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Abstract. In security-sensitive applications, the success of machine learn-
ing depends on a thorough vetting of their resistance to adversarial data.
In one pertinent, well-motivated attack scenario, an adversary may at-
tempt to evade a deployed system at test time by carefully manipulating
attack samples. In this work, we present a simple but effective gradient-
based approach that can be exploited to systematically assess the security
of several, widely-used classification algorithms against evasion attacks.
Following a recently proposed framework for security evaluation, we sim-
ulate attack scenarios that exhibit different risk levels for the classifier
by increasing the attacker’s knowledge of the system and her ability to
manipulate attack samples. This gives the classifier designer a better pic-
ture of the classifier performance under evasion attacks, and allows him
to perform a more informed model selection (or parameter setting). We
evaluate our approach on the relevant security task of malware detection
in PDF files, and show that such systems can be easily evaded. We also
sketch some countermeasures suggested by our analysis.

Keywords: adversarial machine learning, evasion attacks, support vec-
tor machines, neural networks

1 Introduction

Machine learning is being increasingly used in security-sensitive applications
such as spam filtering, malware detection, and network intrusion detection [3, 5,
9, 11, 14–16, 19, 21]. Due to their intrinsic adversarial nature, these applications
differ from the classical machine learning setting in which the underlying data
distribution is assumed to be stationary. To the contrary, in security-sensitive



applications, samples (and, thus, their distribution) can be actively manipulated
by an intelligent, adaptive adversary to confound learning; e.g., to avoid detec-
tion, spam emails are often modified by obfuscating common spam words or
inserting words associated with legitimate emails [3, 9, 16, 19]. This has led to
an arms race between the designers of learning systems and their adversaries,
which is evidenced by the increasing complexity of modern attacks and coun-
termeasures. For these reasons, classical performance evaluation techniques are
not suitable to reliably assess the security of learning algorithms, i.e., the per-
formance degradation caused by carefully crafted attacks [5].

To better understand the security properties of machine learning systems
in adversarial settings, paradigms from security engineering and cryptography
have been adapted to the machine learning field [2, 5, 14]. Following common
security protocols, the learning system designer should use proactive protection
mechanisms that anticipate and prevent the adversarial impact. This requires
(i) finding potential vulnerabilities of learning before they are exploited by the
adversary; (ii) investigating the impact of the corresponding attacks (i.e., eval-
uating classifier security); and (iii) devising appropriate countermeasures if an
attack is found to significantly degrade the classifier’s performance.

Two approaches have previously addressed security issues in learning. The
min-max approach assumes the learner and attacker’s loss functions are antago-
nistic, which yields relatively simple optimization problems [10, 12]. A more gen-
eral game-theoretic approach applies for non-antagonistic losses; e.g., a spam fil-
ter wants to accurately identify legitimate email while a spammer seeks to boost
his spam’s appeal. Under certain conditions, such problems can be solved using a
Nash equilibrium approach [7, 8]. Both approaches provide a secure counterpart
to their respective learning problems; i.e., an optimal anticipatory classifier.

Realistic constraints, however, are too complex and multi-faceted to be incor-
porated into existing game-theoretic approaches. Instead, we investigate the vul-
nerabilities of classification algorithms by deriving evasion attacks in which the
adversary aims to avoid detection by manipulating malicious test samples.4 We
systematically assess classifier security in attack scenarios that exhibit increas-
ing risk levels, simulated by increasing the attacker’s knowledge of the system
and her ability to manipulate attack samples. Our analysis allows a classifier
designer to understand how the classification performance of each considered
model degrades under attack, and thus, to make more informed design choices.

The problem of evasion at test time was addressed in prior work, but lim-
ited to linear and convex-inducing classifiers [9, 19, 22]. In contrast, the methods
presented in Sections 2 and 3 can generally evade linear or non-linear classifiers
using a gradient-descent approach inspired by Golland’s discriminative direc-
tions technique [13]. Although we focus our analysis on widely-used classifiers
such as Support Vector Machines (SVMs) and neural networks, our approach is
applicable to any classifier with a differentiable discriminant function.

