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Abstract. In this paper, we propose a probabilistic framework for pre-
dicting the root causes of errors in data processing pipelines made up of
several components when we only have access to partial feedback; that
is, we are aware when some error has occurred in one or more of the
components, but we do not know which one. The proposed error model
enables us to direct the user feedback to the correct components in the
pipeline to either automatically correct errors as they occur, retrain the
component with assimilated training examples, or take other corrective
action. We present the model and describe an Expectation Maximiza-
tion (EM)-based algorithm to learn the model parameters and predict
the error configuration. We demonstrate the accuracy and usefulness of
our method first on synthetic data, and then on two distinct tasks: error
correction in a 2-component opinion summarization system, and phrase
error detection in statistical machine translation.
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1 Introduction and Motivation

In this work we are interested in predicting the root cause of errors for data that
have been processed through a pipeline of components when we only have access
to partial feedback. That is, an input X goes through a series of components that
ultimately results in an output Y . Each component in the processing pipeline
performs some action on X, and each of the components might result in an
error. However, the user often only has access to the final output, and so it is
unclear which of the components was at fault when an error is observed in the
final output. In cases where the user is aware of the intermediate results, it is
also typically more complex to have to specify the exact component that was at
fault when providing error feedback. Therefore, given only the fact that an error
has occurred or not, we would like to predict the root causes of the error.

Pipeline processing, or Pipes and Filters, has been a stalwart of computing
since the concept was invented and integrated into the UNIX operating system
in the 1970’s [1]. The simple idea is that complex processing and powerful results
can be achieved by running an input through a series of more basic components
to in turn produce a more intricate output than would have been possible with
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Fig. 1. Typical data processing pipeline with two components resulting in a marked-up
output. The components are often black boxes that the user is unaware of which can
render providing user feedback complicated.

a single method. This approach has seen increasing use in recent years as the
outputs desired by users have become more complex. It is seen especially in Nat-
ural Language Processing (NLP) applications such as named entity recognition
[2], text summarization [3], and recognizing textual entailment [4].

For example, the majority of comment or opinion summarization systems
described in the literature make use of a collection of diverse techniques in a
pipeline-like architecture [5, 6]. A first component might filter out spam com-
ments and then a second could categorize the comments into aspects. This fits
a typical data processing pipeline consisting of two components as is shown in
Figure 1. It is also a common technique for applications such as identifying
evaluative sentences [7] and MacCartney et al.’s three stage approach to tex-
tual inference: linguistic analysis (which consists of a pipeline itself), followed
by graph alignment, ending with determining an entailment [8]. More generally,
GATE provides a software architecture for building NLP pipelines [9]. Recent
work has also shown that running two binary classifiers in a series can result in
improved results over a more complex multi-class classification approach provid-
ing a further reason to consider problems associated with errors in processing
pipelines [10].

We begin with a simple motivating toy example. Figure 2 visualizes a set of
input data X = (x1, x2) ∈ R2 (left) running through two affine transformation
components in a pipeline. The first component translates the data by T1 = x1+6,
and the second component translates the output of the first component by T2 =
x2 − 6. However, each of the components have some region where they commit
errors and an error causes the translation to be distorted by scaling it by uniform
noise. Since the user only observes the final output (right), there are two classes
of partial feedback: fi = 0 means that for point Xi, the data transformations
were successful and no errors occurred; fi = 1, on the other hand, means that
there was some error, though it is not clear whether it was the result of the first
component committing an error, the second component committing an error, or
both.

The user is generally able to identify an overall error much more efficiently
than having to specify its source. With K components, full feedback would re-
quire selecting from 2K − 1 distinct configurations of error. In many cases, it
will be impossible to identify the source of error. In a Named Entity Recogni-
tion pipeline that consists first of a part-of-speech (POS) tagging component,



3

−6

−4

−2

0

2

4

6

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●
●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●
●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

● ●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

● ●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

−6 −4 −2 0 2 4 6

−6

−4

−2

0

2

4

6

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●
●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

● ●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●●

●●

●

●

●

−6 −4 −2 0 2 4 6

−6

−4

−2

0

2

4

6

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●
●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●
● ●

