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Abstract. The emergence of hubs in k-nearest neighbor (kNN) topologies of
intrinsically high dimensional data has recently been shown to be quite detri-
mental to many standard machine learning tasks, including classification. Robust
hubness-aware learning methods are required in order to overcome the impact of
the highly uneven distribution of influence. In this paper, we have adapted the
Hidden Naive Bayes (HNB) model to the problem of modeling neighbor occur-
rences and co-occurrences in high-dimensional data. Hidden nodes are used to
aggregate all pairwise occurrence dependencies. The result is a novel kNN clas-
sification method tailored specifically for intrinsically high-dimensional data, the
Augmented Naive Hubness Bayesian k nearest Neighbor (ANHBNN). Neighbor
co-occurrence information forms an important part of the model and our analysis
reveals some surprising results regarding the influence of hubness on the shape of
the co-occurrence distribution in high-dimensional data. The proposed approach
was tested in the context of object recognition from images in class imbalanced
data and the results show that it offers clear benefits when compared to the other
hubness-aware kNN baselines.

Keywords: hubs, k-nearest neighbor, classification, curse of dimensionality, Bayesian,
co-occurrences

1 Introduction

The basic k-nearest neighbor classification rule [1] is fairly simple, though often sur-
prisingly effective, as it exhibits some favorable asymptotic properties [2]. Many ex-
tensions of the basic method have been proposed over the years. It is possible to use
kNN in conjunction with kernels [3], perform large margin learning [4], multi-label
classification [5], adaptively determine the neighborhood size [6], etc.

Even though kNN has mostly been replaced in general-purpose classification sys-
tems by support vector machines and some other modern classifiers [7], it is still very
useful and quite effective in several important domains. Unlike many other methods,
kNN has a relatively low generality bias and a rather high specificity bias. This makes
it ideal for classification under class imbalance [8][9]. Many real-world class distribu-
tions are known to be very imbalanced and many examples can be found in medical
diagnostic systems, spam filters, intrusion detection, etc. Nearest neighbor methods are



also currently considered as the state-of-the-art in time series classification when used
in conjunction with the dynamic time-warping distance (DTW) [10]. Some recent ex-
periments suggest that the kNN might also be quite appropriate for object recognition
in images [11].

The curse of dimensionality [12] is an umbrella-term referring to many difficul-
ties that are known to arise when dealing with high-dimensional feature representa-
tions. Many k-nearest neighbor methods are negatively affected by various aspects of
the dimensionality curse. Most standard distance measures concentrate [13] and the
overall contrast is reduced, which makes distinguishing between close/relevant and dis-
tant/irrelevant points difficult for any given query. The very concept of what consti-
tutes nearest neighbors in high-dimensional data has rightfully been questioned in the
past [14].

Hubness is a recently described consequence of high intrinsic dimensionality that
is related specifically to k-nearest neighbor methods [15]. It was first noticed in mu-
sic retrieval and recommendation systems [16], where some songs were appearing in
the result sets of a surprisingly large proportion of queries [17]. Their occurrence fre-
quency could not be explained by the semantics of the data alone and their apparent
similarity to other songs was shown to be quite counter-intuitive. The initial thought
was that this might be an artefact of the metric or the feature representation, though it
was later shown [15][18] that hubness emerges naturally in most types of intrinsically
high-dimensional data. Hubs become the centers of influence and the occurrence dis-
tribution asymptotically approaches a power law as the dimensionality increases. An
illustrative example of the change in the distribution shape is shown in Figure 1. The
almost scale-free topology of the k-nearest neighbor graph [18] and the skewed distri-
bution of influence have profound implications for kNN learning under the assumption
of hubness in high-dimensional data.

Fig. 1. The shape of the neighbor occurrence frequency distribution changes as the intrinsic di-
mensionality of the data increases. The example shows the distribution of 10-occurrences (N10)
of i.i.d. Gaussian data in case of 2, 10 and 100 dimensions.



The hubness among neighbor occurrences was previously unknown and is not even
implicitly taken into account in most standard kNN classifiers. This can lead to some
problems in applying the standard methods for high-dimensional data analysis. Patho-
logical cases have even been shown to exist [19][20] where the influence of hubs re-
duces the overall kNN performance below that of zero-rule. Such cases are rare, but
warn of the danger that lurks in ignoring the underlying occurrence distribution.

The presence of hubs could in principle be beneficial in that it reduces the overall
impact of noise, but the network of influence also becomes more vulnerable to any
inaccuracies that are contained in hubs themselves, when errors can propagate much
more easily. Therefore, the overall stability of the learning process is compromised. As
hubness is a geometric property that results by an interplay of representational features
and metrics, it does not necessarily reflect the underlying semantics well. Many hub
points are in fact known to induce severe misclassification [18]. Consequently, there
is a rising awareness of a need for novel approaches to algorithm design for properly
handling high-dimensional data in k-nearest neighbor methods.

Recent research has shown that learning from past occurrences and hub profil-
ing can be successfully employed for improving the overall kNN classifier perfor-
mance [21][22][23][24][25]. Hubness-aware metric learning also seems to be help-
ful [26][27][20]. The consequences of data hubness have recently been examined in
the unsupervised context as well [28][29].

