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Abstract. We consider a multi-armed bandit problem where payoffs are a lin-
ear function of an observed stochastic contextual variable. In the scenario where
there exists a gap between optimal and suboptimal rewards, several algorithms
have been proposed that achieve O(log T ) regret after T time steps. However,
proposed methods either have a computation complexity per iteration that scales
linearly with T or achieve regrets that grow linearly with the number of contexts
|X |. We propose an ε-greedy type of algorithm that solves both limitations. In
particular, when contexts are variables in Rd, we prove that our algorithm has a
constant computation complexity per iteration of O(poly(d)) and can achieve a
regret ofO(poly(d) log T ) even when |X | = Ω(2d). In addition, unlike previous
algorithms, its space complexity scales like O(Kd2) and does not grow with T .

Keywords: Contextual Linear Bandits, Space and Time Efficiency

1 Introduction

The contextual multi-armed bandit problem is a sequential learning problem [17,13]. At
each time step, a learner has to chose among a set of possible actions/arms A. Prior to
making its decision, the learner observes some additional side information x ∈ X over
which he has no influence. This is commonly referred to as the context. In general, the
reward of a particular arm a ∈ A under context x ∈ X follows some unknown distri-
bution. The goal of the learner is to select arms so that it minimizes its expected regret,
i.e., the expected difference between its cumulative reward and the reward accrued by
an optimal policy, that knows the reward distributions.

Langford and Zhang [17] propose an algorithm called epoch-Greedy for general
contextual bandits. Their algorithm achieves anO(log T ) regret in the number of timesteps
T in the stochastic setting, in which contexts are sampled from an unknown distribu-
tion in an i.i.d. fashion. Unfortunately, the proposed algorithm and subsequent improve-
ments [13] have high computational complexity. Selecting an arm at time step t requires
making a number of calls to a so-called optimization oracle that grows polynomially in
T . In addition, the cost of an implementation of this optimization oracle can grow lin-
early in |X | in the worst case; this is prohibitive in many interesting cases, including
the case where |X | is exponential in the dimension of the context. In addition, both al-
gorithms proposed in [17] and [13] require keeping a history of observed contexts and
arms chosen at every time instant. Hence, their space complexity grows linearly in T .
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In this paper, we show that the challenges above can be addressed when rewards are
linear. In the above contextual bandit set up, this means that X is a subset of Rd, and
the expected reward of an arm a ∈ A is an unknown linear function of the context x,
i.e., it has the form x†θa, for some unknown vector θa. This is a case of great interest,
arising naturally when, conditioned on x, rewards from different arms are uncorrelated:

Example 1. (Processor Scheduling) A simple example is assigning incoming jobs to a
set of processors A, whose processing capabilities are not known a priori. This could
be the case if, e.g., the processors are machines in the cloud or, alternatively, humans
offering their services through, e.g., Mechanical Turk. Each arriving job is described by
a set of attributes x ∈ Rd, each capturing the work load of different types of sub-tasks
this job entails, e.g., computation, I/O, network communication, etc. Each processor’s
unknown feature vector θa describes its processing capacity, i.e., the time to complete a
sub-task unit, in expectation. The expected time to complete a task x is given by x†θa;
the goal of minimizing the delay (or, equivalently, maximizing its negation) brings us
in the contextual bandit setting with linear rewards. �

Example 2. (Display Ad Placement) In the online ad placement problem, online users
are visiting a website, which must decide which ad to show them selected from a set
A. Each online user visiting the website is described by a set of attributes x ∈ Rd
capturing, e.g., its geo-location, its previous viewing history, or any information avail-
able through a tracking service like BlueKai. Each ad a ∈ A has a probability of being
clicked that is of the form x†θa, where θa ∈ Rd an unknown vector describing each
ad. The system objective is to maximize the number of clicks, falling again under the
above contextual bandit setting. �

Example 3. (Group Activity Selection) Another motivating example is maximizing
group satisfaction, observed as the outcome of a secret ballot election. In this setup,
a subset of d users congregate to perform a joint activity, such as, e.g., dining, rock
climbing, watching a movie, etc. The group is dynamic and, at each time step, the vec-
tor x ∈ {0, 1}d, is an indicator of present participants. An arm (i.e., a joint activity) is
selected; at the end of the activity, each user votes whether they liked the activity or not
in a secret ballot, and the final tally is disclosed. In this scenario, the unknown vectors
θa ∈ Rd indicate the probability a given participant will enjoy activity a, and the goal is
to select activities that maximize the aggregate satisfaction among participants present
at the given time step. �

Our contributions are as follows.

– We isolate and focus on linear payoff case of stochastic multi-armed bandit prob-
lems, and design a simple arm selection policy which does not recourse to sophis-
ticated oracles inherent in prior work.

– We prove that our policy achieves an O(log T ) regret after T steps in the stochastic
setting, when the expected rewards of each arm are well separated. This meets the
regret bound of best known algorithms for contextual multi-armed bandit problems.
In addition, for many natural scenarios, it scales as O(poly(d) log T ), which we
believe we are the first to prove under arm separation and for an efficient algorithm.

– We show that our algorithm has O(|A|d2) computational complexity per step and
its expected space complexity scales like O(|A|d2). For algorithms that achieve
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similar regrets, this is a significant improvement over known contextual multi-
armed bandit problems, as well as for bandits specialized for linear payoffs.