●

●

●

−6 −4 −2 0 2 4 6

Fig. 2. Input data X = (x1, x2) ∈ R2 (left) is first translated by T1 (centre) and then
T2 (right). When either translation component commits an error, the translation fails
and instead results in a translation distorted by uniform random error.

followed by a chunker, followed by a named entity classifier, an incorrectly iden-
tified named entity can easily be spotted, but it may very well be impossible to
identify if it was the POS tagger, the chunker, or the classifier that was the root
cause of the error. In Figure 3, the incorrectly translated output datapoints have
been identified as red circles and the error-free datapoints as blue squares (right).
We also show the same colour-coding on the input and intermediate results (left)
and (centre). In these latter plots, we have also plotted the component-specific
linear error predictor. Knowing this relationship, we can then predict the prior
probability of a component committing an error given some input, and the poste-
rior probability of error configuration given that an error has been observed. One
could then take corrective measure by directing training data to the component
at fault, or automatically attempting to rectify the error through a component
wrapper.

In this paper, we propose a probabilistic framework that aims to uncover
the predictors of error for each of the arbitrary number of components in a
data processing pipeline, and predict the configuration of error for each data
observation. After discussing some related work, we present our probabilistic
model that is based on binary classification of error through logistic regression.
We then present an Expectation Maximization (EM)-based algorithm to learn
component-specific error model parameters and to estimate the configuration of
error. We demonstrate the accuracy of our approach first on synthetic data, and
then on two real-world tasks: a two-component opinion summarization pipeline
and a phrase error prediction task for post-editing in machine translation. We
conclude with some discussion and thoughts on future work.

2 Related Work

While our probabilistic error model has some connections to sigmoid belief net-
works (SBN) [11], the most closely related work with respect to improving per-
formance in pipelines when errors occur comes from the NLP domain. In [12],
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Fig. 3. Colour-coded data X where blue represents the feedback f = 0 (no error) and
red represents the partial feedback f = 1 (error in one or more of the components).
The linear predictors of error for T1 (left) and T2 (centre) are also plotted.

Marciniak and Strube explain how NLP problems can generally be cast as a
set of several classification tasks, some of which are mutually related. A dis-
crete optimization model is presented that is shown to deliver higher accuracy
in a language generation task than the equivalent task implemented as solving
classification tasks sequentially. However, they do not address either a general
approach to improve the accuracy of each of the classifiers, nor do they consider
how user feedback might be taken into consideration.

Finkel et al. show that modeling a pipeline as a Bayesian network where each
component is seen as a random variable and then performing approximate infer-
ence to determine the best output can outperform a greedy pipeline architecture
where a best decision is made at each node [4]. While a general method to solve
any kind of multi-stage algorithm is proposed, a principal requirement is that
each component must be able to generate samples from a posterior. The authors
note:

If ... all NLP researchers wrote packages which can generate samples from
the posterior, then the entire NLP community could use this method as
easily as they can use the greedy methods that are common today... [4]

Our proposed method is also a Bayesian network [13]. However, its aim is to
predict the root causes of errors in a pipeline and it requires no changes to
any of the underlying methods. Depending on the composition of the underlying
components, knowing the cause of an output error could allow us to dynamically
correct it by asking for a training label in an active learning setting, or flipping
the erroneous prediction if the component consists of a binary classifier.

3 Probabilistic Model

For each component n in a pipeline processing system, we model the probability
that it will commit an error en as a Bernoulli random variable modeled using
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binary logistic regression: p(en = 1|x, β) = σ(φn(x)>β) where σ(·) is the logistic
function and φn(·) is a function that extracts the features required for component
n. In this setting we address the case where the system only has access to partial
feedback; that is, the only error observation, f , is with respect to the aggregate
error. In this case, a user provides feedback only pertaining to whether some
error occurred at an indeterminate set of components (f = 1), or that the
output contains no errors at all (f = 0).

