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Abstract. This paper introduces a special setting of weakly supervised
structured output learning, where the training data is a set of structured
instances and supervision involves candidate labels for some local part-
s of the structure. We show that the learning problem with this weak
supervision setting can be efficiently handled and then propose a large
margin formulation. To solve the non-convex optimization problem, we
propose a proper approximation of the objective to utilize the Constraint
Concave Convex Procedure (CCCP). To accelerate each iteration of CC-
CP, a 2-slack cutting plane algorithm is proposed. Experiments on some
sequence labeling tasks show the effectiveness of the proposed method.
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1 Introduction

Many applications involve predicting structured labels for a set of interdepen-
dent variables. For example, a part-of-speech tagging (POS) model needs to
predict a sequence of POS tags for a sentence, one for each token. This type of
problem is known as structured output learning. In the past decade, some effec-
tive methods have been proposed and widely used, such as Conditional Random
Field (CRF) [21] and Structured SVM (SVMstruct) [33]. However, they are super-
vised methods requiring a large amount of labeled instances for training, which
are expensive due to the natural complexity of the output, e.g., each token of a
sentence needs labeling. Although some semi-supervised [44] and active learning
methods [26, 27] are proposed to reduce the number of required labels, they still
require exact labels for the output variables. In reality, while getting exact labels
as supervision is expensive, it is often cheap to get much weak/indirect super-
vision, e.g., some candidate labels for an instance. Thus utilizing weak/indirect
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supervision to train a high quality predictor is very meaningful [3, 14, 18, 35].
In this paper, we introduce a special setting, called Candidate Labels for Local
Parts (CLLP). In CLLP, for each instance, we only need to provide a set of
candidate labels for each local part of the output variables (e.g., a chunk in a
sequence), among which only one is correct.

The CLLP setting takes root in many real-world scenarios, which roughly
falls into two cases: (1) There is prior knowledge from which we can provide
a candidate labeling set for a local part of output variables. For example, for
POS tagging, by looking up some linguistic dictionaries, we can get the candi-
date POS tags for a word in a sentence [23, 28, 25, 9]. Similar scenarios exist for
other sequence labeling tasks like word sense disambiguation [24], entity recogni-
tion [31], etc.. Another example is caption based image auto tagging. An image
on the web is usually surrounded with tags that provide candidate labels for
objects in the image [1, 4, 13]. (2) Noisy labels from multiple annotators. When
we collect manual labels for a learning task, a labeling task is often assigned to
multiple annotators, e.g., via a Crowdsourcing system. Due to labeling bias or
irresponsible annotators, different annotators may give different labels for the
same output variable. Thus the annotators collectively provide candidate labels
for an output variable [7].

CLLP also provides a uniform viewpoint for different labeling settings of
structured output learning: (1) If the candidate labeling set for each output
variable is the full label space, i.e., all the possible labels, there is no useful in-
formation provided and hence it degenerates to unsupervised learning. (2) If the
candidate labeling set for each output variable contains only the ground truth
label, it degenerates to fully supervised learning. (3) If for some instances, we
provide the candidate labels as (1) and for other instances we provide the can-
didate labels as (2), then it becomes semi-supervised/transductive learning [44].
(4) The general case is that each local part of the output variables is assigned
with a non-trivial set of candidate labels.

In this paper, we propose a large margin approach to the CLLP setting. We
maximize the margins between candidate labels and non-candidate labels, and
also the margins between the predicted label and other candidate labels. Since
the obtained optimization problem is non-convex, the proper approximations
and Constraint Concave Convex Procedure (CCCP) are used to solve it.

The major contributions of this paper are as follows:

1. We introduce and formalize CLLP, a general type of weakly supervised
setting for structured output learning and propose a large-margin approach. We
find that the CLLP setting can be handled by an efficient algorithm, while some
other forms of weak supervision may cause some parts of the problem to be
NP-hard. We also show that the proposed new objective is closer to the true
objective than a previous state-of-the-art method.

2. We propose a new proper approximation for the objective and propose an
algorithm based on CCCP to solve the approximated problem.

3. We propose a 2-slack cutting plane algorithm to accelerate each iteration of
CCCP, and give an upper bound on the number of iterations before termination.
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2 Related Work

There are several related terminologies on different labeling settings of a learning
task, including semi-supervised learning, multiple instance learning, and candi-
date label learning. Sometimes they are all generally called weakly supervised
learning [18], as distinguished from traditional supervised learning requiring full
and exact labels.