Our algorithm is inspired by the work of [3] on the ε-greedy algorithm and the use
of linear regression to estimate the parameters θa. The main technical innovation is the
use of matrix concentration bounds to control the error of the estimates of θa in the
stochastic setting. We believe that this is a powerful realization and may ultimately help
us analyze richer classes of payoff functions.

The remainder of this paper is organized as follows: in Section 2 we compare our
results with existing literature. In Section 3 we describe the set up of our problem in
more detail. In Section 4 we state our main results and prove them in Section 5. Section
6 is devoted to exemplifying the performance and limitations of our algorithm by means
of simple numerical simulations. We discuss challenges in dealing with an adversarial
setting in Section 7 and draw our conclusions in Section 8.

2 Related Work

The original paper by Langford and Zhang [17] assumes that the context x ∈ X is sam-
pled from a probability distribution p(x) and that, given an arm a ∈ A, and conditioned
on the context x, rewards r are sampled from a probability distribution pa(r | x). As is
common in bandit problems, there is a tradeoff between exploration, i.e., selecting arms
to sample rewards from the distributions {pa(r | x)}a∈A and learn about them, and ex-
ploitation, whereby knowledge of these distributions based on the samples is used to
select an arm that yields a high payoff.

In this setup, a significant challenge is that, though contexts x are sampled indepen-
dently, they are not independent conditioned on the arm played: an arm will tend to be
selected more often in contexts in which it performs well. Hence, learning the distribu-
tions {pa(r | x)}a∈A from such samples is difficult. The epoch-Greedy algorithm [17]
deals with this by separating the exploration and exploitation phase, effectively select-
ing an arm uniformly at random at certain time slots (the exploration “epochs”), and
using samples collected only during these epochs to estimate the payoff of each arm in
the remaining time slots (for exploitation). Our algorithm uses the same separation in
“epochs”. Langford and Zhang [17] establish an O(T 2/3(ln |X |)1/3) bound on the re-
gret for epoch-Greedy in their stochastic setting. They further improve this to O(log T )
when a lower bound on the gap between optimal and suboptimal arms in each context
exists, i.e., under arm separation.

Unfortunately, the price of the generality of the framework in [17] is the high com-
putational complexity when selecting an arm during an exploitation phase. In a recent
improvement [13], this computation requires a poly(T ) number of calls to an optimiza-
tion oracle. Most importantly, even in the linear case we study here, there is no clear
way to implement this oracle in sub-exponential time in d, the dimension of the context.
As Dudik et al. [13] point out, the optimization oracle solves a so-called cost-sensitive
classification problem. In the particular case of linear bandits, the oracle thus reduces
to finding the “least-costly” linear classifier. This is hard, even in the case of only two
arms: finding the linear classifier with the minimal number of errors is NP-hard [15],
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and remains NP hard even if an approximate solution is required [7]. As such, a different
approach is warranted under linear rewards.

Contextual bandits with linear rewards is a special case of the classic linear bandit
setup [4,9,18,19]. In this setup, the arms themselves are represented as vectors, i.e.,
A ⊂ Rd, and, in addition, the set A can change from one time slot to the next. The
expected payoff of an arm a with vector xa is given by x†aθ, for some unknown vector
θ ∈ Rd, common among all arms.

There are several different variants of the above linear model. Auer [4], Li et al. [18],
and Chu et al. [9], and Li a study this problem in the adversarial setting, assuming a
finite number of arms |A|. In the adversarial setting, contexts are not sampled i.i.d. from
a distribution but can be an arbitrary sequence, for example, chosen by an adversary that
has knowledge of the algorithm and its state variables.Both algorithms studied, LinRel
and LinUCB, are similar to ours in that they use an upper confidence bound and both
estimate the unknown parameters for the linear model using a least-square-error type
method. In addition, both methods apply some sort of regularization. LinRel does it by
truncating the eigenvalues of a certain matrix and LinUCB by using ridge regression.
In the adversarial setting, and with no arm separation, the regret bounds obtained of the
form O(

√
Tpolylog(T )).

Dani et al. [12], Rusmevichientong and Tsitsiklis [19], and Abbasi-Yadkori et al. [1]
study contextual linear bandits in the stochastic setting, in the case where A is a fixed
but possibly uncountable bounded subset of Rd. Dani et al. [12] obtain regret bounds
of O(

√
T ) for an infinite number of arms; under arm separation, by introducing a gap

constant ∆, their bound is O(d2(log T )3). Rusmevichientong and Tsitsiklis [19] also
study the regret under arm separation and obtain a O(log(T )) bound that depends ex-
ponentially on d. Finally, Abbasi-Yadkori et al. [1] obtain a O(poly(d) log2(T )) bound
under arm separation.

Our problem can be expressed as a special case of the linear bandits setup by taking
θ = [θ1; . . . ; θK ] ∈ RKd, where K = |A|, and, given context x, associating the i-
th arm with an appropriate vector of the form xai = [0 . . . x . . . 0]. As such, all of
the bounds described above [4,18,9,12,19,1] can be applied to our setup. However, in
our setting, arms are uncorrelated; the above algorithms do not exploit this fact. Our
algorithm indeed exploits this to obtain a logarithmic regret, while also scaling well in
terms of the dimension d.