The Naive Bayesian interpretation of the observed k-neighbor occurrences
(NHBNN) [23] was shown to be quite promising in high-dimensional data classifica-
tion, especially in the context of learning from class imbalanced data [20]. Yet, NHBNN
naively assumes independence between neighbor occurrences in the same k-neighbor
set, an assumption that is clearly severely violated in most cases, as close points tend to
co-occur as neighbors.

1.1 Goal and Contributions

Our goal was to extend and augment the existing naive NHBNN approach by includ-
ing the co-occurrence dependencies between the observed neighbors in the underly-
ing Bayesian model. This was done by introducing hidden nodes in the augmented
topology, as in the recently proposed Hidden Naive Bayes method [30]. This work
represents the first attempt to exploit the neighbor co-occurrence dependencies in high-
dimensional neighbor occurrence models and we propose a novel classification algo-
rithm named the Augmented Naive Hubness-Bayesian k-nearest Neighbor (ANHBNN).

Additionally, we justify our approach by examining how the increase in the intrinsic
dimensionality of the data affects the distribution of neighbor co-occurrences. Our tests
on synthetic Gaussian data reveal some surprising results. We have shown that the dis-
tribution of the number of distinct co-occurring neighbor points becomes multi-modal
with modes located approximately around the multiples of (k−1). We have also shown
that the tail of the distribution of neighbor pair occurrence frequencies becomes thicker
with increasing dimensionality, which indicates hub linkage, as some hub points tend
to co-occur frequently. Also, the number of distinct pairs of co-occurring neighbors in-
creases. These phenomena seem beneficial for co-occurrence modeling and they explain



why the proposed ANHBNN classifier works well in intrinsically high-dimensional
data.

2 Related Work

As the emergence of hubs was shown to be potentially highly detrimental, hubness-
aware classification of high-dimensional data has recently drawn some attention and
several novel kNN classification methods have been proposed. The simplest approach
(hw-kNN) was to include instance-specific weights that would reflect the nature of
hubness of individual neighbor points [21]. This was later improved upon by includ-
ing class-conditional occurrence profiles, as in [22][23][25]. In h-FNN [22], the oc-
currence profiles were used for forming fuzzy votes within the FNN [31] framework.
HIKNN [25] was based on the information-theoretic re-interpretation of h-FNN, as
less frequently occurring neighbors were judged to be more locally relevant and as-
signed higher weights, based on their occurrence self-information. On the other hand,
the Naive Hubness Bayesian k-nearest Neighbor (NHBNN) [23] was based on a slightly
different idea - interpreting the individual occurrences as random events and applying
the Naive Bayes rule in order to perform classification. Prior tests have shown this to be
a promising idea, so extending this basic approach will be the focus of this paper.

2.1 Naive Hubness-Bayesian kNN

In order to explain in detail the idea behind the Naive Hubness-Bayesian kNN
(NHBNN) [23], it is necessary to introduce some formal notation.

Neighbor k-occurrence Models: Let D = {(x1, y1), (x2, y2) . . . (xn, yn)} be the
data set, where xi-s are the feature vectors and yi ∈ {1 . . . C} the class labels. Also, let
Dk(x) be the set of k-nearest neighbors of x. The neighbor k-occurrence frequency of
x will be denoted by Nk(x) = |xi : x ∈ Dk(xi)| and will also sometimes be referred
to as point hubness. The total hubness of a dataset D is defined as the third standard
moment (skewness) of the neighbor occurrence degree distribution and will be denoted
by SNk =

1
n

∑n
i=1(Nk(xi)−k)3

( 1
n

∑n
i=1(Nk(xi)−k)2)3/2

. High skewness indicates the long-tailed distribution
where most k-neighbor sets are dominated by occurrences of a limited number of highly
frequent neighbors, while most other points occur very rarely or not at all. The very
frequently occurring points are called hubs, the infrequently occurring points anti-hubs
and the points that never occur as neighbors orphans.

The total occurrence frequency is often decomposed into either good and bad hub-
ness or alternatively class-conditional hubness in the following way:Nk(x) = GNk(x)+
BNk(x) =

∑
c∈C Nk,c(x). Good hubness is defined as the number of neighbor oc-

currences where neighbors share the same class label and bad hubness the number of
occurrences where there is label mismatch, i.e. GNk(x) = |xi : x ∈ Dk(xi) ∧ y = yi|
and BNk(x) = |xi : x ∈ Dk(xi) ∧ y 6= yi|. Similarly, class-conditional hub-
ness measures the occurrence frequency within the neighbor sets of a specific class:



Nk,c(x) = |xi : x ∈ Dk(xi) ∧ yi = c|. These quantities are used to form an occur-
rence model from the training set that includes a neighbor occurrence profile for each
neighbor point.