4 Note that other kinds of attacks are possible, e.g., if the adversary can manipulate
the training data. A comprehensive taxonomy of attacks can be found in [2, 14].



This paper is organized as follows. We present the evasion problem in Sec-
tion 2 and our gradient-descent approach in Section 3. In Section 4 we first
visually demonstrate our attack on the task of handwritten digit recognition,
and then show its effectiveness on a realistic application related to the detection
of PDF malware. Finally in Section 5, we summarize our contributions, discuss
possibilities for improving security, and suggest future extensions of this work.

2 Optimal Evasion at Test Time

We consider a classification algorithm f : X 7→ Y that assigns samples repre-
sented in some feature space x ∈ X to a label in the set of predefined classes
y ∈ Y = {−1,+1}, where −1 (+1) represents the legitimate (malicious) class.
The classifier f is trained on a dataset D = {xi, yi}ni=1 sampled from an under-
lying distribution p(X, Y ). The label yc = f(x) given by a classifier is typically
obtained by thresholding a continuous discriminant function g : X 7→ R. In the
sequel, we use yc to refer to the label assigned by the classifier as opposed to the
true label y. We further assume that f(x) = −1 if g(x) < 0, and +1 otherwise.

2.1 Adversary Model

To motivate the optimal attack strategy for evasion, it is necessary to disclose
one’s assumptions of the adversary’s knowledge and ability to manipulate the
data. To this end, we exploit a general model of the adversary that elucidates spe-
cific assumptions about adversary’s goal, knowledge of the system, and capability
to modify the underlying data distribution. The considered model is part of a
more general framework investigated in our recent work [5], which subsumes eva-
sion and other attack scenarios. This model can incorporate application-specific
constraints in the definition of the adversary’s capability, and can thus be ex-
ploited to derive practical guidelines for developing the optimal attack strategy.

Adversary’s goal. As suggested by Laskov and Kloft [17], the adversary’s goal
should be defined in terms of a utility (loss) function that the adversary seeks to
maximize (minimize). In the evasion setting, the attacker’s goal is to manipulate
a single (without loss of generality, positive) sample that should be misclassified.
Strictly speaking, it would suffice to find a sample x such that g(x) < −ε for
any ε > 0; i.e., the attack sample only just crosses the decision boundary.5

Such attacks, however, are easily thwarted by slightly adjusting the decision
threshold. A better strategy for an attacker would thus be to create a sample
that is misclassified with high confidence; i.e., a sample minimizing the value of
the classifier’s discriminant function, g(x), subject to some feasibility constraints.

Adversary’s knowledge. The adversary’s knowledge about her targeted learn-
ing system may vary significantly. Such knowledge may include:

– the training set or part of it;

5 This is also the setting adopted in previous work [9, 19, 22].



– the feature representation of each sample; i.e., how real objects such as
emails, network packets are mapped into the classifier’s feature space;

– the type of a learning algorithm and the form of its decision function;
– the (trained) classifier model; e.g., weights of a linear classifier;
– or feedback from the classifier; e.g., classifier labels for samples chosen by

the adversary.

Adversary’s capability. In the evasion scenario, the adversary’s capability is
limited to modifications of test data; i.e.altering the training data is not allowed.
However, under this restriction, variations in attacker’s power may include:

– modifications to the input data (limited or unlimited);
– modifications to the feature vectors (limited or unlimited);
– or independent modifications to specific features (the semantics of the input

data may dictate that certain features are interdependent).

Most of the previous work on evasion attacks assumes that the attacker
can arbitrarily change every feature [8, 10, 12], but they constrain the degree
of manipulation, e.g., limiting the number of modifications, or their total cost.
However, many real domains impose stricter restrictions. For example, in the
task of PDF malware detection [20, 24, 25], removal of content is not feasible,
and content addition may cause correlated changes in the feature vectors.

2.2 Attack Scenarios

In the sequel, we consider two attack scenarios characterized by different levels
of adversary’s knowledge of the attacked system discussed below.

