Recognition of Agents based on Observation of
Their Sequential Behavior

Qifeng Qiao and Peter A. Beling

Department of Systems Engineering
University of Virginia, VA, USA
{qq2r, pb3a}@virginia.edu

Abstract. We study the use of inverse reinforcement learning (IRL) as
a tool for recognition of agents on the basis of observation of their se-
quential decision behavior. We model the problem faced by the agents
as a Markov decision process (MDP) and model the observed behavior
of an agent in terms of forward planning for the MDP. The reality of the
agent’s decision problem and process may not be expressed by the MDP
and its policy, but we interpret the observation as optimal actions in the
MDP. We use IRL to learn reward functions for the MDP and then use
these reward functions as the basis for clustering or classification mod-
els. Experimental studies with GridWorld, a navigation problem, and
the secretary problem, an optimal stopping problem, show algorithms’
performance in different learning scenarios for agent recognition where
the agents’ underlying decision strategy may be expressed by the MDP
policy or not. Empirical comparisons of our method with several exist-
ing IRL algorithms and with direct methods that use feature statistics
observed in state-action space suggest it may be superior for agent recog-
nition problems, particularly when the state space is large but the length
of the observed decision trajectory is small.

1 Introduction

The availability of sensing technologies, such as digital cameras, global position
system, infrared sensors, web technology and others, makes the computer easily
access varieties of data recording the interaction between agents and the envi-
ronment. As summarized in Figure 1, research in learning from the observed
behavior has seen the development of approaches to activity recognition (It may
be referred as different terms within the published literature, including plan
recognition and goal recognition) and learning from demonstrations (It may be
referred as imitation learning in other fields):

— Activity recognition: an activity can be described as a specific event or a
combination of events, e.g. "go to bed”, ”cook a breakfast”, "read a book”
for the study of human activity recognition. The goal in activity recognition
is a special event so that some optimal plan for a goal is compatible with the
observations. A plan represents a mapping between state of a decision prob-
lem and action of an agent. The goal may change or it may consist of several

2 Qifeng Qiao and Peter A. Beling

e
I s

FA i
Sensor Data

Feature Construction

Interest labels and Action Feature, Agent
(GoallActivity) Labels labels

! |
| |
| !
i State Feature and State Feature State and Action i
! !
i i
i i
! !
! !
[|

Standard Inverse Models (IRL)
Classification -> Reward Feature in
i S Z A fete ettt ettt ettt [Clustering MDP space

]

i
|

Standard Probabilistic Inverse Models Funct.ion i
(IRL) -> AL mapping: i

|

|

I

|

Agent Recognition
Robotics Learning from |

-
|
1] Classification Inference of
|
|
! Demonstration !

|
I
[Clustering Goals/Plans |!
I
|
I

§ state->action
Activity /Goal /Plan Recognition %
Fig. 1: Overview and Categorization of problems of learning from observation of
decision-making behavior, including the widely studied problems that infer the
goals of an agent and that learn how to make decisions, as well as our proposed
new problem of recognizing agents based on their decision behavior.

sub-activities or sub-goals. One may recognize an activity by applying clas-
sification/clustering algorithms directly to the feature vectors constructed
from the observation data [22]. Alternatively, given a plan library or a set of
goals as a prior, the entire trace of actions can be recognized and matched
against a plan library or a set of possible goals [16]. Despite of the success of
these methods, they assume that the plan library, a set of possible goals or
some behavior model are known beforehand and provided as an input. Goal
information is often completely unknown in practice, however, and so it is
difficult to model the goal precisely.

— Learning from demonstrations: Much of work is focused on approximating
the function mapping from observed experts’ states to actions [2]. Alterna-
tively, one may use demonstration data to inverse a decision model and a
policy is then derived using this model, e.g. apprenticeship learning [4].

However, in practical applications we may not only be interested in reverse
engineering of a decision-making process or imitating a behavior (identification),
but also in determining whether two agents correspond to the same behavior pat-
tern (clustering), or which decision-making pattern is being observed in an agent
(classification). In this paper, we propose a new problem, termed Behavior-based
Agent Recognition(BAR), that involves recognizing agents based on observation
of their sequential behavior, instead of recognizing activities or actions.

This new problem is also motivated by varieties of applications in the real-
world. E.g., we may find a way to train drivers by classifying the observed drivers

Recognition of Agents based on Observation of Their Sequential Behavior 3

into defensive driving and aggressive driving, even those drivers may have sim-
ilar activities or goals, such as avoid driving over curbs or a collision. In the
e-commerce market, if the web site can automatically categorize users based on
observation of their on-line behavior, such as which buttons have been clicked
by an user on which web page with what advertisements, a similar marketing
strategy may work successfully on people in the same group. Another motiva-
tion comes from domains like high frequency trading of stocks and commodities,
where there is considerable interest in identifying new market players and algo-
rithms based on observations of trading actions, but little hope in learning the
precise strategies employed by these agents [24][14].

