahoo!
Meme, a microblogging service4, in which users can share different kinds of informa-
tion called “memes”. Memes are shared on the main user’s stream and a re-post button

4 Discontinued in May 25, 2012



Algorithm 1: CSI model learning
Input : A propagation log D, a network G = (V,E) and hierarchical decompositionH.
Output: The cut h ∈ C (H) which achieves the best value of the objective function.
h← leafLevel(H)
p← updateModel(h,G,D)
L← ∅
while C(h) 6= ∅ do
〈x∗, y∗〉 ← argmax〈x,y〉∈C(h){similarity(x, y, p)}
h← merge(h, 〈x∗, y∗〉)
p← updateModel(h,G,D)
L← L ∪ {〈h, p〉}

end
〈h∗, p∗〉 ← argmin〈h,p〉∈L{objFunc(h, p,D)}
return h∗

Table 1: Datasets statistics.
MEME FLIXSTER TWITTER

Number of Nodes 9, 523 6, 354 23, 537
Number Links 759, 369 97, 314 1, 299, 652

Traces 9, 578 7, 158 6, 139
Activations 552, 732 1, 439, 875 383, 866

Avg. number of activations per node 84 221 16
Avg. number of nodes per trace 58 200 62

allows to display an item from another user’s stream on the personal one. If the user
v posts a meme which is later re-posted by the user u, we say that the meme propa-
gates from v to u, and thus v is a potential influencer of u. The second dataset has been
crawled from Flixster 5, one of the main social movie website. It allows users to share
ratings on movies and to meet other users with similar tastes. In Flixster,the propagation
log records the time at which a user rated a particular movie. In this context, an item
or movie is considered to propagate from v to u, if u rates the item shortly after the
rating by v. The last dataset was obtained by crawling the public timeline of Twitter6.
We track the propagation of URLs across the network where an activation corresponds
to the instance when a user uses a certain URL for sharing with other friends. In Table 1
we report the main characteristics of the datasets.

Experiment settings. The optimization algorithm proposed in Sec. 4 requires as input
a hierarchical decomposition of the network. We obtain this hierarchy by recursively
partitioning the underlying network using METIS [9], which reportedly provides high
quality partitions. At each stage in the recursive procedure, we split the network to
two components that are roughly equal in size. The resulting hierarchical partitioning
is thus a binary tree. In order to reduce the computational overhead of the algorithm,
we initialize the hill climbing clustering procedure with a cut slightly above the leaf
level. This is obtained by making 5 passes over the leafs, and during each pass we

5 http://www.cs.sfu.ca/˜sja25/personal/datasets/
6 https://dev.twitter.com/docs/api/1/get/statuses/public_
timeline



500 200 100 50 20 10 5 2 130
00
00
0

34
00
00
0

38
00
00
0

42
00
00
0

Y!Memes

| hcurr |

M
D

L 
sc

or
e

100 80 60 40 20

30
50
00
0

30
70
00
0

500 200 100 50 20 10 5 2 1

17
00
00
0

18
00
00
0

19
00
00
0

20
00
00
0

Flixster

| hcurr |

M
D

L 
sc

or
e

160 120 80

16
70
00
0

16
80
00
0

500 200 100 50 20 10 5 2 170
00
00

80
00
00

90
00
00

10
00
00
0

Twitter

| hcurr |

M
D

L 
sc

or
e

80 60 40 20

71
00
00

72
00
00

73
00
00

500 200 100 50 20 10 5 2 1

60
40
00
0

60
60
00
0

60
80
00
0

61
00
00
0

61
20
00
0 Y!Memes

| hcurr |

B
IC

 s
co

re

200 160 120

60
40
00
0

60
50
00
0

500 200 100 50 20 10 5 2 130
00
00
0

31
00
00
0

32
00
00
0

33
00
00
0

34
00
00
0 Flixster

| hcurr |

B
IC

 s
co

re

466 464 462 460 458

30
08
00
0

30
09
50
0

500 200 100 50 20 10 5 2 1

14
00
00
0

14
50
00
0

15
00
00
0

15
50
00
0

16
00
00
0

16
50
00
0 Twitter

| hcurr |

B
IC

 s
co

re

180 140 10013
85
00
0

13
95
00
0

Fig. 3: Model selection: MDL (first row), and BIC (second row) - the subplots show a
focused view on the region of the minimum

merge leafs that have a common parent. While the choice of the similarity function is
somewhat arbitrary, we found that the cosine similarity of Eq. 6 works well in practice.
Finally, the delay threshold ∆ is set to∞: i.e., for a given node we consider potential
influencer any neighbor active before the node in a given trace. We ran our experiments
on a Intel Xeon 2.4 GHz processor and 8 GB memory. The learning time ranges from
few hours (Flixster and Y!Meme) to several days for Twitter, where the number of links
(approx. 1.3 million) impact the learning time as it increases the computational effort
in Eq. 4 where a greater number of potential activators of v needs to be considered. It is
worth noting that parallelizing the EM computation of Section 3.3 is possible and it is
planned in our future work.