Naive Bayesian Interpretation of kNN: In the NHBNN method [23], the neighbor
occurrences are interpreted as random events that can be used to deduce the class label
in the point of interest. Equation 1 shows how the Naive Bayes rule [7] is used to
deduce the class assignment probabilities for X based on its k-nearest neighbors from
the training set. The label y = argmaxc∈{1...C}p(c|Dk(x)) is assigned to x by this rule.

p(Y |Dk(X)) ∝ p(Y )

k∏
t=1

p(Xt ∈ Dk(X)|Y ) (1)

The order of neighbors is ignored in order to get better probability estimates in the
model, so p(Xt ∈ Dk(X)|Y ) can be easily estimated from the class-specific hubness
Nk,c scores and the total class occurrences. Each point is trivially considered to be its
own 0th nearest neighbor, for practical reasons.

p(Xt ∈ Dk(X)|Y ) ≈ Nk,Y (Xt) + λ

nY · (k + 1) + λ|D|
(2)

The actual algorithm is a bit more complex than this, mostly because there are
points for which the p(Xt ∈ Dk(X)|Y ) can not be reliably estimated from the previous
occurrences, orphans and anti-hubs. They need to be treated separately, as a special case.
In analogy with the Naive Bayes classifier, it would be as if a completely new feature
value was first encountered on the test data.

The obvious problem with this approach is that the Naive Bayes rule assumes in-
dependence between the random variables and this does not hold true among the k-
neighbor occurrences, where close neighbors tend to co-occur together and there are
clear dependencies between individual neighbor occurrences.

Naive Bayes sometimes works well even when the independence assumption does
not hold [32] and the initial evaluation of the Naive Hubness-Bayesian k-nearest neigh-
bor has shown it to be quite a promising approach to high-dimensional kNN classi-
fication. However, it was later observed that its performance quickly drops when the
neighborhood size is increased and that it performs rather poorly for larger k values. It
was hypothesized that this was a consequence of the independence assumption viola-
tion.

In order to test this hypothesis, we decided to proceed by including some sort of co-
occurrence dependencies in the model, with the intent of increasing its robustness and
overall performance. The extended algorithm was supposed be able to properly handle
larger neighborhood sizes.

3 The Proposed Approach: Including the Co-occurrence
Dependencies

Naive Bayes is the simplest among the Bayesian network models. The conditional inde-
pendence assumption is often violated in practice, though its use can still be justified in



some cases [32]. Learning the optimal Bayesian network from the data can sometimes
be intractable, as it was shown to be an NP-complete problem [33]. As the structure
learning is the most time consuming step, assuming a certain type of underlying struc-
ture is common. We base our extension of the hubness-aware NHBNN classifier on the
Hidden Naive Bayes model [30], shown in Figure 3. A hidden node is introduced for
each variable that accounts for the influence from all other variables. In our case, the
variables are the occurrences of points as neighbors in k-neighbor sets.

(a) The basic Naive Bayes model. All oc-
currences are conditioned only on the class
label Y.

(b) The Hidden Naive Bayes model. An ad-
ditional hidden node is introduced for each
neighbor variable, modeling the dependen-
cies on all other nodes.

Fig. 2. A comparison between the basic Naive Bayes and the Hidden Naive Bayes [30] models.

Hidden nodes help model the dependencies between neighbor co-occurrences.
Let Nk,c(xi, xj) be the number of co-occurrences of xi and xj in neighborhoods

of elements from c, i.e. Nk,c(xi, xj) = |x : y = c ∧ xi ∈ Dk(x) ∧ xj ∈ Dk(x)|. Cal-
culating all the Nk,c(xi, xj) paired class-conditional co-occurrence frequencies is pos-
sible in O(nk2), as this is the time required to consider and count all co-occurrences
within the k-neighbor sets. In order to avoid the O(Cn2) memory complexity for stor-
ing all the co-occurrence counts, C hash tables can be used to store only the non-
negative co-occurrence counts. Many Nk,c(xi, xj) do equal zero, so this saves con-
siderable memory space.

Classification in the extended Bayesian neighbor occurrence model is performed
based on the class probability estimate shown in Equation 3 and it forms a similar
expression as in NHBNN (Equation 1). The difference is that the probability of Xt ∈
Dk(X) is now also conditioned on the hidden variable Ht(X,Y ).

p(Y |Dk(X)) ∝ p(Y )

k∏
t=1

p(Xt ∈ Dk(X)|Y,Ht(X,Y )) (3)

We will call the proposed algorithm that performs the k-nearest neighbor classifica-
tion based on Equation 3 the Augmented Naive Hubness-Bayesian k-nearest Neighbor
(ANHBNN).



3.1 Modeling the Influence of Hubs and Regular Points

In order to infer reliable probability estimates, a certain number of observed occurrences
is required. We will first derive the estimates for frequent neighbor points and then focus
on approximations for anti-hubs and orphans.

Assuming Nk(Xt) > 0, the conditional probabilities are expressed as a weighted
sum of separate one-dependence estimators, as shown is Equation 4. This is a stan-
dard approach to modeling the influence of the hidden nodes within the HNB frame-
work [30].

p(Xt ∈ Dk(X)|Y,Ht(X,Y )) =

k∑
i=1,i6=t

wY
it · p(Xt ∈ Dk(X)|Xi ∈ Dk(X), Y )

p(Xt ∈ Dk(X)|Xi ∈ Dk(X), Y ) ≈

{
Nk,Y (Xt,Xi)
Nk,Y (Xi)

, if Nk,Y (Xi) > 0,

0, if Nk,Y (Xi) = 0.