In semi-supervised learning (SSL) [43], a training set contains both labeled
and unlabeled instances. Refs. [12] and [44] propose semi-supervised solutions
for structured output learning, where some instances have exact and full labels
while the remaining instances are unlabeled. Ref. [36] extends the method in [44]
to incorporate domain knowledge as constraints, e.g., in POS tagging, a sentence
should have at least one verb. Ref. [34] even allows a training instance itself to
be partially labeled, e.g., some tokens in a sentence are labeled while the rest are
unlabeled. The major difference between SSL and CLLP is: in SSL an output
variable of an instance is either exactly labeled or unlabeled, while in CLLP the
supervision is a set of candidate labels for each local part of the output variables,
which dose not indicate the exact label but contains more information than when
unlabeled.

Multiple instance learning (MIL) [6, 40] is a classical learning problem with
weak supervision. In MIL, instances are grouped into bags, and labels are given
at the bag level. The original MIL only admits a binary label for a bag, and
is extended to admit multiple labels later [42, 16]. Some recent MIL methods
consider the dependency among instances and bags, bringing the problem closer
to structured output learning [41, 39, 5]. The difference between MIL and CLLP
is: in MIL the label itself is accurate, but which instance deserves the label is
ambiguous, while in CLLP the label itself is ambiguous (just a set of candidates)
but which instance carries the label is clear.

Candidate label learning (CLL) [15, 11] assumes a set of candidate labels is
given for each instance. It is later extended to the setting of candidate labeling
set (CLS), where instances are grouped into bags, and for each bag a set of
candidate labeling vectors is given [4, 14]. Each labeling vector consists of labels
of all the instances in the bag. CLS looks similar with CLLP. However, CLS
directly give candidate labeling vectors and has no constraints on the form of
the candidate labeling set. This label setting may result in inefficiency, as shown
in Theorem 1 of Section 3. We will discuss the relation between our approach
and a state-of-the-art method of CLS [14] in Section 3.5, and make empirical
comparisons under various tasks in Section 5.

We have noticed that in NLP literature, there are some papers on POS tag-
ging with only POS dictionaries rather than concrete token-wise labels in sen-
tences [23, 28, 8, 25, 10, 9], which is similar to the motivation of CLLP. However,
they focus on the specific domain problem and may be difficult to extend to gen-
eral structured prediction or multiclass classification. In contrast, in this paper
we work on providing a general formulation and an efficient algorithm for this
type of problems. The proposed approach is able to solve all kinds of structured
predictions or multiclass classifications with the CLLP labeling setting.
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3 Learning with Candidate Labels for Local Parts

3.1 General Weak Supervision via Candidate Labeling Set

Let x ∈ X denote an instance and y ⊆ Y denote the true label that is a
structured object such as a sequence, a tree, etc. Y is the full label space for x
without any constraints. Y ⊆ Y is weak supervision for x. Generally Y can be
represented as a set of all the allowed full labels for x, which is named candidate
labeling set (CLS) [4, 14]. We make the agnostic assumption that y ∈ Y , then
{y} ⊆ Y ⊆ Y . Given a set of weakly supervised training examples, {(xi, Yi)}Ni=1,
the learning task is to learn a function f : x 7→ y. Obviously, the task becomes
supervised learning if Yi = {yi}, ∀i, and degenerates to unsupervised learning
when Yi = Yi, ∀i.

Following the convention of structured output learning, we formulate func-
tion f by maximizing a mediate linear function F (x,y;w) parameterized by w,
namely

f(x;w) = argmax
y∈Y

F (x,y;w) = argmax
y∈Y

⟨w, Ψ(x,y)⟩, (1)

where Ψ is a joint feature representation of inputs and outputs, which is flexibly
designed to fit various applications.

For simplicity’s sake, we use δΨi(y,y
′) to denote Ψ(xi,y) − Ψ(xi,y

′). The
value of ⟨w, δΨi(y,y

′)⟩ is the cost of predicting y instead of y′ given input xi.
Although there could be various kinds of structures for y with different forms

of Ψ(x,y), for the simplicity of the presentation, we focus on the special case
where y forms a sequence. It is not hard to generalize this special structured
case to other general structured and non-structured cases.