Several papers study contextual linear bandits under different notions of regret. For
example, Dani et al. [11] define regret based on the worst sequence of loss vectors. In
our setup, this corresponds to the rewards coming from an arbitrary temporal sequence
and not from adding noise to x†θa, resembling the ‘worst-case’ regret definition of [5].
Abernethy et al. [2] assume a notion of regret with respect to a best choice fixed in time
that the player can make from a fixed set of choices. However, in our case, the best
choice changes with time t via the current context. This different setup yields worse
bounds than the ones we seek: for both stochastic and adversarial setting the regret is
O(
√
Tpolylog(T )).

Recent studies on multi-class prediction using bandits [16,14,10] have some con-
nections to our work. In this setting, every context x has an associated label y that a
learner tries to predict using a linear classifier of the type ŷ = argmaxa θ

†
ax. Among
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algorithms proposed, the closest to ours is by Crammer and Gentile [10], which uses an
estimator for {θa} that is related to LinUCB, LinRel and our algorithm. However, the
multi-class prediction problem differs in many ways from our setting. To learn the vec-
tors θa, the learner receives a one-bit feedback indicating whether the label predicted is
correct (i.e., the arm was maximal) or not. In contrast, in our setting, the learner directly
observes θ†ax, possibly perturbed by noise, without learning if it is maximal.

Finally, bandit algorithms relying on experts such as EXP4 [6] and EXP4.P [8] can
also be applied to our setting. These algorithms require a set of policies (experts) against
which the regret is measured. Regret bounds grow as logC N , where N is the number
of experts and C a constant. The trivial reduction of our problem to EXP4(.P) assigns
an expert to each possible context-to-arm mapping. The 2d contexts in our case lead to
K2d experts, an undesirable exponential growth of regret in d; a better choice of experts
is a new problem in itself.

3 Model

In this section, we give a precise definition of our linear contextual bandit problem.

Contexts. At every time instant t ∈ {1, 2, ...}, a context xt ∈ X ⊂ Rd, is observed
by the learner. We assume that ‖x‖2 ≤ 1; as the expected reward is linear in x, this
assumption is without loss of generality (w.l.o.g.). We prove our main result (Theorem
2) in the stochastic setting where xt are drawn i.i.d. from an unknown multivariate
probability distribution D. In addition, we require that the set of contexts is finite i.e.,
|X | <∞. We defineΣmin > 0 to be the smallest non-zero eigenvalue of the covariance
matrix Σ ≡ E{x1x†1}.

Arms and Actions. At time t, after observing the context xt, the learner decides to play
an arm a ∈ A, where K ≡ |A| is finite. We denote the arm played at this time by at.
We study adaptive arm selection policies, whereby the selection of at depends only on
the current context xt, and on all past contexts, actions and rewards. In other words,
at = at

(
xt, {xτ , aτ , rτ}t−1τ=1

)
.

Payoff. After observing a context xt and selecting an arm at, the learner receives a
payoff rat,xt which is drawn from a distribution pat,xt independently of all past con-
texts, actions or payoffs. We assume that the expected payoff is a linear function of the
context. In other words,

rat,xt = x†tθa + εa,t (1)

where {εa,t}a∈A,t≥1 are a set of independent random variables with zero mean and
{θa}a∈A are unknown parameters in Rd. Note that, w.l.o.g, we can assume that Q =
maxa∈A ‖θa‖2 ≤ 1. This is because if Q > 1 , as payoffs are linear, we can divide all
payoffs by Q; the resulting payoff is still a linear model, and our results stated below
apply. Recall that Z is a sub-gaussian random variable with constant L if E{eγZ} ≤
eγ

2L2

. In particular, sub-gaussianity implies E{Z} = 0. We make the following tech-
nical assumption.
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Assumption 1 The random variables {εa,t}a∈A,t≥1 are sub-gaussian random vari-
ables with constant L > 0.

Regret. Given a context x, the optimal arm is a∗x = argmaxa∈A x
†θa. The expected

cumulative regret the learner experiences over T steps is defined by

R(T ) = E
{ T∑
t=1

x†t(θa∗xt − θat)
}
. (2)

The expectation above is taken over the contexts xt. The objective of the learner is to
design a policy at = at

(
xt, {xτ , aτ , rτ}t−1τ=1

)
that achieves as low expected cumulative

regret as possible. In this paper we are also interested in arm selection policies having a
low computational complexity. We define ∆max ≡ maxa,b∈A ||θa− θb||2, and ∆min ≡
infx∈X ,a:x†θa<x†θa∗x

x†(θa∗x − θa) > 0. Observe that, by the finiteness of X and A, the
defined infimum is attained (i.e., it is a minimum) and is indeed positive.

4 Main Results

We now present a simple and efficient on-line algorithm that, under the above as-
sumptions, has expected logarithmic regret. Specifically, its computational complex-
ity, at each time instant, is O(Kd2) and the expected memory requirement scales like
O(Kd2). As far as we know, our analysis is the first to show that a simple and efficient
algorithm for the problem of linearly parametrized bandits can, under reward separation
and i.i.d. contexts, achieve logarithmic expected cumulative regret that simultaneously
can scale like polylog(|X |) for natural scenarios.