(4)

The weights in Equation 4 sum up to one and correspond to the strengths of indi-
vidual influences. It is possible to try optimizing the weights via cross-validation, but
it is overly time-consuming and is usually avoided. We propose to extend the origi-
nal idea [30] of expressing the weights by normalized mutual information by including
the class-conditional occurrence self-information Ik,Y (Xi) (Equation 5) and the occur-
rence profile non-homogeneity (Equation 6) which is expressed as the reverse neighbor
set entropy. These quantities are supposed to account for differences in hubness between
different points.

The class-conditional occurrence self-information measures how unexpected it is to
observe Xi in neighborhoods of class Y . Including the self-information in the denomi-
nator in Equation 8 allows us to increase the influence of very frequent neighbors. This
is beneficial, as there is more past occurrence data for these points and the probability
estimates are thus somewhat more reliable. On the other hand, neighbor points with
less homogenous occurrence profiles often act as bad hubs and exhibit a detrimental
influence, so favoring neighbors with homogenous profiles tends to improve the overall
performance.

Ik,Y (Xi) = log
nY

Nk,Y (Xi)
(5)

Hk(Xi) =
∑
c∈C

Nk,c(Xi)

nc
log

nc
Nk,c(Xi)

(6)

The class-conditional mutual information IP (Xj , Xt|Y ) between two neighbor oc-
currences Xj and Xt is estimated based on the previously observed occurrence profiles
on the training data as outlined in Equation 7. The four factors in the outer sum corre-
spond to the two neighbor points occurring together or separately or not at all.



IP (Xj , Xt|Y ) =

C∑
c=1

Nk,c(Xj , Xt)

n
· log

Nk,c(Xj ,Xt)

nc

Nk,c(Xj)

nc
· Nk,c(Xt)

nc

+

+

C∑
c=1

Nk,c(Xj)−Nk,c(Xj , Xt)

n
· log

Nk,c(Xj)−Nk,c(Xj ,Xt)

nc

Nk,c(Xj)

nc
· (1− Nk,c(Xt)

nc
)

+

+

C∑
c=1

Nk,c(Xt)−Nk,c(Xj , Xt)

n
· log

Nk,c(Xt)−Nk,c(Xj ,Xt)

nc

(1− Nk,c(Xj)

nc
) · Nk,c(Xt)

nc

+

+

C∑
c=1

nc −Nk,c(Xj)−Nk,c(Xt) +Nk,c(Xj , Xt)

n
· log

nc−Nk,c(Xj)−Nk,c(Xt)+Nk,c(Xj ,Xt)

nc

(1− Nk,c(Xj)

nc
) · (1− Nk,c(Xt)

nc
)


(7)

Finally, the co-dependency weights from Equation 4 are obtained from the class-conditional
occurrence self-information, homogeneity and class-conditional neighbor mutual information as
shown in Equation 8. Unlike in the original Hidden Naive Bayes [30] model, the weights here are
also conditioned on the class, because of the class-conditional self-information. Some smoothing
is needed in order to avoid zero divisions in cases when the denominator goes to zero.

wY
it =

IP (Xi,Xt|Y )
Ik,Y (Xi)·Hk(Xi)∑k

j=1,j 6=t

IP (Xj ,Xt|Y )

Ik,Y (Xj)·Hk(Xi)

(8)

The proposed extension of NHBNN embodied in the Augmented Naive Hubness-Bayesian
k-nearest Neighbor (ANHBNN) does not have a significant impact on the overall computational
complexity, as both algorithms are of the O(n2) complexity with respect to data size. Approxi-
mate k-neighbor set computations are possible and usually allow for considerable practical speed-
ups in hubness-aware classifiers without sacrificing too much accuracy [25].

3.2 Dealing with Anti-Hubs and Orphans

For infrequently occurring points Xt, the p(Xt ∈ Dk(X)|Y,Ht(X,Y )) can not be estimated
from their past occurrences properly. In principle, it would be possible to model their conditioned
influence by the average conditioned influence exhibited by other points from their class, as in
Equation 9.

p(Xt ∈ Dk(X)|Y,Ht(X,Y )) ≈
∑

Xi:Yi=Yt∧Nk(Xi)>0 p(Xi ∈ Dk(X)|Y,Hi(X,Y ))

|Xi : Yi = Yt ∧Nk(Xi) > 0| (9)

However, the exact p(Xi ∈ Dk(X)|Y,Hi(X,Y )) are not by default calculated during train-
ing, as they depend on the particular k-neighbor set and are inferred later from the pre-calculated
one dependence estimators, mutual information and self-information. Therefore, approximating
the influence of anti-hubs this way would require an additional time-consuming pass through
the training data, as well as some initialization of p(Xt ∈ Dk(X)|Y,Hi(X,Y )) for anti-hubs
anyway.