Perfect knowledge (PK). In this setting, we assume that the adversary’s goal
is to minimize g(x), and that she has perfect knowledge of the targeted classifier;
i.e., the adversary knows the feature space, the type of the classifier, and the
trained model. The adversary can transform attack points in the test data but
must remain within a maximum distance of dmax from the original attack sample.
We use dmax as parameter in our evaluation to simulate increasingly pessimistic
attack scenarios by giving the adversary greater freedom to alter the data.

The choice of a suitable distance measure d : X × X 7→ R+ is application
specific [9, 19, 22]. Such a distance measure should reflect the adversary’s effort
required to manipulate samples or the cost of these manipulations. For example,
in spam filtering, the attacker may be bounded by a certain number of words
she can manipulate, so as not to lose the semantics of the spam message.

Limited knowledge (LK). Here, we again assume that the adversary aims to
minimize the discriminant function g(x) under the same constraint that each
transformed attack point must remain within a maximum distance of dmax from
the corresponding original attack sample. We further assume that the attacker
knows the feature representation and the type of the classifier, but does not know
either the learned classifier f or its training data D, and hence can not directly



compute g(x). However, we assume that she can collect a surrogate dataset
D′ = {x̂i, ŷi}

nq

i=1 of nq samples drawn from the same underlying distribution
p(X, Y ) from which D was drawn. This data may be collected by an adversary in
several ways; e.g., by sniffing some network traffic during the classifier operation,
or by collecting legitimate and spam emails from an alternate source.

Under this scenario, the adversary proceeds by approximating the discrimi-
nant function g(x) as ĝ(x), where ĝ(x) is the discriminant function of a surrogate

classifier f̂ learnt on D′. The amount of the surrogate data, nq, is an attack pa-

rameter in our experiments. Since the adversary wants her surrogate f̂ to closely
approximate the targeted classifier f , it stands to reason that she should learn
f̂ using the labels assigned by the targeted classifier f , when such feedback is
available. In this case, instead of using the true class labels ŷi to train f̂ , the
adversary can query f with the samples of D′ and subsequently learn using the
labels ŷci = f(x̂i) for each xi.

2.3 Attack Strategy

Under the above assumptions, for any target malicious sample x0 (the adver-
sary’s desired instance), an optimal attack strategy finds a sample x∗ to minimize
g(·) or its estimate ĝ(·), subject to a bound on its distance6 from x0:

x∗ = arg min
x

ĝ(x) (1)

s.t. d(x,x0) ≤ dmax.

Generally, this is a non-linear optimization problem. One may approach it
with many well-known techniques, like gradient descent, or quadratic techniques
such as Newton’s method, BFGS, or L-BFGS. We choose a gradient-descent
procedure. However, ĝ(x) may be non-convex and descent approaches may not
achieve a global optima. Instead, the descent path may lead to a flat region
(local minimum) outside of the samples’ support (i.e., where p(x) ≈ 0) where
the attack sample may or may not evade depending on the behavior of g in this
unsupported region (see left and middle plots in Figure 1).

Locally optimizing ĝ(x) with gradient descent is particularly susceptible to
failure due to the nature of a discriminant function. Besides its shape, for many
classifiers, g(x) is equivalent to a posterior estimate p(yc = −1|x); e.g., for neural
networks, and SVMs [23]. The discriminant function does not incorporate the
evidence we have about the data distribution, p(x), and thus, using gradient
descent to optimize Eq. 1 may lead into unsupported regions (p(x) ≈ 0). Because
of the insignificance of these regions, the value of g is relatively unconstrained
by criteria such as risk minimization. This problem is compounded by our finite
(and possibly small) training set, since it provides little evidence in these regions

6 One can also incorporate additional application-specific constraints on the attack
samples. For instance, the box constraint 0 ≤ xf ≤ 1 can be imposed if the f th

feature is normalized in [0, 1], or x0f ≤ xf can be used if the f th feature of the target
x0 can be only incremented.
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Fig. 1. Different scenarios for gradient-descent-based evasion procedures. In each, the
function g(x) of the learned classifier is plotted with a color map with high values
(red-orange-yellow) for the malicious class, and low values (green-cyan-blue) for the
legitimate class. The decision boundary is shown in black. For every malicious sample,
we plot the gradient descent path against a classifier with a closed boundary around
the malicious class (top-left) and against a classifier with a closed boundary around
the benign class (top-right). Finally, we plot the modified objective function of Eq. (2)
and the resulting descent paths against a classifier with a closed boundary around the
benign class (bottom).

to constrain the shape of g. Thus, when our gradient descent procedure produces
an evasion example in these regions, the attacker cannot be confident that this
sample will actually evade the corresponding classifier. Therefore, to increase the
probability of successful evasion, the attacker should favor attack points from
densely populated regions of legitimate points, where the estimate ĝ(x) is more
reliable (closer to the real g(x)), and tends to become negative in value.