3.2 Candidate Labels for Local Parts (CLLP)

CLS is a general representation for weak supervision that has been used in
previous methods [14, 4]. When dealing with structured output learning with
the maximum margin approach, due to the huge number of constraints, the
cutting plane method is usually employed to accelerate training [17]. In the
cutting plane method, there should be an algorithm that is able to efficiently
find the constraint that is most violated by the current solution. However, the
following theorem shows that under the general CLS setting it is not possible to
train efficiently:

Theorem 1. Given a structured instance x and arbitrary candidate labeling set
Y , there is no algorithm that can always find the most possible labels (in Y or
not in Y ) in poly(|x|) time unless P = NP , where |x| is the length of x.

Proof. Please refer to the supplementary material for the proofs.

But if candidate labels are given only for local parts, there exists efficient al-
gorithms that could find the most possible labels for a sequence among its
candidate/non-candidate labeling sets, as stated in the following theorem:
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Theorem 2. If the candidate labels are given marginally by local parts, namely,
each Yi in {xi, Yi}Ni=1 has the form Yi = {Yi1⊗Yi2⊗. . .⊗YiMi} ⊆ Y, where Yij is
the set of candidate labels that xij could possibly take, among which only one is
fully correct; xij is the j-th local part in xi whose size is upper bounded by some
constant; Mi is the number of local parts in xi, then in the sequence structured
learning there is an efficient algorithm (modified Viterbi algorithm) that can find
the most possible labels among candidate and non-candidate labeling sets.

Please note that although this theorem is for the sequence structure, by extend-
ing the Viterbi algorithm to general Belief Propagation, it is straightforward to
get the same conclusion for the general graph with a limited tree width.

3.3 Loss Function

We use a loss function ∆ : Y × Y → R to quantify the quality of a predictor,
which has the following properties:

∆(y,y) = 0 (2)

∆(y,y′) > 0,∀y ̸= y′ (3)

∆(y1,y2) +∆(y2,y3) ≥ ∆(y1,y3), ∀y1,y2,y3 ∈ Y. (Triangle inequality) (4)

Among many loss functions ∆(·, ·) satisfying the above properties, hamming loss
and 0/1 loss are commonly used.

3.4 Large-Margin Formulation

The original structured SVM [32] is formulated as the following problem

min
w

N∑
i=1

C

∣∣∣∣max
y′
i∈Y

[∆(y∗
i ,y

′
i) + ⟨w, δΨi(y

′
i,y

∗
i )⟩]

∣∣∣∣
+

+
1

2
∥w∥2. (5)

where | · |+ denotes max{·, 0} and y∗
i is the true label of xi. The formulation

encourages a large margin between a true label and the runner up.
In CLLP, we are given candidate labels for each local part, which has two im-

plications: (1) any label in the non-candidate set is not the true label; (2) some
label in the candidate set is true label but we do not know which one. They
imply two different types of discriminative constraints that need consideration.
First, discrimination between the candidates and non-candidates. Second, dis-
crimination between the true label and other candidates. Thus we decompose the
slacks for each instance into two sets, one set for candidate labels and another
for non-candidate labels. Namely, we decompose the objective as

J0(w) =

N∑
i=1

C1

∣∣∣∣ max
y′
i∈Yi

[∆(y∗
i ,y

′
i) + ⟨w, δΨi(y

′
i,y

∗
i )⟩]

∣∣∣∣
+

+

N∑
i=1

C2

∣∣∣∣ max
y′′
i ∈Y/Yi

[∆(y∗
i ,y

′′
i ) + ⟨w, δΨi(y

′′
i ,y

∗
i )⟩]

∣∣∣∣
+

+
1

2
∥w∥2. (6)



6 Chengtao Li, Jianwen Zhang, Zheng Chen

However, in contrast to the supervised case, in CLLP the true labels y∗
i ’s are

unknown. We can estimate them to approximate the objective. Thus our opti-
mization problem becomes

min
w,{yi∈Yi}N

i=1

Jc(w, {yi}Ni=1) =
N∑
i=1

C1

∣∣∣∣ max
y′
i∈Yi

[∆(yi,y
′
i) + ⟨w, δΨi(y

′
i,yi)⟩]

∣∣∣∣
+

+

N∑
i=1

C2

∣∣∣∣ max
y′′
i ∈Y/Yi

[∆(yi,y
′′
i ) + ⟨w, δΨi(y

′′
i ,yi)⟩]

∣∣∣∣
+

+
1

2
∥w∥2, (7)

where yi is the estimation of the true label y∗
i . The intuition is that we encourage

a large margin between the estimated “true” labels and the runner up in the
candidate labeling set as well as another runner up in the non-candidate set.
And we differentiate these two margins by C1 and C2.