Luckily, points that never occur as neighbors on the training data very rarely occur as neigh-
bors on the test data as well, so it is possible to employ very simple replacements in place of



the actual conditional estimates, as it is not possible to arrive at a reliable proper estimate any-
way [22][23][25]. As hubs account for most occurrences, this does not have a significant influence
on the algorithm performance. Therefore, we propose to use the hidden nodes only for regular
points and hubs and approximate the influence of anti-hubs and orphans by the average class-
to-class occurrence probabilities as in Equation 10. Here Nk,Y (Yt) denotes the total number of
occurrences of elements from class Yt in neighborhoods of elements from Y . A similar global
anti-hub modeling approach was previously shown to be acceptable in NHBNN [23].

Nk(Xt) = 0 : p(Xt ∈ Dk(X)|Y,Ht(X,Y )) ≈

p(Xt ∈ Dk(X)|Y ) ≈ AVGYi=Ytp(Xi ∈ Dk(X)|Y ) =
Nk,Y (Yt)

k · nY · nYt

(10)

4 Neighbor Co-occurrences in High-dimensional Data

We hypothesized that the emergence of hubs in the kNN topologies of intrinsically high-dimensional
data might have some influence on the distribution of neighbor co-occurrences. As our proposed
hubness-aware classifier learns from the observed co-occurrences, we have run extensive tests in
order to establish whether the hypothesis holds.

To our knowledge, no previous research has been done on the impact of high intrinsic di-
mensionality on the neighbor co-occurrence distribution and its connection to the hubness phe-
nomenon. Therefore, we hope that the results presented here might shed some light on the more
subtle consequences of the curse of dimensionality.

We have run the tests for three different dimensionalities: 2, 10 and 100. For each number of
dimensions, a series of 200 randomly generated hyper-spherical zero-centered Gaussian distribu-
tions was generated and 1000 points were randomly drawn from each distribution as sample data.
We have run tests for several different neighborhood sizes and we give the results for k = 5 and
k = 10 here for comparison.

Figure 3 shows how the number of distinct neighbors that points co-occur with changes
with increasing dimensionality. For d = 2, the distribution of the number of distinct co-occurring
neighbors has a single mode. However, surprisingly, when the number of dimensions is increased,
multiple modes appear and are centered approximately around the multiples of (k − 1). We
believe that this is a direct consequence of hubness, as there are many points in intrinsically
high-dimensional data that occur in k-neighbor sets very rarely. When these points do occur as
neighbors, it is possible that most of their (k − 1) co-neighbors co-occur with the anti-hub point
for the first time, hence the observed distribution modes.

The emergence of hubs (and anti-hubs) also influences the distribution of the co-occurrence
frequency of pairs of neighbor points, as shown in Figure 4. The number of very rarely co-
occurring pairs increases significantly with increasing dimensionality, due to a large number of
rarely occurring neighbor points. On the other hand, the distribution tail also becomes thicker,
as the number of pairs of points that co-occur very frequently increases with increasing dimen-
sionality. These very frequently co-occurring pairs emerge as a consequence of what we will
denote as hub linkage, pairs of hub points that co-occur together in many k-neighbor sets. The
linked hub pairs enable the proposed ANHBNN classifier to infer more reliable class-conditional
co-occurrence estimates, which is an essential part of the model.

The overall number of distinct co-occurring pairs of neighbor points increases with increasing
dimensionality, as shown in Figure 5. From the perspective of co-occurrence modeling, this is a
good thing. It is therefore expected that there would be more pairs of neighbor points for which
we would be able to derive some estimates of co-occurrence dependencies in intrinsically high-
dimensional data.



(a) k=5 (b) k=10

Fig. 3. The influence of increasing dimensionality on the distribution of number of different
neighbors that points co-occur with. The distribution shape changes from a single modal to a
multi-modal shape that has modes around multiples of (k − 1).

(a) Rarely co-occurring pairs (b) Frequently co-occurring pairs

Fig. 4. The influence of increasing dimensionality on the distribution of co-occurrence frequency
of pairs of neighbor points. The high-dimensional case shows two extremes: more very rarely
co-occurring pairs and also more very frequently co-occurring pairs in the distribution tail. The
results are given for k = 10.

(a) k = 5 (b) k = 10

Fig. 5. Increasing the intrinsic dimensionality of the data increases the number of distinct co-
occurring neighbor pairs.

5 Experimental Evaluation
In order to evaluate whether the proposed approach offers any benefits, we have compared it
with the other hubness-aware classifiers, namely NHBNN [23], hw-kNN [21], h-FNN [22] and



HIKNN [25], as well as with the baseline kNN. Comparisons were performed on a series of
intrinsically high-dimensional datasets that have been shown to exhibit very high hubness.

5.1 Data

In experimental evaluation, we have focused on the task of object recognition from images. Image
data is high-dimensional and known to exhibit significant hubness [19]. The basic properties of
the datasets are outlined in Table 1. Some of the data is imbalanced and the class imbalance is
measured by the relative imbalance factor RImb =

√
(
∑

c∈C (p(c)− 1/C)2)/((C − 1)/C),
which is merely the normalized standard deviation of the class probabilities from the absolutely
homogenous mean value of 1/c.