A direct approach to BAR problem is to program some heuristic rules to
recognize agents by decomposing complex behavior into a series of simple events
and then evaluating them to reach a conclusion. However, programming the rules
is hard. Alternatively, we can construct a feature vector to characterize agents
based on the observed behavior, and then categorize the agents using these
feature vectors. Consider image recognition as an illustration of this method. A
computer learns to categorize images by representing every image as a multi-
dimensional feature vector that consists of the components such as RGB color,
texture, or other metrics. Here, an agent is an object like an image, and the
feature vector needs to be constructed from the observed behavior. The key
point in this process is how to find a high-level vector that can represent the
underlying decision-making process. If the decision problem can be cast in the
MDP framework, we propose to represent the agents with the reward functions
of MDP models because they effectively influence the forward planning process.

IRL [13] addresses the task of finding a reward function that explains the
observed behavior via the forward planning of a MDP. The observed behavior
is assumed to maximize the long-term accumulative reward for that MDP. Most
of recent work in IRL is focused on apprenticeship learning (AL), in which IRL
is used as the core method for finding decision policies consistent with observed
behavior [1] [21]. A number of IRL algorithms, being designed for apprentice-
ship learning or imitation learning, includes Max-margin planning [17], gradient
tuning methods [12], linear solvable MDP [10], bootstrap learning [5], Gaussian
process IRL [15] and Bayesian inference [6].

Our main contribution is to propose a new problem called BAR, and present
a method based on IRL that models the problem faced by the agents as a MDP
and assumes the reward function of the MDP model as a high-level abstraction of
the decision behavior. The motivation is that even when the agent’s behavior is
not rational and we hardly learn the precise goals/plans, we still may categorize
agents by using reward functions learned from the observed behavior.

On two well-known sequential decision-making problems, we compare our
method with several existing IRL algorithms and with direct methods that
use feature statistics observed in state-action space. The results show that our
method using reward functions provides a formal way to solve the agent recog-
nition problem and performs superior to other methods.

4 Qifeng Qiao and Peter A. Beling

2 Preliminaries

We define the input of BAR problem as a tuple B = (D1, Da,... Dy), where
D,,n € {1,2,...,N} is the observation of the n-th agent. For a classification
problem, D,, = (O,,y,), where O,, is a set of observed decision trajectories
and y, is the class label for the n-th agent. The agents, who have the same
decision-making pattern, are given the same class label. Similarly, for a clustering
problem, D,, only consists of the observed decision trajectories O,,.

We define the set of decision trajectories O, = {hi}, j =1,2,...,]0,|, where
each trajectory hJ is defined as a series of state and action pairs: {(s,a)! },t =
1,2,...,|hi|. Here, the s denotes the state for the decision problem and the a
means the action selected by the agent at state s. Below are two definitions
about the agent recognition problem.

Definition 1. In general, an classification problem is: given a decision problem
where the observed behavior O, comes from, a universe F where the examples
come from(the observed behavior is expressed in this space), a fized set of classes
Y, and a training set X of labeled agents whose element x € F X Y, we use a
learning algorithm to find a function g : F —).

Definition 2. Given the observed behavior {O,}N_,, a universe F where the
examples come from, and a training set X = {f1, fa,..., fn}, where f, € F,n €
{1,..., N}, the clustering of N agents is the partitioning of X into K clusters
{C1,Cy,...,Ck} that satisfies (1) UK Cy = X; (2) Cy # ¢,k = 1,2,...,K;
(8) Ck NCyr = ¢, Yk £k and k, k' € {1,2,..., K}.

Next, we present the approaches to BAR problem in Section 3 and Section
4, and review the related IRL algorithms that have been used within our model
in Section 5.

3 Two Direct Agent Recognition Models

In this section, we describe two approaches to agent recognition problem that
construct feature vectors directly with the raw observation data.

The first method is called feature trajectory (FT'). Consider a decision tra-
jectory h. The vector to characterize the behavior in j-th decision trajectory is
written as follows.

f(h%) = [51,a1,52,a2, .. "S\hil’a\hfll]’

where s;,i € {1,2,...,|hi|} is a discrete random variable meaning the state
index at i-th decision stage, and a; represents the action selected at state s;.
E.g., we have a problem that can be defined by 3 states and 2 actions. Then
s; € {1,2,3} and a; € {1,2}. In the observation, every trajectory starts from
the same initial state. Given the observation set O, for n-th agent, the feature

vector f, is obtained by computing this equation: f, = ﬁ Z‘fi"ll f(hi), where

the vector f(hi) is preprocessed by scale-normalization before averaging.

Recognition of Agents based on Observation of Their Sequential Behavior 5

Then, the n-th agent is represented by a feature vector f,. Consider a super-
vised learning problem. Given a real valued input vector f, € F and a category
label y,, €), we aim to learn a function g : F —).