Before we present our algorithm in full detail, let us give some intuition about it. Part
of the job of the learner is to estimate the unknown parameters θa based on past actions,
contexts and rewards. We denote the estimate of θa at time t by θ̂a. If θa ≈ θ̂a then,
given an observed context, the learner will more accurately know which arm to play to
incur in small regret. The estimates θ̂a can be constructed based on a history of past
rewards, contexts and arms played. Since observing a reward r for arm a under context
x does not give information about the magnitude of θa along directions orthogonal to
x, it is important that, for each arm, rewards are observed and recorded for a rich class
of contexts. This gives rise to the following challenge: If the learner tries to build this
history while trying to minimize the regret, the distribution of contexts observed when
playing a certain arm a will be biased and potentially not rich enough. In particular,
when trying to achieve a small regret, conditioned on at = a, it is more likely that xt is
a context for which a is optimal.

We address this challenge using the following idea, also appearing in the epoch-
Greedy algorithm of [17]. We partition time slots into exploration and exploitation
epochs. In exploration epochs, the learner plays arms uniformly at random, indepen-
dently of the context, and records the observed rewards. This guarantees that in the
history of past events, each arm has been played along with a sufficiently rich set of
contexts. In exploitation epochs, the learner makes use of the history of events stored
during exploration to estimate the parameters θa and determine which arm to play given
a current observed context. The rewards observed during exploitation are not recorded.
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Algorithm 1 Contextual ε -greedy
For all a ∈ A, set Aa ← 0d×d ;na ← 0; ba ← 0d
for t = 1 to p do
a← 1 + (t mod K); Play arm a
na ← na + 1; ba ← ba + rtxt; Aa ← Aa + xtx

†
t

end for
for t = p+ 1 to T do
e← Bernoulli(p/t)
if e = 1 then
a← Uniform(1/K) ; Play arm a
na ← na + 1; ba ← ba + rtxt; Aa ← Aa + xtx

†
t

else
for a ∈ A do

Get θ̂a as the solution to the linear system:
(
λnaI +

1
na
Aa

)
θ̂a = 1

na
ba

end for
Play arm at = argmaxa∈A x

†
t θ̂a

end if
end for

More specifically, when exploiting, the learner performs two operations. In the first
operation, for each arm a ∈ A, an estimate θ̂a of θa is constructed from a simple `2-
regularized regression, as in in [4] and [9]. In the second operation, the learner plays the
arm a that maximizes x†t θ̂a. Crucially, in the first operation, only information collected
during exploration epochs is used. In particular, let Ta,t−1 be the set of exploration
epochs up to and including time t − 1 (i.e., the times that the learner played an arm a
uniformly at random (u.a.r.)). Moreover, for any T ⊂ N, denote by rT ∈ Rn the vector
of observed rewards for all time instances t ∈ T , and XT ∈ Rn×d is a matrix of T
rows, each containing one of the observed contexts at time t ∈ T . Then, at time t the
estimator θ̂a is the solution of the following convex optimization problem.

min
θ∈Rd

1

2n
‖rT −XT θ‖22 +

λn
2
‖θ‖22. (3)

where T = Ta,t−1, n = |Ta,t−1|, λn = 1/
√
n. In other words, the estimator θ̂a is

a (regularized) estimate of θa, based only on observations made during exploration

epochs. Note that the solution to (3) is given by θ̂a =
(
λnI +

1
nX
†
TXT

)−1
1
nX
†
T rT .

An important design choice is the above process selection of the time slots at which
the algorithm explores, rather than exploits. Following the ideas of [20], we select
the exploration epochs so that they occur approximately Θ(log t) times after t slots.
This guarantees that, at each time step, there is enough information in our history of
past events to determine the parameters accurately while only incurring in a regret of
O(log t). There are several ways of achieving this; our algorithm explores at each time
step with probability Θ(t−1).

The above steps are summarized in pseudocode by Algorithm 1. Note that the algo-
rithm contains a scaling parameter p, which is specified below, in Theorem 2. Because
there areK arms and for each arm (xt, ra,t) ∈ Rd+1, the expected memory required by
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the algorithm scales like O(Kd2). In addition, both the matrix X†TXT and the vector
X†T rT can be computed in an online fashion in O(d2) time: X†TXT ← X†TXT + xtx

†
t

and X†T rT ← X†T rT + rtxt. Finally, the estimate of θ̂a does not require full matrix in-
version but only solving a linear system (see Algorithm 1), which can be done in O(d2)
time. The above is summarized in the following theorem.

Theorem 1. Algorithm 1 has computational complexity of O(Kd2) per iteration and
its expected space complexity scales like O(Kd2).

We now state our main theorem that shows that Algorithm 1 achieves R(T ) =
O(log T ).

Theorem 2. Under Assumptions 1, the expected cumulative regret of algorithm 1 sat-
isfies,

R(T ) ≤ p∆max

√
d+ 14∆max

√
dKeQ/4 + p∆max

√
d log T.

for any

p ≥ CKL′2

(∆′min)
2(Σ′min)

2
. (4)

Above, C is a universal constant, ∆′min = min{1, ∆min}, Σ′min = min{1, Σmin} and
L′ = max{1, L}.