Datasets iNet3-iNet7 and iNet3Imb-iNet7Imb represent different subsets of the public Ima-
geNet repository (http://www.image-net.org/). These particular subsets have previously been used
in several hubness-aware classification benchmarks [22][19][24][20], so they have been selected
here for easier comparisons. Images were processed as quantized SIFT [34] bag-of-visual-words
representations, extended by binned color histogram information, normalized to the [0, 1] range.
This sort of feature representation is known to be quite prone to hubness [19].

Datasets WiM1-WiM5 represent five non-trivial imbalanced binary classification problems
defined on top of the WIKImage data [35], a set of publicly available images crawled from
Wikipedia (http://www.wikipedia.org/). These images are available along with the associated text
and their labels. We present the results on the textual data obtained from the labels, represented
in a standard bag-of-words format, weighted by TF-IDF. The five selected datasets correspond
to the presence/absence of following types of objects in the images: buildings and constructions,
documents and maps, logos and flags, nature and scenic, sports.

Table 1. The summary of high-hubness datasets. Each dataset is described both by a set of basic
properties (size, number of features, number of classes) and some hubness-related quantities for
two different neighborhood sizes, namely: the skewness of the k-occurrence distribution (SNk ),
the percentage of bad k-occurrences (BNk), the degree of the largest hub-point (maxNk). Also,
the relative imbalance of the label distribution is given [20], as well as the size of the majority
class (expressed as a percentage of the total)

Data set size d C SN15
BN15 maxN15 RImb p(cM )

iNet3 2731 416 3 9.27 29.7% 901 0.40 50.2%
iNet4 6054 416 4 8.99 48.9% 968 0.14 35.1%
iNet5 6555 416 5 12.10 57.2% 1888 0.20 32.4%
iNet6 6010 416 6 14.26 44.4% 1901 0.26 30.9%
iNet7 10544 416 7 12.29 59.2% 1741 0.09 19.2%

iNet3Imb 1681 416 3 2.22 18.8% 136 0.72 81.5%
iNet4Imb 3927 416 4 5.44 40.5% 374 0.39 54.1%
iNet5Imb 3619 416 5 7.35 44.4% 513 0.48 58.7%
iNet6Imb 3442 416 6 3.93 44.2% 268 0.46 54.0%
iNet7Imb 2671 416 7 4.35 45.6% 301 0.46 52.1%

WiM1 1007 3182 2 12.31 36.9% 997 0.26 62.8%
WiM2 1007 3182 2 12.31 7.0% 997 0.84 92.1%
WiM3 1007 3182 2 12.31 37.3% 997 0.91 95.7%
WiM4 1007 3182 2 12.31 22.4% 997 0.60 79.9%
WiM5 1007 3182 2 12.31 4% 997 0.93 96.9%

AVG 3484.6 1338 4 9.45 36.03% 931.73 0.48 59.70%



The quantities shown in Table 1 illustrate the consequences of high dimensionality and the
hubness phenomenon. Neighbor k-occurrence distribution skewness is considerable, as anything
above SNk = 1 is usually considered high-hubness data [18]. The most frequently occurring hub
points dominate and appear in unexpectedly many k-neighbor sets. For instance, the major hub
on iNet3 data appears in about 30% of all neighbor sets for k = 15, while the major hub in WiM1
appears in nearly all neighbor sets, 997 out of 1007 for k = 15. The situation is somewhat more
bearable for smaller neighborhood sizes in a sense that the major hubs cover fewer neighbor sets,
but the overall occurrence skewness is usually higher.

Removal of such frequently occurring hub-points is possible, but their positions in the k-
neighbor sets are taken by other points and this often leads to emergence of new hubs and they
exhibit their own detrimental influence on data analysis. Reducing the hubness of the data is,
in general, a difficult task, though certain feature types, metrics and normalization methods are
known to be somewhat less prone to the dimensionality curse [19]. As there is no guarantee that
the preprocessing would significantly reduce the overall hubness of the data, robust hubness-
aware learning methods are to be preferred.

5.2 Classification Experiments

All experiments and classifier comparisons were run as 10-times 10-fold cross-validation. Cor-
rected re-sampled t-test was used to determine statistical significance. The L1 Manhattan dis-
tance was used to measure the dissimilarity between quantized image pairs and cosine similarity
to determine the distance between textual feature vectors.

All algorithms were run with standard parameter configurations, as given in the respective
papers. As some datasets exhibit class imbalance, the macro-averaged F1 score, denoted by FM

1 ,
was used to measure classifier performance [7]. The summary of results for neighborhood size
k = 15 is given in Table 2. In principle, ANHBNN requires slightly larger neighborhood sizes,
as it provides it with more co-occurrence information. Trivially, for k = 1, there would be no
co-occurrences at all. The algorithm also performs rather poorly for k = 2 or k = 3, which is
understandable. However, as the results show, it achieves very good results for larger k values.