The second method is called feature expectation (FE), which has been widely
used by apprenticeship learning as a representation of the averaged long-term
performance. Assume a basis function ¢ : S — [0,1]%, where S denotes the state
space. The feature expectation f,, = \Olnl ‘qul D siend V' (s1), where y € (0,1)
is a discount factor. The associated apprenticeship learning algorithms aim to
find a policy that performs as well as demonstrations by minimizing the distance
between their feature expectations. Here, we only use the observed state sequence
to compute the feature expectation vector for an agent, where the 7y is manually
defined constant, e.g. 0.95. Then, the n-th agent can be represented by the vector
fn that is built on O,,.

4 A Behavior-based Agent Recognition Model

First, we briefly review some background about MDP necessary for the next
proposed method.

A finite MDP model M = (S, A, R,~,P) where S is the set of states, A
is the set of actions, R is the reward function, v is the discount factor, and
P = {Pu},c4 is a set of transition probability matrices. The entries of Py,
written as P,(s,s’), give the probability of transitioning to state s’ € S from
state s € S given the action is a. The rows of P,, denoted P,(s,:), give a
probability vector of transitioning from state s to all the states in S. In a finite
state space the reward function R may be considered as a vector, r, whose
elements give the reward in each state.

In the MDP, a stationary policy is a function 7 : S — A. The value function
for a policy m is V™ (sg) = E[Y ;=o' R(s¢)|p(s0), 7] where p(so) is the distri-
bution of the initial state and the action at state s; is determined by policy .
Similarly, the Q function is defined as Q(s,a) = R(s) +7 >, cg Pals, s)V7(s').
At state s, an optimal action is selected by a* = max,c 4 Q(s, a).

Then, an instance of the IRL problem is written as a triplet B = (M \
r,p(r), 0), where M \ r is a MDP model without the reward function and p(r) is
prior knowledge on the reward. The vector p(r) can be a non-informative prior
if we have no knowledge about the reward, or a Gaussian or other distribution
if we model the reward as a specific stochastic process. Later in Section 5, we
present the details for Bayesian IRL that has been used in our experiments.

Our behavior-based agent recognition method proceeds as follows.

1. Given the BAR problem with input B, we use the set {O,},n € {1,2,...,N}
to construct the state space S and action space A for the decision-making
problem. The P can be modelled using prior knowledge of the problem or
estimated from the observed decision trajectories.

2. For every agent, we construct a MDP model, no matter whether the optimal
policy of this MDP can match the observed behavior.

6 Qifeng Qiao and Peter A. Beling

3. Apply IRL algorithms to learn the reward vector r,, for n-th agent.

4. Given the training set {ri,rs,...}, where r, € F and the corresponding
category label y, €), we aim to train a classifier g : F —).

5. Given a new agent, we repeat step 1-3 to get the reward vector for the agent
and then predict the label for the behavior pattern using function g : 7 — .

We use a MDP to model the decision problem faced by an agent under
observation. The reality of the agent’s decision problem and process may differ
from the MDP model, but we interpret every observed decision of the agent as
the choice of an action in the MDP. The dynamics of the environment in the
MDP are described by the transition probabilities P. These probabilities may
be interpreted as being a prior, if known in advance, or as an estimation of the
agent’s beliefs of the dynamics. Next, we will show how to learn the reward
functions by employing some exiting IRL algorithms.

5 Bayesian Framework for IRL

Most existing IRL algorithms have some assumption about the form of the re-
ward function. Prominent examples include the model in [13], which we term
linear IRL (LIRL) because of its linear nature, WMAL in [21], and PROJ in [1].
In these algorlthms the reward function is written linearly in terms of features as
R(s) = Y5 widi(s) = wT¢(s), where ¢ : S — [0,1]¢ and wT = [wy,wa, -+ ,wq].

Our computational framework uses Bayesian IRL to estimate the reward
vectors in a MDP, which was initially proposed in [8]. The posterior over reward
function for n-th agent is written as

P(rn|On) = p(Onlryn)p(

H’:]G

H p(als,).

a)ch

Then, the IRL problem is written as max, log p(On\rn) + log p(ry,). For many
problems, however, the computation of p(r,,|O,,) may be complicated and some
algorithms use Markov chain Monte Carlo (MCMC) to sample the posterior
probability. Considering the computation complexity to deal with a large number
of IRL problems, we choose two IRL algorithms that have well defined likelihood
function to reduce the computation cost, which are shown in the following sub-
sections. The first algorithm in Section 5.1 has two assumptions on the reward
functions: (1) it can be written linearly in terms of the state features; (2) it
only depends on state. The second algorithm in Section 5.2 doesn’t have these
restrictions, and it not only can model the reward functions in nonlinear form
but also consider the reward affected by both state and action.

5.1 IRL with Boltzmann Distribution

The IRL algorithm in [3], which we call maximum likelihood IRL (MLIRL),
uses Boltzmann distribution to model likelihood function using p(als,r,) =
PQ(s,0)

 STTCICOR where /3 denotes the degree of decision-making confidence.
acA

Recognition of Agents based on Observation of Their Sequential Behavior 7

The likelihood function is optimized via gradient ascent method as follows.