To overcome this shortcoming, we introduce an additional component into
our attack objective, which estimates p(x|yc = −1) using a density estimator.
This term acts as a penalizer for x in low density regions and is weighted by a
parameter λ ≥ 0 yielding the following modified optimization problem:

arg min
x

F (x) = ĝ(x)− λ

n

∑
i|yci=−1

k
(
x−xi

h

)
(2)

s.t. d(x,x0) ≤ dmax , (3)

where h is a bandwidth parameter for a kernel density estimator (KDE), and
n is the number of benign samples (yc = −1) available to the adversary. This



Algorithm 1 Gradient-descent evasion attack

Input: x0, the initial attack point; t, the step size; λ, the trade-off parameter; ε > 0 a
small constant.
Output: x∗, the final attack point.

1: m← 0.
2: repeat
3: m← m+ 1
4: Set ∇F (xm−1) to a unit vector aligned with ∇g(xm−1)− λ∇p(xm−1|yc = −1).
5: xm ← xm−1 − t∇F (xm−1)
6: if d(xm,x0) > dmax then
7: Project xm onto the boundary of the feasible region.
8: end if
9: until F (xm)− F

(
xm−1

)
< ε

10: return: x∗ = xm

alternate objective trades off between minimizing ĝ(x) (or p(yc = −1|x)) and
maximizing the estimated density p(x|yc = −1). The extra component favors
attack points that imitate features of known legitimate samples. In doing so, it
reshapes the objective function and thereby biases the resulting gradient descent
towards regions where the negative class is concentrated (see the bottom plot
in Fig. 1). This produces a similar effect to that shown by mimicry attacks in
network intrusion detection [11].7 For this reason, although our setting is rather
different, in the sequel we refer to this extra term as the mimicry component.

Finally, we point out that, when mimicry is used (λ > 0), our gradient
descent clearly follows a suboptimal path compared to the case when only g(x)
is minimized (λ = 0). Therefore, more modifications may be required to reach the
same value of g(x) attained when λ = 0. However, as previously discussed, when
λ = 0, our descent approach may terminate at a local minimum where g(x) > 0,
without successfully evading detection. This behavior can thus be qualitatively
regarded as a trade-off between the probability of evading the targeted classifier
and the number of times that the adversary must modify her samples.

3 Gradient Descent Attacks

Algorithm 1 solves the optimization problem in Eq. 2 via gradient descent. We
assume g(x) to be differentiable almost everywhere (subgradients may be used
at discontinuities). However, note that if g is non-differentiable or insufficiently
smooth, one may still use the mimicry / KDE term of Eq. (2) as a search
heuristic. This investigation is left to future work.

7 Mimicry attacks [11] consist of camouflaging malicious network packets to evade
anomaly-based intrusion detection systems by mimicking the characteristics of the
legitimate traffic distribution.
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Fig. 2. The architecture of a multi-layer perceptron with a single hidden layer.

3.1 Gradients of Discriminant Functions

Linear classifiers. Linear discriminant functions are g(x) = 〈w,x〉 + b where
w ∈ Rd is the feature weights and b ∈ R is the bias. Its gradient is ∇g(x) = w.

Support vector machines. For SVMs, g(x) =
∑
i αiyik(x,xi) + b. The gradi-

ent is thus∇g(x) =
∑
i αiyi∇k(x,xi). In this case, the feasibility of our approach

depends on whether the kernel gradient ∇k(x,xi) is computable as it is for
many numeric kernels. For instance, the gradient of the RBF kernel, k(x,xi) =
exp{−γ‖x − xi‖2}, is ∇k(x,xi) = −2γ exp{−γ‖x − xi‖2}(x − xi), and for the
polynomial kernel, k(x,xi) = (〈x,xi〉+ c)p, it is ∇k(x,xi) = p(〈x,xi〉+ c)p−1xi.