Algorithm 1 requires the specification of the constant p. In Section 4.2, we give
two examples of how to efficiently choose a p that satisfies (4). In Theorem 2, the
bound on the regret depends on p - small p is preferred - and hence it is important to
understand how the right hand side (r.h.s.) of (4) might scale when K and d grow. In
Section 4.1, we show that, for a concrete distribution of contexts and choice of expected
rewards θa, and assuming (4) holds, p = O(K3d5) 1 . There is nothing special about
the concrete details of how contexts and θa’s are chosen and, although not included
in this paper, for many other distributions, one also obtains p = O(poly(d)). We can
certainly construct pathological cases where, for example, p grows exponentially with
d. However, we do not find these intuitive. Specially when interpreting these having in
mind real applications as the ones introduced in Examples 1- 3.

4.1 Example of Scaling of p with d and K

Assume that contexts are obtained by normalizing a d-dimensional vector with i.i.d.
entries as Bernoulli random variables with parameter w. Assume in addition that every
θa is obtained i.i.d. from the following prior distribution: every entry of θa is drawn
i.i.d. from a uniform distribution and then θa is normalized. Finally, assume that the
payoffs are given by ra,t = x†tΘa, where Θa ∈ Rd are random variables that fluctuate
around θa = E{Θa} with each entry fluctuating by at most F .

Under these assumptions the following is true:

– Σmin = Ω(d−1). In fact, the same result holds asymptotically independently of
w = w(d) if, for example, we assume that on average groups are roughly of the
same size, M , with w =M/d;

1This bound holds with probability converging to 1 as K and d get large
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– L = O(
√
d). This holds because εa,t = ra,t−E{ra,t} = x†t(Θa−θa) are bounded

random variables with zero mean and ‖x†t(Θa − θa)}‖∞ = O(
√
d).

– ∆min = Ω(1/(Kd
√
w) with high-probability (for large K and d). This can be see

as follows, if ∆min = x†(θa − θb) for some x, a and b, then it must be true that θa
and θb differ in a component for which x is non-zero. The minimum difference be-
tween components among all pairs of θa and θb is lower bounded by Ω(1/(K

√
d))

with high probability (for large K and d). Taking into account that each entry of x
is O(1/

√
dw) with high-probability, the bound on ∆min follows.

If we want to apply Theorem 2 then (4) must hold and hence putting all the above
calculations together we conclude that p = O(K3d5) with high probability for large K
and p.

4.2 Computing p in Practice
If we have knowledge of an a priori distribution for the contexts, for the expected pay-
offs and for the variance of the rewards then we can quickly compute the value ofΣmin,
L and a typical value for∆min. An example of this was done above (Section 4.1). There,
the values were presented only in order notation but exact values are not hard to obtain
for that and other distributions. Since a suitable p only needs to be larger then the r.h.s.
of (4), by introducing an appropriate multiplicative constant, we can produce a p that
satisfied (4) with high probability.

If we have no knowledge of any model for the contexts or expected payoffs, it is still
possible to find p by estimating ∆min, Σmin and L from data gathered while running
Algorithm 1. Notice again that, since all that is required for our theorem to hold is
that p is greater then a certain function of these quantities, an exact estimation is not
necessary. This is important because, for example, accurately estimating Σmin is hard
when matrix E{x1x†1} has a large condition number.

Not being too concerned about accuracy, Σmin can be estimated from E{x1x†1},
which can be estimated from the sequence of observed xt. ∆min can be estimated from
Algorithm 1 by keeping track of the smallest difference observed until time t between
maxb x

†θ̂b and the second largest value of the function being maximized. Finally, the
constant L can be estimated from the variance of the observed rewards for the same
(or similar) contexts. Together, these estimations do not incur in any significant loss in
computational performance of our algorithm.

5 Proof of Theorem 2

The general structure of the proof of our main result follows that of [3]. The main
technical innovation is the realization that, in the setting when the contexts are drawn
i.i.d. from some distribution, a standard matrix concentration bound allows us to treat
λnI + n−1(X†TXT ) in Algorithm 1 as a deterministic positive-definite symmetric ma-
trix, even as λn → 0.

Let ET denote the time instances for t > p and until time T in which the algorithm
took an exploitation decision. Recall that, by Cauchy-Schwarz inequality, x†t(θa∗xt −
θa) ≤ ‖xt‖1‖(θa∗xt − θa)‖∞ ≤

√
d‖xt‖2‖(θa∗xt − θa)‖∞ ≤

√
d∆max. In addition,
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recall that
∑T
t=2 1/t ≤ log T . For R(T ) the cumulative regret until time T , we can

write

R(T ) = E
{ T∑
t=1

x†t(θa∗xt − θa)
}
≤ p∆max

√
d+∆max

√
dE
{ T∑
t=p+1

1{x†tθa < x†tθa∗xt}
}

≤ p∆max

√
d+∆max

√
dE{|ET |}+∆max

√
dE
{ ∑
t∈ET

1{x†tθa < x†tθa∗xt}
}

≤ p∆max

√
d+ p∆max

√
d log T +∆max

√
dE
{ ∑
t∈ET

1{x†tθa < x†tθa∗xt}
}

≤ p∆max

√
d+ p∆max

√
d log T +∆max

√
dE
{ ∑
t∈ET

∑
a∈A

1{x†t θ̂a > x†t θ̂a∗xt }
}
.

In the last line we used the fact that when exploiting, if we do not exploit the optimal
arm a∗xt , then it must be the case that the estimated reward for some arm a, x†t θ̂a, must
exceed that of the optimal arm, x†t θ̂a∗xt , for the current context xt.