1. Initialize: Choose random set of reward weights w; .
2. Tterate for t = 1 to M do: Compute Q(s,a) and p(als,r,) using w;; L =

le(iﬁ‘ Z(s,a)eh; logp(als,mn); Wit1 = wi + ¢ Vo L.
3. Output reward r,, = wi,¢(s) for n-th agent.

The parameters 5 and M need to be defined as constants.

5.2 IRL with Gaussian Process

IRL algorithm, which is called GPIRL in [15], uses preference relations to model
the likelihood function P(O,|r,) and assumes the r, is generated by Gaussian
process for n-th observed agent.

Given a state, we assume an optimal action is selected according to Bellman
optimality. At state s, Va,a € A, we define the action preference relation as:

— Action @ is weakly preferred to a, denoted as a = @, if Q(s,a) > Q(s, a);

— Action @ is strictly preferred to a, denoted as a = a, if Q(s,a) > Q(s,a);

— Action a is equivalent to a, denoted as @ ~, a, if and only if @ =, @ and
ars a.

Given the observation set O,,, we have a group of preference relations at each
state s, which is written as

e={ara) ach ac AN Afu{@~) ai e A,

where A is the action subspace from observation O,,.

Then, the likelihood function p(O,|r,) = [[p(a »s a)[[p(a ~s @'). The
models of p(a =5 @) and p(a ~, @’) are defined in [15].

Let r be the vector of r,, containing the reward for M = | A| possible actions
at T observed states. We have

r=(r1(s1),..,r1(s7),...,ra(s1),...,ras(s7))

:(ry, Tty I'M),

where T' = |S| and r,,,,Vm € {1,2,..., M}, denotes the reward for action a,y,.

Consider r,,, as a Gaussian process. We denote by kp,(s;,s;) the function
generating the value of entry (4,j) for covariance matrix K,,, which leads to
rm ~ N(0,K,,;). Then the joint prior probability of the reward is a product
of multivariate Gaussian, namely p(r|S) = H%zl p(rm|S) and r ~ N(0,K).
Note that r is completely specified by the positive definite covariance matrix K,
which is block diagonal in the covariance matrices {K1, Ks..., Kas} based on the
assumption that the reward latent processes are uncorrelated . In practice, we
use a squared exponential kernel function, written as:

km(sia 8]) — e%(si_sj)Mﬂl(Si—sj) + 0-72715(37;7 5])’

8 Qifeng Qiao and Peter A. Beling

where M,,, = k,,I and I is an identity matrix. The function d(s;, s;) = 1, when
s; = s;; otherwise d(s;,s;) = 0. Under this definition the covariance is almost
unity between variables whose inputs are very close in the Euclidean space, and
decreases as their distance increases.

Then, the GPIRL algorithm estimates the reward function by iteratively
conducting the following two main steps:

1. Get estimation of ry;4p by maximizing the posterior p(r,|O0,), which is
equal to minimize —logp(Oy|r,) — logp(rn|f), where 6 = (kp, om)M_; is
the hyper-parameter controlling the Gaussian process. Above optimization
problem has been proved to be convex programming in [15].

2. Optimize the hyper-parameters by using gradient decent method to maxi-
mize log p(On|0,rarap), which is the Laplace approximation of p(6|O0,,).

6 Experimentation

Our experiments simulate agent recognition problems and compare several IRL
algorithms against the methods that construct feature vectors from raw observa-
tion data. We study two problems, Grid World and the secretary problem. Grid-
World sheds light on the task of recognizing agents whose underlying decision
strategy can be matched by a policy of the MDP model. The secretary problem
provides a more practical environment in which agents’ true decision strategy
may not be explained or expressed by any policy of the MDP that is used to
model the decision-making problem. Agents in the secretary problem employ
heuristic decision rules derived from experimental study of human behavior in
psychology and economics.

To evaluate the recognition performance, we use the following algorithms:
(1) Clustering: Kmeans [9]; (2) Classification: Support vector machine (SVM),
K-nearest neighbours (KNN), Fisher discriminant analysis (FDA) and logistic
regression (LR) [9]. We use clustering accuracy [23] and Normalized Mutual
Information (NMI) [20] to compare clustering results.

6.1 GridWorld Problem

In the GridWorld problem, which is used as a benchmark experiment by Ng
and Russell in [13], an agent starts from a given square and moves towards a
destination square. The agent has five actions to take: moving in the four cardinal
directions or staying put. With probability 0.65 the agent moves to its chosen
location, with probability 0.15 it stays in the same location regardless of chosen
action, and with probability 0.2 it moves in a random cardinal direction.

The small GridWorld has been widely used as a test domain by most of IRL
algorithms. The observation data is collected when an agent is moving in the grid
world. From the observation, the reward is learned to make the optimal policy
of a MDP match the observed behavior. We investigate the agent recognition
problem in terms of clustering and classification on a 10x 10 Grid World problem.
Experiments are conducted according to the steps in Algorithm 1.