This is not the case with NHBNN, as it was already noticed that its performance drops sig-
nificantly with increasing neighborhood size, as the independence assumption between different
neighbor occurrences becomes more severely violated. As this is what ANHBNN aims at im-
proving, the neighborhood size of k = 15 was used in most experiment runs. A more detailed
comparison of algorithm performance under varying neighborhood size is shown in Figure 6,
demonstrating that the performance of the proposed approach is not very sensitive to the choice
of k, once it exceeds some lower threshold value. Its performance remains stable when k is in-
creased, suggesting that it succeeds in modeling the hub co-occurrence dependencies.

The results in Table 2 suggest that the proposed ANHBNN does indeed outperform NHBNN
in the evaluated context. Furthermore, it achieves the best overall FM

1 score on the examined data.
Table 3 provides a summary of pairwise classifier comparisons by showing the number of wins
and statistically significant wins in each individual comparison. The proposed approach achieves
the highest number of wins against any given baseline, as well as the highest total number of wins
(67) and statistically significant wins (63).

Even though these results seem quite encouraging, some caution is still required when com-
paring different approaches. Namely, both NHBNN and ANHBNN assume high underlying hub-
ness of the data and are not well suited for applications on datasets that exhibit low hubness or
no hubness at all. In that sense, they are not general-purpose classification algorithms. Instead,
they are tailored specifically for classifying intrinsically high-dimensional data. This is not the
case with h-FNN, hw-kNN or HIKNN. Even though these remaining three methods are hubness-
aware, they perform rather well even when the data exhibits only low to moderate k-occurrence



Table 2. An overview of algorithm performance for k = 15. The macro-averaged F-score FM
1

percentage is given for Augmented Naive hubness-Bayesian kNN (ANHBNN), Naive hubness-
Bayesian kNN (NHBNN), kNN, hubness-weighted kNN (hw-kNN), hubness-based fuzzy near-
est neighbor (h-FNN) and hubness information k-nearest neighbor (HIKNN). The symbols •/◦
denote statistically significant worse/better performance (p < 0.05) compared to ANHBNN. The
best result in each line is in bold.

Data set ANHBNN NHBNN kNN hw-kNN h-FNN HIKNN
iNet3 81.1 ± 1.1 77.3 ± 1.6 • 74.7 ± 1.7 • 78.3 ± 2.4 • 78.4 ± 1.7 • 80.3 ± 1.3 •
iNet4 65.9 ± 1.3 63.3 ± 1.4 • 62.4 ± 1.5 • 65.5 ± 1.7 63.4 ± 1.5 • 66.9 ± 1.4 ◦
iNet5 62.8 ± 1.2 59.8 ± 1.3 • 47.5 ± 1.3 • 56.1 ± 2.5 • 53.7 ± 1.6 • 59.3 ± 1.3 •
iNet6 56.1 ± 1.3 57.0 ± 1.4 ◦ 56.2 ± 1.2 56.4 ± 1.3 51.3 ± 1.5 • 56.2 ± 1.2
iNet7 59.9 ± 1.3 56.3 ± 0.9 • 45.3 ± 1.0 • 55.5 ± 2.8 • 56.9 ± 1.0 • 59.1 ± 0.8 •
iNet3Imb 71.9 ± 1.4 67.6 ± 2.1 • 65.9 ± 2.0 • 65.3 ± 1.4 • 55.0 ± 1.6 • 64.7 ± 1.3 •
iNet4Imb 67.1 ± 1.6 60.1 ± 1.5 • 56.7 ± 1.4 • 57.9 ± 1.6 • 45.2 ± 1.5 • 54.6 ± 1.5 •
iNet5Imb 56.8 ± 1.6 52.7 ± 1.8 • 35.3 ± 1.9 • 43.2 ± 1.9 • 31.1 ± 1.6 • 38.1 ± 1.6 •
iNet6Imb 52.8 ± 1.3 52.4 ± 1.5 49.2 ± 1.6 • 52.7 ± 1.6 50.5 ± 1.7 • 54.1 ± 1.4 ◦
iNet7Imb 47.8 ± 1.3 46.1 ± 1.2 • 33.3 ± 1.9 • 44.0 ± 2.1 • 35.7 ± 2.1 • 42.4 ± 2.2 •
WiM1 69.1 ± 2.8 64.4 ± 2.7 • 66.4 ± 2.2 • 53.9 ± 3.5 • 46.0 ± 3.1 • 54.3 ± 2.8 •
WiM2 75.2 ± 1.2 75.7 ± 1.1 58.1 ± 1.3 • 72.7 ± 1.2 • 69.1 ± 1.1 • 68.5 ± 1.2 •
WiM3 72.1 ± 1.4 72.0 ± 1.5 59.5 ± 1.3 • 67.6 ± 1.7 • 69.9 ± 1.3 • 72.1 ± 1.4
WiM4 71.8 ± 3.0 70.0 ± 2.8 • 69.8 ± 2.7 • 62.7 ± 2.9 • 54.1 ± 3.1 • 56.8 ± 2.6 •
WiM5 54.2 ± 2.9 49.9 ± 2.7 • 49.2 ± 2.7 • 49.2 ± 2.7 • 49.2 ± 2.7 • 49.2 ± 2.7 •
AVG 64.30 61.64 55.30 58.73 53.96 58.26