We let e = (e1, . . . , eN ) be the collection of error random variables for each
component, such that

p(f, e|x, β) = p(e|x, β)p(f |e), (1)

where the first term p(e|x, β) contains the probability of a given error configu-
ration e, and the second term p(f |e) encodes how the user feedback f relates to
the error configuration. In the general case of the former, we have

p(e|x, β) =

N∏
i=1

p(ei|x, β) (2)

For the latter term in the standard case where 1 or more errors committed in the
components leads to an observed final error f = 1 we have p(f = 1|e) = δ(

∑
i ei)

and p(f = 0|e) = 1 − p(f = 1|e) = 1 − δ(
∑
i ei) where δ(z) = 1 if z > 0 and

δ(z) = 0 otherwise. Note that this term could be modeled more intricately by
allowing a user to specify a degree of error or by leading the model in the general
direction of error(s) without having to explicitly report them.

All errors are assumed to be conditionally independent given the features x:
p(e|x, β) = p(e1, . . . , eN |x, β) =

∏N
i=1 p(ei|x, β), and the posterior probabilities

of error are then given by

p(e|f, x, β) =

{
δ{e1=0,...,en=0} if f = 0,∏N

i=1 σ((2ei−1)φi(x)
>β)

1−
∏N

i=1 σ(−φi(x)>β).
if f = 1.

(3)

A graphical model depiction of the error model framework is shown in Figure 4.

4 Parameter Estimation

We can learn the component-specific error model parameters β by maximizing
the likelihood which is obtained by integrating out the latent error variables ei.
The likelihood and its derivative can be computed in closed form and the pa-
rameters then optimized using gradient descent [14]. However, as the number of
components grows, the terms in the gradient and the likelihood grow unwieldy.
For simplicity, we therefore decompose the error estimation and parameter learn-
ing by turning to a stochastic EM-based approach [15].



6

M

N

xm

emn

fm

β

Fig. 4. Graphical model of error prediction framework. There are M observations and
N components in the pipeline; β is a vector parameter of the component error models.

Where there are M observations and N components, the log likelihood is:

lnL = `(β) =

M∑
m=1

ln
∑
e1

· · ·
∑
eN

p(fm, e1, . . . , eN |xm, β)

=

M∑
m=1

ln
∑
e

p(fm, e|xm, β) (4)

which includes the log of a sum. By the Jensen inequality, however,

`(β) =

M∑
m=1

ln
∑
e∈e

p(fm, e|xm, β)

≥
M∑
m=1

∑
e∈e

wm,e ln p(fm, e|xm, β) +H(wm)

=g(w, β) (5)

where wm contains a non-negative weight for each configuration of error (size
2N − 1),

∑
e∈{e\e0...0} wm,e = 1 and ∀e, wm,e ≥ 0. g(w, β) is then a lower bound

for the log likelihood.
Because g(w, β) is a lower bound for the log likelihood, maximizing g(w, β)

will also maximize `(β). However, we now have the latent parameters w so we
iteratively maximize w (E-step) and β (M-step).

E-step Where e ∈ e is one of the 2N − 1 permutations of e1e2...eN where there
is at least one error we have, for each observation m:

wm,e =
p(fm, e = e|xm, β)∑

e′∈e p(fm, e = e′|xm, β)
(6)
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Therefore, for the example where there are N = 3 components in an observation,
there will be 23 − 1 = 7 w’s for each configuration of error (e1, e2, e3): w001,
w010, w100, w110, w101, w011, and w111. Each w is a weight in the sense that
it represents the probability of the given configuration (for observations where
there is no error, f = 0, the weight w0...0 = 1). This exponential explosion
of error combinations can be managed for medium numbers of components,
which is reasonable for many applications. For large numbers of components, an
approximate E-step could be derived using a variational EM algorithm.

M-step The M-step is a weighted maximum likelihood of the following:

g(w, β) =

M∑
m=1

∑
e∈e

wm,e ln p(fm, e|xm, β)

=

M∑
m=1

∑
e∈e

wm,e

N∑
i=1

[ei lnσ(φi(xm)>β) + (1− ei) ln(1− σ(φi(xm)>β))]

(7)

where each ei takes on its value assigned by the permutation indexed by e.
For example, if N = 2, then e = (e1, e2) = {1 : (0, 1), 2 : (1, 0), 3 : (1, 1), 4 :
(0, 0)}. Therefore, each observation m with fm = 1 requires 3 w calculations, and
contributes 3 weighted samples to the maximum likelihood. Things are further
complicated by the fact that β will generally be different for each component.
We get around this issue by having each feature vector φi(x) be of size D ×N
where there are D features and place zeros in the components that align with
β values not considered by this component. A dot product between a sparse
feature vector and the parameters that pertain to the given component can be
efficiently computed. For the M-step we run a small number of iterations of SGD
or batch gradient descent (depending on the application) at each step.