Recognition of Agents based on Observation of Their Sequential Behavior 9

Algorithm 1 Grid World experimentation steps

1: Input the variables S, A, P, and two policies m1 and 2.

2: fori=1—2do

3: for j =1— 200 do

4: Model an agent’s action selection using 7; + random Gaussian noise. With
probability 0.65 the agent executes the selected action.

5: Sample decision trajectories O;;, and make the ground truth label y;; = 0, if
i=1;y; =1,if i = 2.

6: IRL has access to the problem B = (S, .4, P,~,O;;) for this agent, and then
infers the reward r;;.

7: end for

8: end for

9: Recognize these agents based on the reward r;;.

1" 1"
10 10
fr e ¢ > > > > . > > b P
L N RSP RNE S >t e o
L ESE SRS NP S SN & L L
m 7 7
T A LR AR A P
LR R RN T
sl . [5
544444***** Ly 22 e >
N R NN N
T HE ESESE MM AT s s
o 2 ; AT S vvviv
I I e R R s
L 1 s e . ! L S
> > > > > » . >«
0
DLLI‘{A‘;L‘VIL’LW“ 0 1 2 3 4 5 6 7 8 9 10 1 0 1 2 3 4 5 6 7 8 9 10 1
(a) An observed path (b) Policy m for Class 1 (c) Policy 72 for Class 2

Fig.2: The (a) shows an observed decision trajectory. The (b) and (c) illustrate
underlying decision policy for two classes of agents. Colored arrow denotes the
observed action.

For the input of the experimentation, we simulate two groups of agents, and
make each group have 200 agents who adopt similar decision strategy moving in
the grid world. Figure 2 (b) and (c) display the underlying policy used by two
groups. Each policy represents a decision-making pattern, e.g. a group of agents
may prefer the routes close to the border where the scenery is more attractive,
while the other group may like passing by the center to avoid traffic. In each
group, an agent’s decision is simulated by adding Gaussian noise to his/her
group’s underlying policy. Here, agents may have multiple destinations to visit.
Though these agents may have the same goal such as arriving at the destination
in the shortest time, their decision patterns can still be different.

In the experiments, we find that a small number of short decision trajectories
tends to present challenges to action feature methods, which is an observation of
particular interest. Additionally, the length of trajectories may have a substantial
impact on performance. If the length is so long that the observed agent reaches
the destination in every trajectory, the problem can be easily solved based on

10 Qifeng Qiao and Peter A. Beling

observations. Thus, we evaluate and compare performance by making the length
of decision trajectory small.

Table 1: NMI scores

|On| FE FT PROJ GPIRL o0
4 | 0.0077 0.0012 0.0068 0.0078
8 | 0.0114 0.0016 0.0130 0.0932
16 | 0.0177 0.0014 0.0165 0.7751
20 | 0.0340 0.0573 0.0243 0.8113
30 | 0.0321 0.0273 0.0365 0.8119
40 | 0.0361 0.0459 0.0389 0.8123 s
60 | 0.0387 0.0467 0.0388 0.8149

80 | 0.0441 0.1079 0.0421 0.8095 s ,meberzgsami?eddsﬁgion(?gmris;os 100 200
100| 0.0434 0.1277 0.0478 0.8149

200| 0.0502 0.1649 0.0498 0.8149

——FE
—=—FT
—o— GPIRL
~v-PROJ

Clustering Accuracy
~
S

Fig. 3: Clustering accuracy

Table 6.1 displays NMI scores and Fig.3 shows clustering accuracy. The
length of the trajectory is limited to six steps, as we assume the observation
is incomplete and the learner does not have sufficient information to differen-
tiate behavior directly. Results are averaged over 100 replications. Clustering
performance improves with increasing number of observations. When the num-
ber of observations is small, GPIRL method achieves high clustering accuracy
and NMI scores due to the advantage of finding more accurate reward functions
that can well characterize the decision behavior. The IRL algorithms based on
feature expectation vectors, such as PROJ, are not effective in this problem be-
cause the length of the observed decision trajectory is too small to accumulate
enough observations that correctly approximate the long-term goal.

Considering the utilization of feature learning algorithms to improve the
simple feature representations, we also run experiments with PCA-based features
where the projection sub-space is spanned by those eigenvectors that correspond
to the principal components ¢ = 10,20,...,90 for FE and ¢ = 2,4,6,8,10 for
FT. No significant changes in the clustering NMI scores and accuracy scores are
observed. Therefore, we do not show the performance of PCA-based features in
Table 6.1and Figure 3.

Fig.4 displays classification accuracy for a binary classification problem in
which there are four hundred agents coming from two groups of decision strate-
gies. The results are averaged over 100 replications with tenfold cross-validations.
Four popular classifiers (SVM, KNN, FDA and LR) are employed to evaluate
the classification performance. Results suggest that the classifiers based on IRL
perform better than the simple methods, such as F'T' and FE, particularly when
the number of observed trajectories and the length of the trajectory are small.
The results support our hypothesis that recovered reward functions constitute an
effective and robust feature space for clustering or classifying the agents abased
on observation of their decision behavior.