Equation (7) looks similar to the counterparts in the Transductive Struct-
SVMs [44] and the Latent Struct-SVMs [37]. However, there are three key dif-
ferences. First, we do not know any true label y∗

i in Equation (7), while in the
Transductive Struct-SVMs we know the true labels of the labeled set and in the
Latent Struct-SVMs we know the true labels of the observed layer. Second, we
differentiate the two types of large margin constraints. Third, in our problem,
each yi has its own feasible solution space Yi.

3.5 Properties of the Objective

We compare our objective with the true objective and another objective used in
the current state-of-the-art method, the Maximum Margin Set learning (MM-
S) [14] designed for the CLS setting.

Lemma 1. ∀w, J0(w) ≥ min{yi∈Yi}N
i=1

Jc(w, {yi}Ni=1). Namely, the objective

Equation (6) upper bounds the objective Equation (7).

Corollary 1. Let J ∗
0 = minw J0(w), and J ∗

c = minw,{yi∈Yi}N
i=1

Jc(w, {yi}Ni=1),

then J ∗
0 ≥ J ∗

c . Namely, the optimal value of the objective Equation (6) upper
bounds that of the objective Equation (7).

On the other hand, in [14], the MMS method is proposed for tackling multi-
class classification with candidate labeling sets. Actually, it can be straightfor-
wardly extended to a structured output case by modifying ∆(·, ·) and Ψ(·, ·).
Then the problem of MMS becomes:

min
w

Jm(w) =
1

2
∥w∥2

+ C2

N∑
i=1

∣∣∣∣ max
y′′
i /∈Yi

[∆min(y
′′
i ,Y/Yi) + ⟨w, Ψ(xi,y

′′
i )⟩]− max

yi∈Yi

⟨w, Ψ(xi,yi)⟩
∣∣∣∣
+

(8)

where ∆min(y
′, Y ) = miny∈Y ∆(y′,y). Then we have the following lemma:

Lemma 2. ∀w,min{yi∈Yi}N
i=1

Jc(w, {yi}Ni=1) ≥ Jm(w). Namely, the objective

Equation (7) upper bounds the objective Equation (8).
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Corollary 2. Let J ∗
c = minw,{yi∈Yi}N

i=1
Jc(w, {yi}Ni=1), and J ∗

m = minw Jm(w),

then J ∗
c ≥ J ∗

m. Namely, the optimal value of the objective Equation (7) upper
bounds that of the objective Equation (8).

By combining the above lemmas and corollaries, we obtain the theorem:

Theorem 3. ∀w,J0(w) ≥ min{yi∈Yi}N
i=1

Jc(w, {yi}Ni=1) ≥ Jm(w) and

J ∗
0 ≥ J ∗

c ≥ J ∗
m.

This theorem shows that the value of our objective (Equation (7)) lies between
the value of the true objective (Equation (6)) and the value of the objective
given by MMS (Equation (8)), indicating that our objective is closer to the true
objective compared to MMS.

4 Optimization

4.1 Optimization with CCCP

The optimization problem defined by Equation (7) is non-convex. An effective
approach to solving such a non-convex problem is the Constrained Concave-
Convex Procedure (CCCP) [38, 29], which requires the objective to be decom-
posed into a convex part and a concave part. However, the objective of Equa-
tion (7) is hard to decompose. In Equation (7), we maximize the objective with y′

i

while minimizing it with yi. But the term ∆(yi,y
′
i) correlates them together, ob-

structing the decomposition. The same problem exists with the term ∆(yi,y
′′
i ).