It is well known that EM algorithms are often highly sensitive to how the
parameters are initialized [16]. Our algorithm is no different and we empiri-
cally observed falling into local minima for certain initializations. We overcome
this problem by initializing the model parameters to those obtained by running
an independent logistic regression with the observed labels being the overall
feedback for the entire pipeline. In other words, for observation X with 2 com-
ponents, we learn βi for component i with features φi(X ) and label f , even
though f = 1 is partial as it could imply any of the following configurations:
(e1 = 1, e2 = 0), (e1 = 0, e2 = 1), (e1 = 1, e2 = 1). This initialization seems to
discourage local minima that could trap the algorithm with a random initializa-
tion.

5 Experiments

We demonstrate the viability of our method on three separate tasks. First, we
show that our model and inference algorithm are sound by learning the error
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configuration and model parameters on synthetic data for different lengths of
pipelines and numbers of feedback observations. We then show results on im-
proving a 2-stage opinion summarization system by learning the probability of
two static components committing an error given partial feedback. Finally, we
describe the results of a semi-synthetic experiment on phrase error prediction
for post-editing in machine translation where we predict the phrases most likely
to contain translation errors given that we know there is some error in the trans-
lation.

5.1 Synthetic Data

To demonstrate how our model is able to learn the probability of a component
committing an error with access only to partial feedback, we revisit the motivat-
ing N = 2 component example that we presented in the introduction. Here, we
draw up to M = 500 datapoints with d = 2 features from a multivariate normal
distribution with µ = (−3, 3) and Σ = I2. We randomly select a true β param-
eter for each component which corresponds to what we hope to learn. An error
matrix E ∈ {0, 1}M×N is generated where em,n = 1 implies that φn(xm) would
result in an error for component n. Each element em,n is computed by drawing
a random Bernoulli variable with parameter modeled by a binary logistic regres-
sion resulting in data with some added noise. This tends to result in a dataset
that is roughly balanced between fm = 0 and fm = 1 observations. The transla-
tion Tn is applied for point xm if em,n = Bernoulli(σ(φn(xm)>β)) = 0, otherwise
the translation is scaled by some noise and the data gets translated randomly.
The observations are then (xm, fm)Mm=1 where fm = 1 if any of em,n = 1 and
fm = 0 otherwise. Before proceeding all em,n are removed and the algorithm
learns β (and eventually em,n) given only xm,n and fm. This is synthetic data
experiment 1.

We learn the parameters with varying number of error observations and then
test the precision and recall of predicted prior probability of error on a separate
test set of 500 observations drawn from the same distribution. For each number
of observations (10 to 500), we run 5 trials and report the average precision and
recall. Figure 5 (left) shows that we do very well even from very few observations
and we predict essentially perfectly from 250 observations on.

Next, we examine the precision and recall statistics for another synthetic ex-
periment that considers how our model performs as the number of components
varies. This is synthetic data experiment 2. Here, to simplify things, indepen-
dent features are drawn for each component from a standard multivariate normal
distribution. We randomly select error parameters and generate ground truth la-
bels. Our algorithm then observes the features and only the partial feedback f
for each observation. We are then interested in how many observations are re-
quired for different lengths of processing pipelines. We consider between N = 2
and N = 6 components. For testing, we again draw data from the same distri-
bution but with M = 100 observations; this will amount to MN values of ei to
be predicted. We show F1-scores for different lengths of pipelines as the number
of observations grows in Figure 5 (right). This shows that even with up to 6
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Fig. 5. Precision and Recall values for synthetic data experiment 1 (left) and 2 (right).
Both experiments demonstrate that the precision and recall increase with the number
of observations, as expected, but also that we approach perfect prediction with only
very few labels.

components, we can learn the error model parameters very well with few obser-
vation examples. Also, the number of required observations for good predictive
performance does not seem to heavily depend on the number of components at
least for medium numbers of components as we tested.