Recognition of Agents based on Observation of Their Sequential Behavior 11

1 GPIRL,

PROJ Average PROJ Average

S,

Classification Accuracy

°

Classification Accuracy

o.

“4 8 10 16 20 30 40 50 60 80 100 200 500 1000 4 8 10 16 200 500 1000

20 30 0 50 60 80 10
Number of sampled observations Number of sampled observations

(a) SVM (b) KNN

o
©

e
I3

e

>
o
@

PROJ Average

e
2

e

Y

0.65

lassification Accuracy
°
>

Classification Accuracy

°
B¢

PROJ Average

Cl
H
]

0.5¢

4 8 10 16 20 30 40 50 60 80 100 200 500 1000 “4 8 16 16 20 30 40 50 60 80 100 200 500 1000
Number of sampled observations Number of sampled observations

(c) LR (d) FDA

Fig. 4: Classification results with respect to different classifier.

6.2 Secretary Problem

The secretary problem is a sequential decision-making problem in which the
binary decision to either stop or continue a search is made on the basis of ob-
jects already seen. As suggested by the name, the problem is usually cast in the
context of interviewing applicants for a secretarial position. The decision maker
interviews a randomly-ordered sequence of applicants one at a time. The appli-
cant pool is such that the interviewer can unambiguously rank each applicant in
terms of quality relative to the others seen up to that point. After each interview,
the decision maker chooses either to move on to the next applicant, forgoing any
opportunity to hire the current applicant, or to hire the current applicant, which
terminates the process. If the process goes as far as the final applicant, he or
she must be hired. Thus the decision maker chooses one and only one applicant.
The objective is to maximize the probability that the accepted applicant is, in
fact, the best in the pool.

To test our hypotheses on BAR, an ideal experiment would involve recog-
nizing individual human decision makers on the basis of observations of hiring
decisions that they make in secretary problem simulations. Experiments with
human decision making for the secretary problem are reported on in [19][18],
but raw data consisting of decision maker action trajectories is not available.

12 Qifeng Qiao and Peter A. Beling

Algorithm 2 Experimentation with Secretary Problem

1: Given a heuristic rule with a parameter h, k or £.

2: Add random Gaussian noise to the parameter, which is written as p.

3: Generate new secretary problem with N applications and let n — th agent solve
these problems using this heuristic rule with its own parameter p. Save the observed
decision trajectories into O,,.

4: Model the secretary problem in terms of an MDP consisting of the following com-
ponents:

1. State space S = {1,2,..., N}, where s € S means that at time s the current
applicant is a candidate.

2. Action space A consisting of two actions: reject and accept.

3. Transition probability P, computed as follows: given the reject action, the
probability of transitioning from state s; to s;, p(s;|s:), is ﬁ if 55 > s,
and 0 otherwise; given the accept action, the probability of transitioning from
state s; to s;, p(sjl|si), is 1 if s; = s;, and 0 otherwise.

4. The discount factor « is a selected constant.

5. The reward function is unknown.

5: Infer the reward function by solving an IRL problem B = (S, A, P, v, Oyn).

However, a major conclusion of these studies is that the decisions made by the
humans largely can be explained in terms of three decision strategies, each of
which uses the concept of a candidate. An applicant is said to a candidate he or
she is the best applicant seen so far. The decision strategies of interest are the:

1. Cutoff rule (CR) with cutoff value h, in which the agent will reject the first
h — 1 applicants and accept the next candidate;

2. Successive non-candidate counting rule (SNCCR) with parameter value k,
in which the agent will accept the first candidate who follows k successive
non-candidate applicants since the last candidate; and

3. Candidate counting rule (CCR) with parameter value ¢, in which the agent
selects the next candidate once ¢ candidates have been seen.

The optimal decision strategy for the secretary problem is to use CR with
a parameter that can be computed using dynamic programming for any value
of N, the number of secretaries. As N grows, the optimal parameter converges
to N/e and yields a probability of successfully choosing the best applicant that
converges to 1/e. Thus only one of the three decision strategies enumerated above
can be viewed as optimal, and that only for a single parameter value out of the
continuum of possible values. Human actions are usually suboptimal and tend
to look like mixtures of CR (with a non-optimal parameter), SNCCR, and CCR,
[19]. As a surrogate for the action trajectories of humans, we use agents that we
generate action trajectories for randomly sampled secretary problems using CR,
SNCCR, and CCR. For a given decision rule (CR, SNCCR, CCR), we simulate
a group of agents that adopt this rule, differentiating individuals in a group
by adding Gaussian noise to the rule’s parameter. The details of the process are

Recognition of Agents based on Observation of Their Sequential Behavior 13

® Q) dluster 1
[©) () cluster2
cluster 3

- -

Uncertainty 002

(O cluster 1 ®
03 (O cluster2 -0.04
cluster 3

04 0,06 . . 9, . ,
04 03 02 o1 0 o1 o0z 03 0.1 ~0.05 0 0.05 0.1 0.15

Fig.5: Each circle denotes the feature vector for an agent, which is projected
into 2D space by using PCA. The feature vectors provided by FFE method are
shown on the left. The reward vectors estimated by IRL are shown on the right.