Neural networks. For a multi-layer perceptron with a single hidden layer of
m neurons and a sigmoidal activation function, we decompose its discriminant
function g as follows (see Fig. 2): g(x) = (1+e−h(x))−1, h(x) =

∑m
k=1 wkδk(x)+b,

δk(x) = (1 + e−hk(x))−1, hk(x) =
∑d
j=1 vkjxj + bk. From the chain rule, the ith

component of ∇g(x) is thus given by:

∂g
∂xi

= ∂g
∂h

∑m
k=1

∂h
∂δk

∂δk
∂hk

∂hk

∂xi
= g(x)(1− g(x))

∑m
k=1 wkδk(x)(1− δk(x))vki .

3.2 Gradients of Kernel Density Estimators

Similarly to SVMs, the gradient of kernel density estimators depends on the
kernel gradient. We consider generalized RBF kernels of the form k

(
x−xi

h

)
=

exp
(
−d(x,xi)

h

)
, where d(·, ·) is any suitable distance function. Here we use the

same distance d(·, ·) defined in Eq. (3), but, in general, they can be different. For
`2- and `1-norms (i.e., RBF and Laplacian kernels), the KDE (sub)gradients are
respectively given by:

− 2
nh

∑
i|yci=−1

exp
(
−‖x−xi‖22

h

)
(x− xi) ,

− 1
nh

∑
i|yci=−1

exp
(
−‖x−xi‖1

h

)
(x− xi) .



Note that the scaling factor here is proportional to O( 1
nh ). Therefore, to

influence gradient descent with a significant mimicking effect, the value of λ in
the objective function should be chosen such that the value of λ

nh is comparable
with (or higher than) the range of values of the discriminant function ĝ(x).

3.3 Descent in Discrete Spaces

In discrete spaces, gradient approaches travel through infeasible portions of the
feature space. In such cases, we need to find a feasible neighbor x that maximally
decrease F (x). A simple approach to this problem is to probe F at every point
in a small neighborhood of x, which would however require a large number of
queries. For classifiers with a differentiable decision function, we can instead
select the neighbor whose change best aligns with ∇F (x) and decreases the
objective function; i.e., to prevent overshooting a minimum.

4 Experiments

In this section, we first report a toy example from the MNIST handwritten
digit classification task [18] to visually demonstrate how the proposed algorithm
modifies digits to mislead classification. We then show the effectiveness of the
proposed attack on a more realistic and practical scenario: the detection of mal-
ware in PDF files.

4.1 A Toy Example on Handwritten Digits

Similar to Globerson and Roweis [12], we consider discriminating between two
distinct digits from the MNIST dataset [18]. Each digit example is represented
as a gray-scale image of 28 × 28 pixels arranged in raster-scan-order to give
feature vectors of d = 28× 28 = 784 values. We normalized each feature (pixel)
x ∈ [0, 1]d by dividing its value by 255, and we constrained the attack samples
to this range. Accordingly, we optimized Eq. (2) subject to 0 ≤ xf ≤ 1 for all f .

We only consider the perfect knowledge (PK) attack scenario. We used the
Manhattan distance (`1-norm), d, both for the kernel density estimator (i.e.,
a Laplacian kernel) and for the constraint d(x,x0) ≤ dmax in Eq. (3), which
bounds the total difference between the gray level values of the original image
x0 and the attack image x. We used dmax = 5000

255 to limit the total gray-level
change to 5000. At each iteration, we increased the `1-norm value of x− x0 by
10
255 , or equivalently, we changed the total gray level by 10. This is effectively
the gradient step size. The targeted classifier was an SVM with the linear kernel
and C = 1. We randomly chose 100 training samples and applied the attacks to
a correctly-classified positive sample.