Therefore, we make an approximation of the objective by decomposing each
∆(a, b) term into (∆(a, c) +∆(c, b)), resulting in the following objective:

min
w

∑
i

min
yi∈Yi

{
C1

∣∣∣∣ max
y′
i∈Yi

[∆(zi,y
′
i) +∆(zi,yi) + ⟨w, δΨi(y

′
i,yi)⟩]

∣∣∣∣
+

+

C2

∣∣∣∣ max
y′′
i ∈Y/Yi

[∆(zi,y
′′
i ) +∆(zi,yi) + ⟨w, δΨi(y

′′
i ,yi)⟩]

∣∣∣∣
+

}
+

1

2
∥w∥2 (9)

= min
w

∑
i

{
C1

∣∣∣∣ max
y′
i∈Yi

[∆(zi,y
′
i) + ⟨w, Ψi(xi,y

′
i)⟩]− max

yi∈Yi

[⟨w, Ψi(xi,yi)⟩ −∆(zi,yi)]

∣∣∣∣
+

+

C2

∣∣∣∣ max
y′′
i ∈Y/Yi

[∆(zi,y
′′
i ) + ⟨w, Ψi(xi,y

′′
i )⟩]− max

yi∈Yi

[⟨w, Ψi(xi,yi)⟩ −∆(zi,yi)]

∣∣∣∣
+

}
+

1

2
∥w∥2

(10)

where zi’s are labels initialized at the beginning of each CCCP iteration. As
∆(·, ·) meets the triangle inequality, Equation (10) upper bounds Equation (7).

Now we can construct an upper bound for the concave term. In each CCCP
iteration we substitute the concave term

max
yi∈Yi

[⟨w, Ψ(xi,yi)⟩ −∆(zi,yi)] (11)

with term ⟨w, Ψ(xi,yi)⟩ −∆(zi,yi), where
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Algorithm 1 The CCCP algorithm

1: Input: data with weak supervision {(xi, Yi)}Ni=1}
2: Initialize labels {yi}Ni=1

3: repeat
4: Solve the convex optimization problem given by Equation (15)
5: Set labels {yi}Ni=1 to be the current prediction of structured instances {xi}Ni=1

given by current model
6: until convergence to a local minimum

yi = argmax
yi∈Yi

[⟨w, Ψ(xi,yi)⟩ −∆(zi,yi)] (12)

At the beginning of each CCCP iteration we initialize

zi = argmax
zi∈Yi

⟨w, Ψ(xi, zi)⟩ (13)

Then it follows that yi = zi, indicating that we could directly initialize yi’s as

yi = argmax
yi∈Yi

⟨w, Ψ(xi,yi)⟩. (14)

In this way, we are essentially setting yi to be the predicted labels of struc-
tured instances given by current model. Then the optimization problem in each
iteration of CCCP becomes

min
w

N∑
i=1

[
− (C1 + C2)⟨w, Ψ(xi,yi)⟩+ C1 · max

y′
i∈Yi

(∆(yi,y
′
i) + ⟨w, Ψ(xi,y

′
i)⟩)

+ C2 · max
y′′
i ∈Y/Yi∪{yi}

(∆(yi,y
′′
i ) + ⟨w, Ψ(xiy

′′
i )⟩)

]
(15)

where yi’s are initialized as Equation (14). The CCCP procedure is shown in Al-
gorithm 1.

4.2 Accelerating with 2-Slack Cutting Plane Algorithm

In each iteration the optimization problem of Equation (15) can be solved us-
ing standard quadratic programming. However, the huge number of constraints
prevents us from solving it efficiently. We employ the Cutting Plane (CP) al-
gorithm [19, 17] to accelerate training. However, in contrast to the original CP
for structured SVM [17], in this problem we have two sets of constraints (cor-
responding to C1 and C2 respectively) and we want to find the solution that
satisfies them with specified precision separately. Thus we need to maintain two
constraint sets Ω1 and Ω2, and set two precision ε1 and ε2 for them respec-
tively. To find the most violated label setting in candidate labeling sets and
non-candidate labeling sets, we employ a modified Viterbi algorithm, which will
run in polynomial time of |x| for each instance x (For details of the modified
Viterbi algorithm please refer to the supplementary material). The sketch of the
2-slack cutting plane algorithm is described in Algorithm 1 in the supplementary
material. We also show that the algorithm will converge in at most a non-trivial
fixed number of iterations. For the details please refer to Theorems 4 & 5 in
Section 4 of the supplementary material.
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5 Experiments

We performed experiments on three sequence labeling tasks including part-of-
speech tagging (POS), chunking (CHK) and bio-entity recognition (BNE).