We can continue the chain of inequalities and write,

R(T ) ≤ p∆max

√
d+ p∆max

√
d log T +∆max

√
dK

T∑
t=1

P{x†t θ̂a > x†t θ̂a∗xt}.

The above expression depends on the value of the estimators for time instances that
might or might not be exploitation times. For each arm, these are computed just like in
Algorithm 1, using the most recent history available. The above probability depends on
the randomness of xt and on the randomness of recorded history for each arm.

Since x†t(θa∗xt − θa) ≥ ∆min we can write

P{x†t θ̂a > x†t θ̂a∗xt} ≤ P
{
x†t θ̂a ≥ x

†
tθa +

∆min

2

}
+ P

{
x†t θ̂a∗xt ≤ x

†
tθa∗xt −

∆min

2

}
.

We now bound each of these probabilities separately. Since their bound is the same,
we focus only on the first probability.

Substituting the definition of ra(t) = x†tθa + εa,t into the expression for θ̂a one
readily obtains,

(θ̂a − θa) =
(
λnI +

1

n
X†TXT

)−1(
1

n

∑
τ∈T

xτ εa,τ − λnθa

)
.

We are using again the notation T = Ta,t−1 and n = |T |. From this expression, an
application of Cauchy-Schwarz’s inequality and the triangular inequality leads to,

|x†t(θ̂a − θa)| =
∣∣∣x†t (λnI + 1

n
X†TXT

)−1(
1

n

∑
τ∈T

xτ εa,τ − λnθa

)∣∣∣
≤

√
x†t

(
λnI +

1

n
X†TXT

)−2
xt

(∣∣∣ 1
n

∑
τ∈T

x†txτ εa,τ

∣∣∣+ λn|x†tθa|

)
.
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We introduce the following notation

ca,t ≡

√
x†t

(
λnI +

1

n
X†TXT

)−2
xt. (5)

Note that, given a and t both n and T are well specified.
We can now write,

P
{
x†t θ̂a ≥ x

†
tθa +

∆min

2

}
≤ P

{∣∣∣ 1
n

∑
τ∈T

x†txτ εa,τ

∣∣∣ ≥ ∆min

2ca,t
− λn|x†tθa|

}
≤ P

{∣∣∣ 1
n

∑
τ∈T

x†txτ εa,τ

∣∣∣ ≥ ∆min

2ca,t
− λnQ

}
.

Since εa,τ are sub-gaussian random variables with sub-gaussian constant upper bounded
by L and since |x†txτ | ≤ 1, conditioned on xt, T and {xτ}τ∈T , each x†txτ εa,τ is a sub-
gaussian random variable and together they form a set of i.i.d. sub-gaussian random
variables. One can thus apply standard concentration inequality and obtain,

P
{∣∣∣ 1
n

∑
τ∈T

x†txτ εa,τ

∣∣∣ ≥ ∆min

2ca,t
− λnQ

}
≤ E

{
2e
− n

2L2

(
∆min
2ca,t

−λnQ
)+2}

. (6)

where both n and ca,t are random quantities and z+ = z if z ≥ 0 and zero otherwise.
We now upper bound ca,t using the following fact about the eigenvalues of any two

real-symmetric matrices M1 and M2: λmax(M
−1
1 ) = 1/λmin(M1) and λmin(M1 +

M2) ≥ λmin(M1)− λmax(M2) = λmin(M1)− ‖M2‖.

ca,t ≤
(
λn + λ+min(E{x

†
1x1})−

∥∥∥ 1
n
X†TXT − E{x†1x1}

∥∥∥+)−1 .
Both the eigenvalue and the norm above only need to be computed over the subspace
spanned by the vectors xt that occur with non-zero probability. We use the symbol +

to denote the restriction to this subspace. Now notice that ‖.‖+ ≤ ‖.‖ and, since we
defined Σmin ≡ mini:λi>0 λi(E{X1X

†
1}), we have that λ+min(E{X1X

†
1}) ≥ Σmin.

Using the following definition, ∆Σn ≡ n−1X†TX
†
T − E{X1X

†
1}, this leads to, ca,t ≤

(λn +Σmin − ‖∆Σn‖)−1 ≤ (Σmin − ‖∆Σn‖)−1.
We now need the following Lemma.

Lemma 1. Let {Xi}ni=1 be a sequence of i.i.d. random vectors of 2-norm bounded by
1. Define Σ̂ = 1

n

∑n
i=1XiX

†
i and Σ = E{X1X

†
1}. If ε ∈ (0, 1) then,

P(| Σ̂ −Σ‖ > ε‖Σ‖) ≤ 2e−Cε
2n,

where C < 1 is an absolute constant.

For a proof see [21] (Corollary 50).
We want to apply this lemma to produce a useful bound on the r.h.s. of (6). First

notice that, conditioning on n, the expression inside the expectation in (6) depends
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through ca,t on n i.i.d. contexts that are distributed according to the original distribution.
Because of this, we can write,

P
{∣∣∣ 1
n

∑
τ∈T

x†txτ εa,τ

∣∣∣ ≥ ∆min

2ca,t
− λnQ

}
≤ E

{
2e
− n

2L2

(
∆min
2ca,t

−λnQ
)+2}

≤
t∑

n=1

(
P{|Ta,t−1| = n} × E

{
2e
− n

2L2

(
∆min
2ca,t

−λnQ
)+2∣∣∣|Ta,t−1| = n

})
.