In Fig. 3 we illustrate gradient attacks in which a “3” is to be misclassified
as a “7”. The left image shows the initial attack point, the middle image shows
the first attack image misclassified as legitimate, and the right image shows the
attack point after 500 iterations. When λ = 0, the attack images exhibit only
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Fig. 3. Illustration of the gradient attack on the digit data, for λ = 0 (top row) and
λ = 10 (bottom row). Without a mimicry component (λ = 0) gradient descent quickly
decreases g but the resulting attack image does not resemble a “7”. In contrast, the
attack minimizes g slower when mimicry is applied (λ = 0) but the final attack image
closely resembles a mixture between “3” and “7”, as the term “mimicry” suggests.

a weak resemblance to the target class “7” but are, nevertheless, reliably mis-
classified. This is the same effect demonstrated in the top-left plot of Fig. 1: the
classifier is evaded by making the attack sample sufficiently dissimilar from the
malicious class. Conversely, when λ = 10, the attack images strongly resemble
the target class because the mimicry term favors samples that are more similar
to the target class. This is the same effect seen in the bottom plot of Fig. 1.

Finally note that, as expected, g(x) tends to decrease more gracefully when
mimicry is used, as we follow a suboptimal descent path. Since the targeted
classifier can be easily evaded when λ = 0, exploiting the mimicry component
would not be the optimal choice in this case. However, in the case of limited
knowledge, as discussed at the end of Section 2.3, mimicry may allow us to
trade for a higher probability of evading the targeted classifier, at the expense
of a higher number of modifications.

4.2 Malware Detection in PDF Files

We now focus on the task of discriminating between legitimate and malicious
PDF files, a popular medium for disseminating malware [26]. PDF files are excel-
lent vectors for malicious-code, due to their flexible logical structure, which can
described by a hierarchy of interconnected objects. As a result, an attack can be
easily hidden in a PDF to circumvent file-type filtering. The PDF format fur-
ther allows a wide variety of resources to be embedded in the document including
JavaScript, Flash, and even binary programs. The type of the embedded ob-
ject is specified by keywords, and its content is in a data stream. Several recent



works proposed machine-learning techniques for detecting malicious PDFs using
the file’s logical structure to accurately identify the malware [20, 24, 25]. In this
case study, we use the feature representation of Maiorca et al. [20] in which each
feature corresponds to the tally of occurrences of a given keyword.

The PDF structure imposes natural constraints on attacks. Although it is
difficult to remove an embedded object (and its keywords) from a PDF without
corrupting the PDF’s file structure, it is rather easy to insert new objects (and,
thus, keywords) through the addition of a new version to the PDF file [1]. In our
feature representation, this is equivalent to allowing only feature increments, i.e.,
requiring x0 ≤ x as an additional constraint in the optimization problem given
by Eq. (2). Further, the total difference in keyword counts between two samples
is their Manhattan distance, which we again use for the kernel density estimator
and the constraint in Eq. (3). Accordingly, dmax is the maximum number of
additional keywords that an attacker can add to the original x0.

Experimental setup. For experiments, we used a PDF corpus with 500 mali-
cious samples from the Contagio dataset8 and 500 benign samples collected from
the web. We randomly split the data into five pairs of training and testing sets
with 500 samples each to average the final results. The features (keywords) were
extracted from each training set as described in [20]. On average, 100 keywords
were found in each run. Further, we also bounded the maximum value of each
feature to 100, as this value was found to be close to the 95th percentile for each
feature. This limited the influence of outlying samples.

We simulated the perfect knowledge (PK) and the limited knowledge (LK)
scenarios described in Section 2.1. In the LK case, we set the number of samples
used to learn the surrogate classifier to ng = 100. The reason is to demonstrate
that even with a dataset as small as the 20% of the original training set size,
the adversary may be able to evade the targeted classifier with high reliability.
Further, we assumed that the adversary uses feedback from the targeted classifier
f ; i.e., the labels ŷci = f(x̂i) for each surrogate sample x̂i ∈ D′.9

As discussed in Section 3.2, the value of λ is chosen according to the scale of
the discriminant function g(x), the bandwidth parameter h of the kernel density
estimator, and the number of legitimate samples n in the surrogate training
set. For computational reasons, to estimate the value of the KDE at x, we only
consider the 50 nearest (legitimate) training samples to x; therefore, n ≤ 50 in
our case. The bandwidth parameter was set to h = 10, as this value provided
a proper rescaling of the Manhattan distances observed in our dataset for the
KDE. We thus set λ = 500 to be comparable with O(nh).