5.1 Tasks & Data Sets

POS: This task aims to assign each word of a sentence a unique tag indicating
its linguistic category such as noun, verb, etc. We used the Penn Treebank [22]
corpus with the parts extracted from the Wall Street Joural (WSJ) in 1989.
CHK: This task aims to divide a sentence into constituents that are syntactic
groups such as noun groups, verb groups etc. We use the same data set in the
shared task of Chunking in CoNLL 2000 3 [30].
BNE: This task aims to identify technical terms and tag them in some predefined
categories. We used the same dataset in the Bio-Entity Recognition Task at
BioNLP/NLPBA 2004 4 [20].

5.2 Baseline Methods

Our method, denoted by CLLP, was implemented based on the SVMhmm pack-
age5 to fit with sequence labeling tasks. We compared CLLP with the following
methods that are able to handle sequences with candidate labels:
Gold: We trained an SVMhmm predictor with ground truth full labels. The per-
formance of Gold would be an upper bound of the performance of CLLP.
NAIVE: For each token, we randomly picked one label from its candidate labels
as its true label and trained a SVMhmm predictor.
CL-SVMhmm: We treated all the candidate labels as true labels. Each se-
quence appeared in the training set multiple times with different labels. Then
an SVMhmm predictor was trained on the self-contradictory labeled sequences.
Similar methods have been used as baselines in [2, 14].
MMS: This method was originally proposed in [14]. We made modifications as
stated in Section 4 to deal with the sequence data.

All of the above methods were implemented based on the SVMhmm package.
For all the experiments, we selected cost parameters C, C1 and C2 from the grids
[500 : 150 : 3200]. In MMS and CLLP, each CCCP iteration was a cutting plane
optimization procedure whose iteration number was controlled by the parameters
ε (for MMS) and ε1 and ε2 (for CLLP). Training too aggressively (with ε’s that
are too small) in the first several CCCP iterations would prevent the algorithm
from recovering from the wrongly initialized labels. Thus we initialized ε (for
MMS) and ε1 and ε2 (for CLLP) to be large at first, and then divided ε’s
by a discounter d in each iteration until they were less than or equal to some
thresholds t, t1 and t2. We set the discounter to be 2 and choose thresholds from
grids [0.5 : 0.5 : 3].

3 http://www.clips.ua.ac.be/conll2000/chunking/
4 http://www.nactem.ac.uk/tsujii/GENIA/ERtask/report.html
5 http://www.cs.cornell.edu/people/tj/svm light/svm hmm.html
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5.3 Experiments on Artificial Candidate Labels

Originally, these three data sets did not contain any candidate labels as super-
vision. We followed [14] to generate artificial candidate labels for them. In this
way we were able to perform controlled experiments and study the impact of
different labeling settings such as the size of the candidate set.

Candidate Label Generation
The following two methods were adopted to generate candidate labels. For

both,we took each individual token as a local part, i.e., we provided candidate
labels for each token, where the number of candidate labels was specified by
the token’s candidate labeling size. The two methods were used to control label
ambiguity at the sequence level and token level respectively.
Random Generation: This method was used to control the label ambiguity at
the sequence level. Each token in the sequence had an initial candidate labeling
size of 1 (which is its true label). We randomly chose n tokens sequentially (not
necessarily non-overlapping) and doubled their candidate labeling size. We then
generated candidate labels for each token according to the label distribution in
the training data, which already contained label bias.
Specified Generation: This method was used to control the label ambiguity at
the token level. For all sequences, we restricted all the candidate labeling sizes
to be a constant m, and randomly generated m different candidate labels for
each token, among which only one was correct.

The NAIVE, MMS and CLLP methods require label initializations. We ran-
domly picked one label from the candidate labels for each token as its initial label.

Results

Data Sets with Random Generation
We varied n from 1 to 16. Performances of various methods on 3 different

data sets were plotted in Figure 1, from which we can make observations:
First, CLLP was more stable against different numbers of candidate labels

compared to NAIVE and CL-SVMhmm. In addition, CL-SVMhmm was not scal-
able with a large number of candidate labels. When n exceeds 6, several days
are needed for training.