Using the following algebraic relation: if z, w > 0 then (z − w)+2 ≥ z2 − 2zw,
we can now write,

E
{
e
− n

2L2

(
∆min
2ca,t

−λnQ
)+2∣∣∣|Ta,t−1| = n

}
≤ P{|∆Σn| > Σmin/2| |Ta,t−1| = n}+ e

− n
2L2

(
Σmin∆min

4 −λnQ
)+2

≤ P{|∆Σn| > Σmin/2| |Ta,t−1| = n}+ e
Q∆minΣmin

4L2 e−
n(∆min)2(Σmin)2

32L2

Using Lemma 1 we can continue the chain of inequalities,

E
{
e
− n

2L2

(
∆min
2ca,t

−λnQ
)+2∣∣∣|Ta,t−1| = n

}
≤ 2e−C(Σmin)

2n/4 + e
Q∆minΣmin

4L2 e−
n(∆min)2(Σmin)2

32L2 .

Note that ||Σ|| ≤ 1 follows from our non-restrictive assumption that ‖xt‖2 ≤ 1 for all
xt. Before we proceed we need the following lemma:

Lemma 2. If nc = p
2k log t , then P{|Ta,t−1| < nc} ≤ t−

p
16K .

Proof. First notice that |Ta,t−1| =
∑t−1
i=1 zi where {zi}t−1i=1 are independent Bernoulli

random variables with parameter p/(Ki). Remember that we can assume that i > p
since in the beginning of Algorithm 1 we play each arm p/K times.

Note that P(X > c) ≤ P(X + q > c) is always true for any r.v. X, c and q > 0.
Now write,

P(|Ta,t−1| < nc) = P

(
t−1∑
i=1

zi < nc

)
= P

(
t−1∑
i=1

(zi − p/(Ki)) < nc − (p/K)
t−1∑
i=1

1/i

)

≤ P

(
t−1∑
i=1

(−zi + p/i) > −nc + (p/K)

t−1∑
i=1

1/i

)

≤ P

(
t−1∑
i=1

(−zi + p/i) > (p/K) log t− nc

)
. (7)

Since
∑t−1
i=1 E{(zi−p/(Ki))2} =

∑t−1
i=p+1(1−p/(Ki))(p/(Ki)) ≤

p
K log t, we have

that {−zi + p/i}t−1i=1 are i.i.d. random variables with zero mean and sum of variances
upper bounded by (p/K) log t. Replacing nc = (p/2K) log t in (7) and applying Bern-

stein inequality we get, P(|Ta,t−1| < nc) ≤ e
−

1
2
(p/(2K))2 log2 t

p
K

log t+1
3
(p/(2K)) log t ≤ t−

p
16K . ut
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We can now write, by splitting the sum in n < nc and n ≥ nc

P
{∣∣∣ 1
n

∑
τ∈T

x†txτ εa,τ

∣∣∣ ≥ ∆min

2ca,t
− λnQ

}
≤

t∑
n=1

P{|Ta,t−1| = n}E
{
2e
− n

2L2

(
∆min
2ca,t

−λnQ
)+2 ∣∣∣|Ta,t−1| = n

}
≤ P{|Ta,t−1| < nc}+ 4e−C(Σmin)

2nc/4 + 2e
Q∆minΣmin

4L2 e−
nc(∆min)2(Σmin)2

32L2

≤ t−
p

16K + 4t−
Cp(Σmin)2

8K + 2e
Q∆minΣmin

4L2 t−
p(∆min)2(Σmin)2

64KL2 .

We want this quantity to be summable over t. Hence we require that,

p ≥ 128KL2

(∆min)2(Σmin)2
, p ≥ 16K

C(Σmin)2
, p ≥32K. (8)

It is immediate to see that our proof also follows if ∆min, Σmin and L are replaced
by ∆′min = min{1, ∆min}, Σ′min = min{1, Σmin} and L′ = max{1, L} respectively.
If this is done, it is easy to see that conditions (8) are all satisfied by the p stated in
Theorem 2. Since

∑∞
t=1 1/t

2 ≤ 2, gathering all terms together we have,

R(T ) ≤ p∆max

√
d+ p∆max

√
d log T +∆max

√
dK

(
4e

Q∆′minΣ
′
min

4L′2 + 10

)
≤ p∆max

√
d+ 14∆max

√
dKeQ/4 + p∆max

√
d log T. ut

6 Numerical Results

In Theorem 2, we showed that, in the stochastic setting, Algorithm 1 has an expected
regret of O(log T ). We now illustrate this point by numerical simulations and, most
importantly, exemplify how violating the stochastic assumption might degrade its per-
formance. Figure 1 (a) shows the average cumulative regret (in semi-log scale) over 10
independent runs of Algorithm 1 for T = 105 and for the following setup. The context
variables x ∈ R3 and at each time step {xt}t≥1 are drawn i.i.d. in the following way:
(a) set each entry of x to 1 or 0 independently with probability 1/2; (b) normalize x. We
consider K = 6 arms with corresponding parameters θa generated independently from
a standard multivariate gaussian distribution. Given a context x and an arm a, rewards
were random and independently generated from a uniform distribution U([0, 2x†θa]).
As expected, the regret is logarithmic. Figure 1 (a) shows a straight line at the end.