For each targeted classifier and training/testing pair, we learned five sur-
rogate classifiers by randomly selecting ng samples from the test set, and we
averaged their results. For SVMs, we sought a surrogate classifier that would
correctly match the labels from the targeted classifier; thus, we used parameters
C = 100, and γ = 0.1 (for the RBF kernel) to heavily penalize training errors.

8 http://contagiodump.blogspot.it
9 Similar results were also obtained using the true labels (without relabeling), since

the targeted classifiers correctly classified almost all samples in the test set.
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Fig. 4. Experimental results for SVMs with linear and RBF kernel (first and sec-
ond row), and for neural networks (third row). We report the FN values (attained at
FP=0.5%) for increasing dmax. For the sake of readability, we report the average FN
value ± half standard deviation (shown with error bars). Results for perfect (PK) and
limited (LK) knowledge attacks with λ = 0 (without mimicry) are shown in the first
column, while results with λ = 500 (with mimicry) are shown in the second column.
In each plot we considered different values of the classifier parameters, i.e., the regu-
larization parameter C for the linear SVM, the kernel parameter γ for the SVM with
RBF kernel, and the number of neurons m in the hidden layer for the neural network,
as reported in the plot title and legend.



Experimental results. We report our results in Figure 4, in terms of the
false negative (FN) rate attained by the targeted classifiers as a function of the
maximum allowable number of modifications, dmax ∈ [0, 50]. We compute the
FN rate corresponding to a fixed false positive (FP) rate of FP= 0.5%. For
dmax = 0, the FN rate corresponds to a standard performance evaluation using
unmodified PDFs. As expected, the FN rate increases with dmax as the PDF is
increasingly modified. Accordingly, a more secure classifier will exhibit a more
graceful increase of the FN rate.

Results for λ = 0. We first investigate the effect of the proposed attack in the
PK case, without considering the mimicry component (Figure 4, first column),
for varying parameters of the considered classifiers. The linear SVM (Figure 4,
top-left plot) is almost always evaded with as few as 5 to 10 modifications, in-
dependent of the regularization parameter C. It is worth noting that attacking
a linear classifier amounts to always incrementing the value of the same highest-
weighted feature (corresponding to the /Linearized keyword in the majority of
the cases) until it reaches its upper bound. This continues with the next highest
weighted non-bounded feature until termination. This occurs simply because the
gradient of g(x) does not depend on x for a linear classifier (see Section 3.1).
With the RBF kernel (Figure 4, middle-left plot), SVMs exhibit a similar be-
havior with C = 1 and various values of its γ parameter,10 and the RBF SVM
provides a higher degree of security compared to linear SVMs (cf. top-left plot
and middle-left plot in Figure 4). Interestingly, compared to SVMs, neural net-
works (Figure 4, bottom-left plot) seem to be much more robust against the
proposed evasion attack. This behavior can be explained by observing that the
decision function of neural networks may be characterized by flat regions (i.e.,
regions where the gradient of g(x) is close to zero). Hence, the gradient descent
algorithm based solely on g(x) essentially stops after few attack iterations for
most of the malicious samples, without being able to find a suitable attack.

In the LK case, without mimicry, classifiers are evaded with a probability
only slightly lower than that found in the PK case, even when only ng = 100
surrogate samples are used to learn the surrogate classifier. This aspect highlights
the threat posed by a skilled adversary with incomplete knowledge: only a small
set of samples may be required to successfully attack the target classifier using
the proposed algorithm.