5.2 Opinion Summarization

Next, we present a simple 2-component deterministic opinion summarization
system that first filters out comments that do not contain opinion, and then
labels the comments with up to K category labels. For determining opinionated
texts, we use the MPQA Subjectivity Lexicon [17]. Here, among other designa-
tions, words can be described as strong subj and weak subj for being commonly
associated with strong and weak subjectivity, respectively. Our intuition is that
strongly subjective words result in opinionated texts. For each text, if a word is
marked as strong subj it scores 1.0, if it is marked as weak subj it scores 0.5, and
all other words score 0. The opinion score is the average word score for the text,
and a text is considered opinionated if its opinion score is above some threshold
ΓO.

For determining whether a text can be labeled with some category marker ck,
we use a method that is common in text summarization: average word probability
[18]. We use LDA [19] to learn word distributions for each category and then
consider a text’s average word probability under a word distribution for each
category. Again, we consider a text to be a positive example for a category if
its average word probability for that category is above some threshold ΓC . The
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Opinion Summary

GMO

Animals

I strongly oppose including genetically
           altered products in the NOP rules.

▶

Genetically engineered crops have
           not been proven safe at all.

▶

I want the animals that I eat to have 
           lived healthy and happy lives.

▶

Factoring farming is inhumans, hurts 
           animals, and should not be allowed.

▶

Fig. 6. The base components produce a summary and the user gives partial feedback by
stating whether a given sentence either contains opinion and is in the correct category
(f = 0), or that one or both of these is incorrect (f = 1).

underlying methods are relatively basic but our aim is to demonstrate how we
can predict when each of the components has commit an error given that the
final observation resulted in an error. Because each component is made up of
binary classifiers, we can improve the system in the light of user feedback without
modifying the underlying components. We wrap each of the components in an
error model wrapper such that when the error model predicts that the current
input would result in an error, we flip the prediction.

Our data to summarize consists of a subset of public comments on the US De-
partment of Agriculture’s (USDA) proposed National Organic Program (NOP)
(“USDA-TMD-94-00-2”).1 These are comments by concerned citizens with re-
spect to a proposed rule on what standards would apply to allow products to
be designated as organic. This data fits our problem nicely because a sizable
portion of the data consists of no opinion, and most of the texts can be sensibly
placed into different categories given what aspect of the proposed legislation a
citizen was referring to (animal well-being, genetically modified organisms, hu-
man health, etc.). 650 texts were manually labeled as either containing opinion
or not, and for membership in up to 6 categories. We randomly select 100, 300,
and 500 texts for training and leave the rest aside for testing. In this experiment,
the feedback is whether a comment is correctly identified as containing opinion
and labeled with the correct category (f = 0), or some labeling error exists.
Figure 6 visualizes the setting, and the features are simple bag-of-words. We
are interested in the accuracy of all predicted labels for the “wrapped” system.
That is, we use the base system described above, run the testing data through
the pipeline, and at each component if our error model predicts an error, we flip
that prediction. We run each experiment 5 times with different random permu-
tations of training and testing data and report the average accuracy. Figure 7

1 http://erulemaking.cs.cmu.edu/Data/USDA.
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Fig. 7. Accuracy results for the opinion (left) and aspect (right) components in our
augmented summarization system. The “base” curve shows the accuracy of the base
components and the “error” curve shows the accuracy when our error model is applied.

shows the opinion component accuracy (left) and the aspect component accuracy
(right) as the number of feedback examples varies.

With 100 and more partial feedback examples, the error model-wrapped opin-
ion component does better than the base component. For the aspect labeling
component, 100 examples was not enough to provide adequate predictive ac-
curacy to do better than the base component. However, with 300 labels and
more, it handily beats the base component. The reason for this discrepancy is
data sparsity; each feedback example is only with respect to one aspect label
and with 6 labels, a training set perfectly balanced amongst the 4 different error
combinations would only include 100 × 1

6 ×
1
4 ≈ 4 training examples per con-

text. Of course, in practice we never achieve this perfect balance and certain
contexts will be over-represented while others will have no training examples at
all. Nevertheless, even with a relatively small amount of feedback, we can see
that the system is able to predict the error configuration and therefore improve
the accuracy of the overall system. In practice, when the error model is used as a
wrapper in such an experiment, it would only be activated once an appropriate
amount of training data was obtained.