To understand the effect of the stochasticity of x on the regret, we consider the
following scenario: with every other parameter unchanged, let X = {x, x′}. At every
time step x = [1, 1, 1] appears with probability 1/I , and x′ = [1, 0, 1] appears with
probability 1− (1/I). Figure 1 (b) shows the dependency of the expected regret on the
context distribution for I = 5, 10 and 100. One can see that an increase of I causes a
proportional increase in the regret.
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Fig. 1. (a) Regret over T when xt is from i.i.d. (b) Regret over T when xt is not from i.i.d.

7 Adversarial Setting
In the stochastic setting, the richness of the subset of Rd spanned by the observed
contexts is related to the skewness of the distribution D. The fact that the bound in
Theorem 2 depends on Σmin and that the regret increases as this value becomes smaller
indicates that our approach does not yield a O(log T ) regret for the adversarial setting,
where an adversary choses the contexts and can, for example, generate {xt} from a
sequence of stochastic processes with decreasing Σmin(t).

In particular, the main difficulty in using a linear regression, and the reason why
our result depends on Σmin, is related to the dependency of our estimation of x†tθa on

1
|Ta,t−1|X

†
Ta,t−1

XTa,t−1 . It is not hard to show that the error in approximating x†tθa with

x†t θ̂a is proportional to √
x†t

(
λnI +

1

n
X†TXT

)−2
xt. (9)

This implies that, even if a given context has been observed relatively often in the past,
the algorithm can “forget” it because of the mean over contexts that is being used to
produce estimates of x†tθa (the mean shows up in (9) as 1

nX
†
TXT ).

The effect of this phenomenon on the performance of Algorithm 1 can be readily
seen in the following pathological example. Assume that X = {(1, 1), (1, 0)} ⊂ R2.
Assume that the contexts arrive in the following way: (1, 1) appears with probability
1/I and (1, 0) appears with probability 1−1/I . The correlation matrix for this stochas-
tic process is {(1, 1/I), (1/I, 1/I)} and its minimum eigenvalue scales like O(1/I).
Hence, the regret scales as O(I2 log T ). If I is allowed to slowly grow with t, we ex-
pect that our algorithm will not be able to guarantee a logarithmic regret (assuming that
our upper bound is tight). In other words, although (1, 1) might have appeared a suffi-
cient number of times for us to be able to predict the expected reward for this context,
Algorithm 1 performs poorly since the mean (9) will the ‘saturated’ with the context
(1, 0) and forget about (1, 1).
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Algorithm 2 Contextual UCB
for t = 1 to p do
a← 1 + (t mod K); Play arm a; Ta,t ← Ta,t−1 ∪ {t}

end for
for t = p+ 1 to T do

for a ∈ A do

ca,t ← min
T ⊂Ta,t−1

log t

|T | x
†
t

(
λnI +

1

n
X†TXT

)−2

xt

T ∗ ← subset of Ta,t−1 that achieves the minimum; n← |T ∗|
Get θ̂a as the solution to the linear system:

(
λnI +

1
n
X†TXT

)
θ̂a =

(
1
n
X†T rT

)
end for
Play arm at = argmaxa x

†
t θ̂a +

√
ca,t; Set Ta,t ← Ta,t−1 ∪ {t}

end for

One solution for this problem is to ignore some past contexts when building an
estimate for x†tθa, by including in the mean (9) past contexts that are closer in direction
to the current context xt. Having this in mind, and building on the ideas of [4], we
propose the UCB-type Algorithm 2.

It is straightforward to notice that this algorithm cannot be implemented in an ef-
ficient way. In particular, the search for T ∗ ⊂ Ta,t−1 has a computational complexity
exponential in t. The challenge is to find an efficient way of approximating T ∗ effi-
ciently. This can be done by either reducing the size of Ta,t−1 – the history from which
one wants to extract Ta,t−1 – by not storing all events in memory (for example, if we
can guarantee that |Ta,t| = O(log t) then the complexity of the above algorithm at time
step t is O(t)), or by finding an efficient algorithm of approximating the minimization
over the Ta,t−1 (or both). It remains an open problem to find such an approximation
scheme and to prove that it achieves O(log T ) regret for a setting more general than the
i.i.d. contexts considered in this paper.

8 Conclusions
We introduced an ε-greedy type of algorithm that provably achieves logarithmic regret
for the contextual multi-armed bandits problem with linear payoffs in the stochastic
setting. Our online algorithm is both fast and uses small space. In addition, our bound on
the regret scales nicely with dimension of the contextual variables, O(poly(d) log T ).
By means of numerical simulations we illustrate how the stochasticity of the contexts is
important for our bound to hold. In particular, we show how to construct a scenario for
which our algorithm does not give logarithmic regret. The reason for this amounts to the
fact that the mean n−1X†TXT that is used in estimating the parameters θa can “forget”
previously observed contexts. Because of this, it remains an open problem to show that
there are efficient algorithms that achieve O(poly(d) log T ) under reward separation
(∆min > 0) in the non-stochastic setting. We believe that a possible solution might
be constructing a variant of our algorithm where in n−1X†TXT we use a more careful
average of past observed contexts give the current observed context. In addition, we
leave it open to produce simple and efficient online algorithms for multi-armed bandit
problems under rich context models, like the one we have done here for linear payoff.
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