given in Algorithm 2. We use IRL and observed actions to learn reward functions
for the MDP model given in Algorithm 2. It is critical to understand that the
state space for this MDP model captures nothing of the history of candidates,
and as a consequence is wholly inadequate for the purposes of modeling SNCCR,
and CCR. In other words, for general parameters, neither SNCCR nor CCR can
be expressed as a policy for the MDP in Algorithm 2. (There does exist an MDP
in which all three of the decision rules can be expressed as policies, but the state
space for this model is exponentially larger.) Hence, for two of the rules, the
processes that we use to generate data and the processes we use to learn are
distinct.

As an initial set of experiments, we generated an equal number of agents
from each rule. All the heuristic rules use the same parameter value. We have
compared the method using statistical feature representations obtained from the
raw decision trajectories and our IRL model-based method. We employ 10 fold
cross-validation to obtain the average accuracy, and it is always 100% .

Given that perfect classification performance was achieved by all algorithms,
the problem of recognizing across decision rules appears to be quite easy. A more
challenging problem is to recognize variations in strategy within a single decision
rule. For each rule, we conducted recognition experiments in which 300 agents
were simulated, 100 each for three distinct values of the rule parameter. Indi-
viduals were differentiated by adding random noise to the parameter. Here, we
show the comparison of the clustering performance between the simple method
called FE and our MDP model-based method. In Fig.5, the left figure displays
an area marked “uncertainty” for the method called FE, while the right figure
shows that the reward vectors have lower variance in the same group and higher
variance between different groups.Fig.5 intuitively demonstrates that when the
agents’ behavior is represented in the reward space, the recognition problem
becomes easier to solve.

14 Qifeng Qiao and Peter A. Beling

Table 2: NMI score for Secretary Problem

H CR SNCCR CCR
Action BayesIRL Action BayesIRL Action BayesIRL

1 0.0557 0.5497 0.0551 0.1325 0.0229 0.2081
11 0.3852 0.6893 0.2916 0.7190 0.1844 0.4974
21 0.6017 0.7898 0.4305 0.8179 0.2806 0.5181
31 0.7654 0.8483 0.5504 0.8641 0.4053 0.6171
41 0.8356 0.9676 0.5682 0.9218 0.4524 0.6533
51 0.8781 0.9739 0.5894 0.9423 0.5464 0.6507
61 0.9102 0.9913 0.5984 0.9518 0.5492 0.6513
71 0.9115 0.9915 0.6460 0.9639 0.6024 0.6512
81 0.9532 1.0000 0.6541 0.9721 0.6708 0.6563
91 0.9707 1.0000 0.6494 0.9864 0.6884 0.6544

+

1 (training)

1 (classified)

02 2 (training)
2 (classified)

O Support Vectors

+

Fig. 6: Visualization of a binary classification problem for subjects using cutoff
rule and random rules. The reward vectors are projected into 2(left)/3(right)
dimensional subspace, which are spanned by the first 2/3 principal components.

Table 2 summarizes the NMI scores for using K-means clustering algorithm
to recognize variations in strategy within one heuristic decision rule. We conduct
experiments on three rules separately. The column called H in Table 2 records
the number of decision trajectories that have been sampled for training. Table
2 indicates that the feature representation in reward space is almost always
better than the representation with statistical features computed from the raw
observation data. Moreover, the reward space can particularly better characterize
the behavior when the scale of the observation data is small. Note that although
none of the MDP policies can match the SNCCR and CCR rules, the reward
vectors, which are recovered by IRL for the MDP model, still make the clustering
problem easier to solve.

Fig.6 shows a binary classification result of using PROJ algorithm to learn
the reward functions for the agents in Secretary problem and then categorize
the agents into two groups. In this classification experiment, the users’ ground

Recognition of Agents based on Observation of Their Sequential Behavior 15

truth label is either cutoff decision rule or random strategy that makes random
decisions.

7 Conclusions

We have proposed the use of IRL to solve the agent recognition problem. The
observed agent is not required to be rational in the decision-making process.
However, we model the agent’s behavior in an MDP environment and estimate
the reward function by making the MDP policy match the observed behav-
ior. Numerical experiments on GridWorld and the secretary problem suggest
that the advantage that IRL enjoys over simple methods is more pronounced
when observations are limited and incomplete. We also note that there seems to
be a positive correlation between the success of IRL algorithms in apprentice-
ship learning (cf. [15]) and their success in the agent recognition problem. To
some degree, this relationship parallels results from [11] [7], where apprenticeship
learning benefits from a learning structure that based on sophisticated methods
for task decomposition or hierarchical identification of skill trees. Exploration of
IRL algorithms that consider subgoals and which of the algorithmic choices can
help agent recognition is an avenue of future work.