Second, the gap between CLLP and MMS was small, especially with regards
to CHK. This phenomenon resulted from the small number of candidate labels.
With the random generation of candidate labels, even when n was large, there
were still tokens that had only one candidate label that was exactly its true
label. This fact prevented CLLP from taking advantage of its objective of better
approximation then MMS, and made the gap between them negligible. However,
the gap will be more visible when the number of candidate labels is large, as
shall be seen in Figure 2 of Section 5.3.

Last, the CLLP method beats all the other methods and performed close to
the full supervised SVMhmm. This clearly shows the effectiveness and scalability
of CLLP versus other methods.
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Fig. 1. The performances of various methods on data sets POS (a), CHK (b) and BNE
(c). We only plotted a few points of CL-SVMhmm because as the number of candidate
label grows, it immediately becomes unfeasible in time.

Data Sets with Specified Generation

We varied m from 1 to 7 to see how the token-wise candidate labeling size
affected the performance. We report the results on the CHK data set in Fig-
ure 2 (a).

The results indicate the gap between MMS and CLLP becomes more visible
as m increases. This phenomenon mainly results from poor approximation of the
objective of MMS.

In the objective 8, MMS considered only the margin between the most pos-
sible candidate labels and the most possible non-candidate labels. When the
number of candidate labels was large, there were fewer non-candidate labels for
the MMS optimizer to choose constraints from. In contrast, CLLP considers
constraints from both the candidate labeling set and the non-candidate labeling
set. This strategy is beneficial when the number of candidate labels is large.

We also observed that CLLP was less sensitive to the initialization error when
compared to other methods, Due to the fact that initialization error increases as
m increases. We conducted an auxiliary experiment at m = 5 to further investi-
gate. We varied the initialization error rate from 0.5 to 0.8. Note that when the
initialization error was 0.8, the initial labels were actually totally random. Under
this setting, the performances of various methods are reported in Figure 2 (b).
Based on the results, the initialization error rate did have a significant impact on
the performances of these models. However, its influence on CLLP was limited
compared to other methods, showing the stability of CLLP against the different
initialization error rates.

Impact of Parameter d

We conducted this experiment to verify the impact of the discounter d on
the convergence of CLLP. The experiment was done on the POS data set with
random generation and n was fixed at 16. We varied the number of iterations
from 1 to 10, and set the discounter d to grids [2 : 5] to see the impact.The
results are reported in Figure 3.

The results show the algorithm converged quickly, e.g., in 4 to 5 iterations.
Even if we chose an inappropriate d (say, d = 2), the algorithm still converged in
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Fig. 2. Impact of model parameters on the performances of various methods. (a) Im-
pact of m with totally random label initialization. (b) Impact of initialization error
rate with m = 5.
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Fig. 3. The convergence curves of CLLP with different discounters d.

6 iterations, showing the efficiency and robustness of the algorithm. The speed
of convergence seems to be positively correlated with the value of d. However,
the impact was limited. Actually it made little sense to choose a very large value
for d, since the algorithm would simply do nothing in the first several CCCP
iterations and would set wrong labels for the following training procedure.

5.4 Real Application: POS Tagging with Dictionaries

We also conducted an experiment on the real application of POS tagging with
dictionaries. Our goal was to train a POS tagger without any labeled sentences
but only require a word dictionary indicating the possible POS tags of each
word, which is easy to obtain from various kinds of linguistic dictionaries. This
problem has been studied before in NLP and some specific methods have been
proposed [23, 28, 25, 9]. We noticed that this is a typical example of structured
output learning with CLLP: by matching the dictionary back to each sentence,
we obtained the candidate POS tags for the matched words. We found that our
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Table 1. POS tagging accuracy of different methods.

Methods 48000 96000

GOLD 94.40 94.77
NAIVE 65.33 66.79
MMS 67.68 69.51
CLLP 76.74 76.56

MinGreedy [25] 68.86 74.93

MinGreedy + auto-supervised [9] 80.78 80.90
MinGreedy + auto-supervised + emission initialization [9] 80.92 80.70

MinGreedy with extensions [9] 87.95 86.22
CLLP + auto-supervised 82.90 82.22

CLLP + auto-supervised + emission initialization 82.89 82.22
CLLP + MinGreedy with extensions 89.87 88.47

general algorithm is competitive with the state-of-the-art methods, i.e., “Min-
Greedy” [25] and its various extensions [9].