Results for λ = 500. When mimicry is used (Figure 4, second column), the
success of the evasion of linear SVMs (with C = 1) decreases both in the PK
(e.g., compare the blue curve in the top-left plot with the solid blue curve in the
top-right plot) and LK case (e.g., compare the dashed red curve in the top-left
plot with the dashed blue curve in the top-right plot). The reason is that the
computed direction tends to lead to a slower descent; i.e., a less direct path that
often requires more modifications to evade the classifier. In the non-linear case
(Figure 4, middle-right and bottom-right plot), instead, mimicking exhibits some
beneficial aspects for the attacker, although the constraint on feature addition

10 We also conducted experiments using C = 0.1 and C = 100, but did not find
significant differences compared to the presented results using C = 1.



may make it difficult to properly mimic legitimate samples. In particular, note
how the targeted SVMs with RBF kernel (with C = 1 and γ = 1) in the PK case
(e.g., compare the solid blue curve in the middle-left plot with the solid blue curve
in the middle-right plot) is evaded with a significantly higher probability than
in the case of λ = 0. The reason is that, as explained at the end of Section 2.3, a
pure descent strategy on g(x) may find local minima (i.e., attack samples) that
do not evade detection, while the mimicry component biases the descent towards
regions of the feature space more densely populated by legitimate samples, where
g(x) eventually attains lower values. For neural networks, this aspect is even more
evident, in both the PK and LK settings (compare the dashed/solid curves in
the bottom-left plot with those in the bottom-right plot), since g(x) is essentially
flat far from the decision boundary, and thus pure gradient descent on g can not
even commence for many malicious samples, as previously mentioned. In this
case, the mimicry term is thus critical for finding a reasonable descent path to
evasion.

Discussion. Our attacks raise questions about the feasibility of detecting ma-
licious PDFs solely based on logical structure. We found that /Linearized,
/OpenAction, /Comment, /Root and /PageLayout were among the most com-
monly manipulated keywords. They indeed are found mainly in legitimate PDFs,
but can be easily added to malicious PDFs by the versioning mechanism. The
attacker can simply insert comments inside the malicious PDF file to augment
its /Comment count. Similarly, she can embed legitimate OpenAction code to add
/OpenAction keywords or add new pages to insert /PageLayout keywords.

5 Conclusions, Limitations and Future Work

In this work we proposed a simple algorithm for evasion of classifiers with dif-
ferentiable discriminant functions. We investigated the attack effectiveness in
the case of perfect and limited knowledge of the attacked system, and empir-
ically showed that very popular classification algorithms (in particular, SVMs
and neural networks) can still be evaded with high probability even if the adver-
sary can only learn a copy of the classifier from a small surrogate dataset. Thus,
our investigation raises important questions on whether such algorithms can be
reliably employed in security-sensitive applications.

We believe that the proposed attack formulation can be extended to classifiers
with non-differentiable discriminant functions as well, such as decision trees and
k-nearest neighbors; e.g., by defining suitable search heuristics similar to our
mimicry term to minimize g(x).

Interestingly our analysis also suggests improvements for classifier security.
From Fig. 1, it is clear that a tighter enclosure of the legitimate samples increas-
ingly forces the adversary to mimic the legitimate class, which may not always
be possible; e.g., malicious network packets or PDF files must contain a valid
exploit for the attack to be successful. Accordingly, more secure classifiers can be
designed by employing regularization terms that promote enclosure of the legit-
imate class; e.g., by penalizing “blind spots” - regions with low p(x) - classified



as legitimate. Alternatively, one may explicitly model the attack distribution,
as in [4]; or add the generated attack samples to the training set. Nevertheless,
improving security probably must be balanced with a higher FP rate.

In our example applications, the feature representations could be inverted to
obtain a corresponding real-world objects (e.g., spam emails, or PDF files); i.e., it
is straightforward to manipulate the given real-world object to obtain the desired
feature vector x∗ of the optimal attack. However, in practice some complex
feature mappings can not be easily inverted; e.g., n-gram features [11]. Another
idea would be to modify the real-world object at each step of the gradient descent
to obtain a sample in the feature space which is as close as possible to the sample
that would be obtained at the next attack iteration. A similar technique has been
already exploited by [6] to overcome the pre-image problem.

Other interesting extensions of our work may be to (i) consider more effective
strategies such as those proposed by [19, 22] to build a small but representative
set of surrogate data; and (ii) improve the classifier estimate ĝ(x). To this end,
one may exploit ensemble techniques such as bagging or the random subspace
method to train several classifiers and then average their output.
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