Model selection. In Figure 3, we compare the BIC and MDL scores that we obtain for
each cut found by our algorithm from the lowest (many communities) to the highest
(few communities). The two model selection criteria do not agree on the identifica-
tion of the optimal model. MDL tends to favor less complex models than BIC in our
case, which is most likely caused by the quadratic dependence on |h| of L(h). For in-
stance, MDL provides us 115 communities for Flixster dataset whereas BIC provides
454 communities (just after a couple of iterations of the main algorithm). In the rest of
this section we will characterize one model found for each dataset. More specifically,
for Flixster we select the model provided by MDL since it provides a more compact
view of the influence pattern, with (29 communities, after removing singleton node
communities). For the other two datasets, we select the model provided by BIC. The
number of communities for Twitter and Y!Meme, after removing singletons, are 60 and
53, respectively.
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Fig. 4: Community to community influence probabilities (first row) and social links
(second row)

Community-level social influence analysis. The output of the CSI model can be easily
graphically represented according to two different, and complementary, perspectives.
The first way to analyze the strength of the influence and social link relationships is by
plotting the corresponding heat-maps, as shown in Figure 4. In these figures, we plot
the intensity of the influence probability between two communities, and the probability
of observing a link between them, respectively. On the whole, we register almost no
correlation between influence and link probabilities. From the heat maps corresponding
to link probabilities, we can see that the clustering procedure use to find the hierarchy
H (METIS) has correctly identified communities of highly connected nodes. Influence
relationships, however, do not in general exhibit any clear structure, although we have
a slight diagonal in the Twitter dataset. Interestingly, even if a community is dense, it
does not necessarily exhibit strong internal influence.

An alternate and perhaps more effective way of summarizing influence relationships
in the network is to consider the community-level influence propagation network. In
Figure 5 we show the CSI propagation network for the Flixster dataset, where node
size is proportional to community size, “Start” represents the Ω node, and edge width
is proportional to influence probability. We preprocessed the graph by pruning all the



edges between communities having influence probability less than 0.1, while we use
0.03 as threshold for the links connecting Ω with the rest of the network. Interestingly,
the network is almost acyclic, and this suggests a clear directionality pattern in the
flow of information. This finding is further confirmed by the analysis of the other two
datasets, for which, due to the limited space, we omit the CSI propagation networks.
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Fig. 5: The CSI model found in the Flixster dataset

Both the heat-map representation and the compact propagation network provide an
useful tool to understand influence relationships between communities, and at the level
of the whole network. We can evaluate the capabilities of this approach in providing
a compact and yet accurate description of the real influence process on the underlying
network, by setting up two simple tests.

In the first test, the goal is to verify if our approach detects correctly the communities
that play a key role in the information propagation process. To quantify the importance
of each community, we run the greedy influence maximization algorithm [10] (with a
budget of 100 nodes) on the considered networks, where the influence probabilities are
the ones estimated at the leaf level and we employ 5000 Monte Carlo simulation to
estimate the spread. This procedure provides a ranked list S of nodes that should be
targeted to maximize the expected spread on the network. For each s ∈ S we record∆s

as the gain, in terms of spread, that can be achieved by adding s to the set S . We can
measure its importance in the overall diffusion process as the percentage of the over-
all spread achieved by targeting the seed nodes selected in the considered community.
More formally:

score(c) =

∑
s′∈S∧s′∈A(c)∆s′∑

s′∈S ∆s′
.
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Fig. 6: Influence spread and early adoption scores of the communities produced by CSI

As clearly visible in Figure 6(a), a high fraction of the overall spread can be explained
by only a few communities. The high score of the most important communities is due to
the fact that the multiple nodes having a large spread gain belong to those communities.
As instance, the greedy procedure picks 13 nodes in the community 29 for Meme, 17
belonging to the community 21 for Flixster, 13 in the community 42 for Twitter. Inter-
estingly, the community structure provided by our approach gathers “high influential”
nodes in the same community.

The second validation test to provide a qualitative evaluation of the CSI model is
focused on the identification of early adopter communities. For each trace we consider
the communities that have highest number of active nodes during the first quarter of the
trace’s overall propagation time, and rank communities accordingly. Again, as shown
in Figure 6(b), a significant number of traces involves the initial activation of nodes be-
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Fig. 7: Distribution of number of communities touched by propagation traces

longing to a small set of communities. The identity of those communities can be easily
tracked by considering the length of the path from the “Start” node in the CSI prop-
agation graph. As instance, on Flixster (Figure 5), the communities 14 and 19 exhibit
a direct connection with the “Start” node, while community 21, can be reached in two
hops, characterized by an high influence weight.

Finally, the community structure detected by CSI can be useful to study the prop-
erties of the information propagation flow on the considered networks. As instance, we
may be interested in studying the typical flow of information in the network, by ana-
lyzing the number of communities reached. We provide, in Figure 7, the histogram of
the number of communities reached by the information propagation traces, where we
consider that a trace enters in a community if at least 10% of its nodes become active.
We observe different information propagation patterns: in Flixster a larger fraction of
traces propagate in a small number of communities. The number of communities par-
ticipating in a propagation declines as the number of communities increase, however, it
rises again for relatively large number of communities and, thereby, making a near U-
shaped distribution. Hence, a significant number of traces exhibit either local or global
diffusion. In Y!Meme, the number of communities involved in the propagation flow
follows a normal distribution, and again only a limited number of communities (15 in
average) are typical involved in the propagation. This “local propagation” behavior is
emphasized on Twitter, where each trace generally involves less than 5 communities.

6 Conclusions

In this paper we introduce a hierarchical approach to summarize patterns of influence
in a network, by detecting communities and their reciprocal influence strength. Our
model, dubbed CSI, generalizes the Independent Cascade propagation model, by mod-
eling influence between communities of connected nodes rather than a pairwise node
influence. This enables more compact representation of the network of influence, which
can be easily plotted and exploited to understand and detect interesting properties in the
information propagation flow over the network. Our empirical analysis over real-world
networks highlights two interesting observations: (i) the propagation networks found
by CSI are almost acyclic, (ii) information propagates in the network mainly “locally”,



reaching few communities. While the first observation offers interesting insights, since
it shows the existence of a clear direction in the propagation of information, the latter
confirms a strong relationships between information propagation and the community
structure, that might be exploited for community detection [1].
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