Following the settings in previous methods, we used a corpus extracted from
the Wall Street Joural (WSJ) in 1989 in Penn Treebank [22]. Sections 00-07,
with golden labels, were used to construct the tag dictionary. Then the first
48000/96000 words of sections 16-18 without any labels were used as the raw
training set. Sections 19-21 were used as the development set and 22-24 as the
test set.

In standard CLLP, the initial labels are randomly chosen from the candi-
date labels, without any task-specific prior incorporated into the algorithm. In
[9], several ways of label initializations have been proposed. We used some of
these methods to initialize labels for CLLP, noted as “CLLP + auto-supervised”
and “CLLP + auto-supervised + emission initialization.” The best performance
shown in [9] was achieved by MinGreedy with full extensions (method 10 in the
original paper), where a full-supervised HMM was trained using initialized labels
output by MinGreedy. We also used the output of MinGreedy as our initializa-
tion for CLLP, noted as “CLLP + MinGreedy with extensions.” The MinGreedy
code is provided by the authors 6. More details on dictionary construction and
label initialization can be found in [25, 9].

The results are shown in Tabel 1. CLLP outperformed all the other unitary
methods without the task (POS) specific initializations. With the proper initial-
ization of labels, CLLP is able to further improve the results. Remarkably, by
using the output labels of MinGreedy with full extensions as label initialization,
CLLP is able to outperform all the other methods.

5.5 Real Application: Wiki Entity Type Disambiguation

We conducted another experiment on a real problem of Wiki entity type dis-
ambiguation. This is an example of CLLP degenerating to handle multiclass
classification.

6 https://github.com/dhgarrette/type-supervised-tagging-2012emnlp
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Traditionally, in order to train an NER model, we need sentence-level labels.
Similar to POS tagging with dictionaries, we attempted to train an NER model
without any sentence labels and only requiring an entity dictionary indicating the
possible types of an entity, which can be easily obtained from many knowledge
bases such as Freebase 7.

We conducted the experiments based on Freebase and Wikipedia articles. In
some sentences of a Wikipedia article, there is an anchor link to indicate the
phrase is an entity in Wikipedia and will redirect to the host article page if a
user clicks it. For each entity highlighted by the anchor link, we can find the
corresponding entity types in Freebase. We then obtained a set of multiclass
training instances: an entity in a sentence, and the corresponding candidate
labels. We selected 20 entity types plus an “Other” type. We randomly sampled
500 entities to manually label as the test set, and sampled 9991 entities as the
training set. As each entity was associated with a candidate “Other” label, the
“Other” class dominated other classes. Thus we sampled the “Other” class by
assigning “Other” to an entity with a probability of 0.1. The the classes were
therefore more balanced.

Table 2. Results on Wiki data

F1 Precision Recall

NAIVE 64.83 57.79 73.82
MMS 54.02 47.70 62.30
CLLP 69.69 61.52 80.37

The results are shown in Tabel 2. We found that MMS was even worse than
NAIVE. The main reason for this phenomenon still draws from the objective
that MMS aims to minimize. With the large number of “Others” labels, MMS
either took it as the most possible candidate label, or simply ignored it since
it was not a non-candidate label. Thus it proned to predicting many entities to
“Others.” Things became even worse when we added more “Others” labels to
the training data. When we associated all the instances with an extra “Others”
label, MMS simply predicted all the entities were “Others.” In contrast, CLLP
overcame this problem by using two sets of constraints and outperformed the
other two methods.

6 Conclusion

In this paper, we introduced a new weakly supervised setting for structured
output learning, named candidate labels for local parts (CLLP), where a set
of candidate labels is provided for each local part of output variables. We have
shown that training with this type of weak supervision can be efficiently handled.
Then we proposed a large-margin formulation for the learning problem, and used
proper approximations and Constraint Concave-Convex Procedure (CCCP) to

7 http://www.freebase.com
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deal with the non-convex optimization problem. A 2-slack cutting plane method
has also been proposed to accelerate the inner loop of CCCP. Experiments on
various tasks have shown the effectiveness and efficiency of the proposed method.
It is interesting that the CLLP setting is rather general, and is able to degenerate
to various weakly supervised setting for both structured output learning and
multiclass classification. Thus the CLLP setting and the proposed large-margin
learning method provide a uniform approach to formulate and solve structured
output learning with different kinds of weak supervision.
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