Validation of the ideas proposed here can come only through experimenta-
tion with more difficult problems. Of particular importance would be problems
involving human decision makers or other real-world scenarios, such as periodic
investment, gambling, or stock trading.

References

1. Pieter Abbeel and Andrew Y. Ng. Apprenticeship learning via inverse reinforce-
ment learning. In In Proceedings of the Twenty-first International Conference on
Machine Learning, 2004.

2. Brenna D. Argall, Sonia Chernova, Manuela Veloso, and Brett Browning. A survey
of robot learning from demonstration. Robot. Auton. Syst., 57(5):469-483, May
20009.

3. Monica Babes-Vroman, Vukosi Marivate, Kaushik Subramanian, and Michael Lit-
man. Apprenticeship learning about multiple intentions. In the 28th International
Conference on Machine learning, WA, USA, 2011.

4. Chris L. Baker, Rebecca Saxe, and Joshua B. Tenenbaum. Action understanding
as inverse planning. Cognition, 113:329-349, 2009.

5. Abdeslam Boularias and Brahim Chaib-draa. Bootstrapping apprenticeship learn-
ing. In Advances in Neural Information Processing Systems 24. MIT press, 2010.

6. Jaedeug Choi and Kee-Eung Kim. Map inference for bayesian inverse reinforcement
learning. In Advances in Neural Information Processing System, pages 1989-1997,
2011.

7. Luis C. Cobo, Charles Lee Isbell Jr., and Andrea Lockerd Thomaz. Automatic
task decomposition and state abstraction from demonstration. In AAMAS, pages
483-490, 2012.

8. Ramachandran Deepak and Amir Eyal. Bayesian inverse reinforcement learning.
In Proc. 20th International Joint Conf. on Artificial Intelligence, 2007.

16

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Qifeng Qiao and Peter A. Beling

Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern Classification. Wiley,
2001.

Krishnamurthy Dvijotham and Emanuel Todorov. Inverse optimal control with
linearly-solvable mdps. In Proc. 27th International Conf. on Machine learning.
ACM, 2010.

George D. Konidaris, Scott R. Kuindersma, Roderic A. Grupen, and Andrew G.
Barto. Robot learning from demonstration by constructing skill trees. International
Journal of Robotics Research, 31(3):360-375, March 2012.

Gergely Neu and Csaba Szepesvari. Apprenticeship learning using inverse reinforce-
ment learning and gradient methods. In Proc. Uncertainty in Artificial Intelligence,
2007.

Andrew Y. Ng and Stuart Russell. Algorithms for inverse reinforcement learning.
In Proc. 17th International Conf. on Machine Learning, pages 663—-670. Morgan
Kaufmann, 2000.

Mark Paddrik, Roy Hayes, Andrew Todd, Steve Yang, Peter Beling, and William
Scherer. An agent based model of the e-mini s&p 500: Applied to flash crash
analysis. In 2012 IEEE Symposium on Computational Intelligence for Financial
Engineering and Economics (CIFEr 2012), 2012.

Qifeng Qiao and Peter A. Beling. Inverse reinforcement learning via convex pro-
gramming. In Americon Control Conference, 2011.

Miquel Ramirez and Hector Geffner. Plan recognition as planing. In 21st Int’l
Joint Conf. on Artificial Intelligence, pages 1778-1783, 2009.

Nathan D. Ratliff, J. Andrew Bagnell, and Martin A. Zinkevich. Maximum margin
planning. In In Proceedings of the 23rd International Conference on Machine
Learning, 2006.

Daniel Schunk and Joachim Winter. The relationship between risk attitudes and
heuristics in search tasks: A laboratory experiment. Journal of Economic Behavior
and Organization, 71:347-360, 2009.

Darryl A. Seale. Sequential decision making with relative ranks: An experimen-
tal investigation of the ’secretary problem’. Organizational Behavior and Human
Decision Process, 69:221-236, March 1997.

Alexander Strehl and Joydeep Ghosh. Cluster ensembles? a knowledge reuse frame-
work for combining multiple partitions. Journal of Machine Learning Research,
3:583-617, 2002.

Umar Syed and Robert E. Schapire. A game-theoretic approach to apprenticeship
learning. In Advances in Neural Information Processing Systems, pages 1449-1456.
MIT Press, 2008.

Emmanuel Munguia Tapia, Stephen S. Intille, and Kent Larson. Activity recog-
nition in the home using simple and ubiquitous sensors. In In Pervasive, pages
158-175, 2004.

Linli Xu, James Neufeld, Bryce Larson, and Dale Schuurmans. Maximum margin
clustering. In Advanced Neural Information Process Systems, pages 1537-1544,
2005.

Steve Yang, Mark Paddrik, Roy Hayes, Andrew Todd, Andrei Kirilenko, Peter
Beling, and William Scherer. Behavior based learning in identifying high frequency
trading strategies. In 2012 IEEE Symposium on Computational Intelligence for
Financial Engineering and Economics (CIFEr 2012), 2012.