5.3 Error Detection in Machine Translation

For our final experiment, we describe a semi-synthetic experiment in that the
features are true data, but the labels are partially generated. Machine Transla-
tion (MT) quality has yet to reach a state where translations can be used reliably
without user supervision. Therefore, when a high quality translation is required,
a post-editing stage is typically conducted. In post-editing, professional transla-
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Fig. 8. ROC Curves for predicting prior probability of an incorrect phrase translation
learned with the partial feedback error model (left) vs. the baseline which assigns an
error to all phrases in a sentence when f = 1 (right).

tors review and correct a translation before it is used. Error detection is therefore
an important subject in machine translation [20, 21]. It is a useful means of re-
ducing post-editing effort by directing the translator to specific segments in the
translation which are estimated to be erroneous. This could also be used within
the MT system itself, by avoiding erroneous translations and reverting to the
next best alternatives proposed by the system in the light of a predicted error.

Here, we use our error model framework to predict the phrases in a translated
sentence that are most likely to contain errors. Connecting the setting to the
previous examples, each phrase is a component, and each sentence is a pipeline.
Feedback consists of either a perfectly translated sentence (f = 0) or a sentence
that contains at least one error (f = 1). There are simply 4 features for this
experiment: the probability of the source phrase given the target phrase; the
lexical weighting of the source phrase given the target phrase; the probability of
the target phrase given the source phrase; and the lexical weighting of the target
phrase given the source phrase. Each of these features is computed automatically
using the Moses phrase-based SMT system [22].

Because we need phrase-specific error labels for testing, we take a synthetic
approach to labeling. We manually labeled ∼ 400 translated phrases as either
containing or not containing an error and then learned an independent binary
classifier on this fully-labeled data. Using this classifier, we then generated labels
for a set of 5000 sentences that are segmented into phrases. We then took all
of the sentences that contained 6 phrases or less to end up with 1002 training
sentences. Each of these sentences receives a label f = 1 if any of its phrases
contain errors, and f = 0 otherwise. We learn the error model and then predict
the prior probability of each phrase-pair containing an error.



13

We compare our model to a simple baseline. The baseline learns a binary
logistic regression classifier on phrases where the labels are simply the partial
feedback f . That is, when f = 0, each phrase is an independent example with the
(correct) label 0. When f = 1, each phrase is also an independent example but
now the label will only sometimes be correct. In fact, it will rarely be correct
because most translated sentence errors are confined to 1 or 2 phrases. The
behavior of the baseline is best understood by showing its ROC curve. The
ROC curves for each method are shown in Figure 8 and demonstrate that there
is little problem with choosing a discrimination threshold in our method (left)
and that the baseline (right) is a poor method especially when the density of
errors in a pipeline is low.

6 Conclusions and Future Work

In this paper, we have described a probabilistic error model framework that aims
to predict the configuration of error in components in a pipeline and therefore
learn the probability of each component committing an error given only partial
feedback. In many cases it is difficult or time consuming for a user to provide
full feedback to a system when the output is the result of decisions made by
numerous components. Conversely, it is generally easy to be able to tell if the
output is perfect versus containing some error. In our model, we are able to
probabilistically infer the component-specific error model parameters from par-
tial feedback and use that information to either dynamically improve the system
if it consists of binary classifiers (opinion summarization example), alert the user
to components that should be examined (translation post-editing example), or
properly direct the feedback for further training.

In the near future, we plan to apply it to other natural language process-
ing tasks, such as named entity recognition, which could benefit a great deal
from human feedback, and which would be very difficult for a human to pin-
point the exact cause of error. We also plan to combine it with active learning
techniques to choose which examples to show to the user. At the moment, this
is done randomly, irrespective of the quality of the individual components and
the predictions we make. This strategy is clearly suboptimal. In principle, we
could reduce the amount of feedback to be provided by the user for a same level
of accuracy if we choose the examples to provide feedback on in a sensible way.
Finally, we are also interested in exploring non-linear versions of the error model.
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