Table 3. Pairwise comparison of classifiers on the examined data: number of wins (with the
statistically significant ones in parenthesis)

ANHBNN NHBNN kNN hw-kNN h-FNN HIKNN Total Wins

ANHBNN – 13 (11) 14 (14) 14 (12) 15 (15) 11 (11) 67 (63)
NHBNN 2 (1) – 14 (10) 12 (9) 12 (11) 10 (7) 50 (38)
kNN 1 (0) 1 (1) – 3 (2) 6 (6) 4 (4) 15 (13)
hw-kNN 1 (0) 3 (1) 11 (9) – 11 (11) 8 (5) 34 (26)
h-FNN 0 (0) 3 (1) 8 (7) 3 (2) – 1 (0) 15 (10)
HIKNN 3 (2) 5 (4) 9 (9) 6 (5) 13 (11) – 36 (31)

distribution skewness [25]. In our initial experiments, we have determined that HIKNN is to be
preferred in such cases, as for example on UCI datasets (http://archive.ics.uci.edu/ml/datasets.html).

In order to examine the nature of the observed differences in performance on the test data, we
have analyzed the precision that the algorithms achieve on certain types of points. Not all points
are equally hard to classify by k-nearest neighbor methods and a point characterization scheme
based on the proportion of label mismatches in k-neighbor sets was recently proposed [36].
Four different point types were observed: safe points, borderline points, rare points and out-
liers, the latter being much more difficult to handle. A comparison between kNN, NHBNN and
ANHBNN on two different datasets is shown in Figure 7. The proposed approach clearly out-
performs NHBNN in terms of rare point and outlier classification precision and also achieves a
slightly higher precision when classifying borderline points. In other words, ANHBNN achieves
its improvements by being able to better handle very difficult points that lie far away from class
interiors. This is a highly desired property.



(a) iNet3 (b) iNet3Imb

Fig. 6. The influence of increasing the neighborhood size k. Neighbor occurrence dependencies
induce a drop in NHBNN performance, while the ANHBNN performance slowly increases with
additional neighbor occurrence and co-occurrence information.

(a) iNet3 (b) iNet3Imb

Fig. 7. Precision achieved by the classification algorithms on specific types of points: safe points,
borderline points, rare points and outliers.

6 Conclusions and Future Work

Hubness is an important aspect of the dimensionality curse that affects most k-nearest neighbor
methods in severely negative ways, as hub points tend to dominate the k-neighbor sets and induce
many label mismatches. Hubness-aware classification methods are required in order to properly
deal with the emerging hubs.

We have proposed an extension of one such hubness-aware kNN classifier and have named it
the Augmented Naive Hubness-Bayesian k-nearest neighbor (ANHBNN). The previous approach
(NHBNN) failed to take the neighbor co-occurrences into account, which led to poor perfor-
mance for larger neighborhood sizes. Our proposed approach (ANHBNN) overcomes this issue
by adapting the Hidden Naive Bayes model to the problem of modeling neighbor k-occurrences.
We have also proposed a novel set of hubness-aware weights for combining the one-dimensional
estimators in the model.

We have performed an analysis of the high-dimensional neighbor co-occurrence distributions
for Gaussian mixture data. The analysis has revealed several surprising facts. The distribution of
the number of distinct co-occurring neighbor points becomes multi-modal with modes located
approximately around the multiples of (k − 1). Additionally, there seems to be a phenomenon
of hub linkage, as the tail of the co-occurrence frequency distribution becomes thicker with in-



creasing dimensionality, indicating that some pairs of hub points co-occur frequently. The overall
number of distinct co-occurring pairs also increases, which allows us to estimate more pairwise
dependencies in high-dimensional data.

Our evaluation in the context of object recognition from images shows that the proposed
approach clearly outperforms the compared baselines and offers additional benefits in achieving
higher precision when classifying points that lie far from class interiors and are otherwise diffi-
cult to handle. Unlike NHBNN, the performance of the proposed ANHBNN classifier does not
decrease when the neighborhood size k is increased, which was the main issue with the previous
approach.

As many of the co-occurrence dependencies are somewhat difficult to estimate directly from
the occurrence data, in our future work we intend to explore the possibilities for using the Pois-
son processes for neighbor occurrence modeling, in order to try and achieve a more robust k-
occurrence model.
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15. Radovanović, M., Nanopoulos, A., Ivanović, M.: Hubs in space: Popular nearest neighbors
in high-dimensional data. Journal of Machine Learning Research 11 (2010) 2487–2531

16. Aucouturier, J., Pachet, F.: Improving timbre similarity: How high is the sky? Journal of
Negative Results in Speech and Audio Sciences 1 (2004)

17. Gasser M., Flexer A., S.D.: Hubs and orphans - an explorative approach. In: Proceedings of
the 7th Sound and Music Computing Conference. SMC’10 (2010)
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