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Abstract. The task of matrix completion involves estimating the entries of a
matrix, M ∈ Rm×n, when a subset, Ω ⊂ {(i, j) : 1 ≤ i ≤ m, 1 ≤ j ≤ n}
of the entries are observed. A particular set of low rank models for this task
approximate the matrix as a product of two low rank matrices, M̂ = UV T , where
U ∈ Rm×k and V ∈ Rn×k and k � min{m,n}. A popular algorithm of choice
in practice for recovering M from the partially observed matrix using the low
rank assumption is alternating least square (ALS) minimization, which involves
optimizing over U and V in an alternating manner to minimize the squared error
over observed entries while keeping the other factor fixed. Despite being widely
experimented in practice, only recently were theoretical guarantees established
bounding the error of the matrix estimated from ALS to that of the original matrix
M . In this work we extend the results for a noiseless setting and provide the first
guarantees for recovery under noise for alternating minimization. We specifically
show that for well conditioned matrices corrupted by random noise of bounded
Frobenius norm, if the number of observed entries is O

(
k7n logn

)
, then the

ALS algorithm recovers the original matrix within an error bound that depends
on the norm of the noise matrix. The sample complexity is the same as derived in
[7] for the noise–free matrix completion using ALS.

1 Introduction

The problem of matrix completion has found application in a number of research areas
such as in recommender systems [10], multi-task learning [15], remote sensing[12] and
image inpainting [1]. In a typical setting for matrix completion, a matrix M ∈ Rm×n
is observed on a subset of entries Ω ⊂ {(i, j) : 1 ≤ i ≤ m, 1 ≤ j ≤ n}, while a
large number of entries are missing. The task is then to fill in the missing entries of
the matrix yielding an estimate M̂ of the complete matrix that is consistent with the
original matrix M .

Among the many models that try and tackle the matrix completion problem, low
rank models have enjoyed a great deal of success in practice and have proven to be very
popular and effective for the matrix completion task on real life datasets [3,8,10,13,11].
Low rank models with numerous variations have been heavily used in practice for
matrix completion specially towards the application of collaborative filtering [10,13].
Though it is one of the most widely used techniques to model incomplete matrix data,
there are only a few algorithms for which theoretical guarantees have been established,
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most notably the nuclear norm minimization [3,4] and OptSpace [8]. However, these
algorithms are computationally expensive and hence not scalable.

A popular algorithm that is heavily used in practice for recovering M from the
entries observed on Ω under the low rank assumption is the alternating least squares
minimization (ALS) [16,10]. The algorithm makes the assumption that the matrix M is
of a fixed low rank that has a latent factor representationM = UV T , whereU ∈ Rm×k,
V ∈ Rn×k and k � n,m. Hence, one is interested in solving the following:

min
U,V
‖PΩ(M)− PΩ(UV T )‖2F

Where Ω is the set of observed entries and PΩ(M), also denoted by MΩ , is the projec-

tion of the matrix M onto the observed set Ω, given by, MΩ
ij =

{
Mij if (i, j) ∈ Ω
0 otherwise

The above problem as described is jointly non–convex in U and V . Alternating min-
imization proceeds by alternatively fixing one of the latent factors and optimizing the
other. Once one of the factors (say U ) is fixed, solving for the other (V ) is a convex
problem. In fact, it is a simple least squares problem. This simplicity of the alternating
minimization has made it a popular approach for low rank matrix factorization in prac-
tice. Recent results [7,6,14] give recovery guarantees for ALS in a noiseless setting.
However theoretical guarantees for ALS when the observed entries are corrupted by
noise are still lacking. On the other hand, in real life applications, the matrix entries are
often corrupted by various means including the noise in the matrix generation process,
outliers and inaccurate measurements. In this work we present the first guarantees for
recovery under noise for alternating least squares minimization. We rely heavily on the
analysis of [7,6] and also borrow results from [9].

The paper is organized as follows. After explaining the notations and defining a few
quantities in Section 1.1, we briefly review relevant work in Section 2. In Section 3, we
describe the algorithm and state the main result of the paper and compare the results
with the existing results. Our primary contribution in this paper is the proof of the result
stated in Section 3. We build the proof in Section 4. As the proof is fairly involved,
the proof of various lemmata in this section are deferred to the Appendix. We conclude
with an analysis of the results and possible future directions in Section 5.

1.1 Notations and Preliminaries

Unless stated otherwise, we use the following notation in the rest of the paper. Matrices
are represented by uppercase letters. For a matrix M , Mi represents the ith column,
M (i) represents the vector corresponding to the ith row, (all the vectors are column
vectors i.e they are or dimension d × 1, where d is the length of the vector) and Mij

is the (i, j)th entry. The spectral norm and Frobenius norm of a matrix M are denoted
by ‖M‖2 and ‖M‖F , respectively. The max norm of M , denoted by Mmax, is the
maximum of the absolute values of the entries of M . The transpose of a matrix M is
denoted by M†. Vectors are denoted by lowercase letters. For a vector u, ui is the ith
component of u. The p-norm of a vector is given by ‖u‖p = (

∑
i |ui|p)

1/p, p ≥ 1.
Finally, set of integers from 1 to m is denoted by [m] = {1, 2, . . . ,m}.
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Definition 1 (SVD (or truncated SVD)). The singular value decomposition (SVD) of
a matrix M ∈ Rm×n of rank k is given by M = UΣV †, where U ∈ Rm×k and
V ∈ Rn×k have orthonormal columns, i.e. U†U = V †V = I and Σ ∈ Rk×k is a
diagonal matrix whose entries are (σ1, σ2, . . . , σk). Here, the columns of U and V are
called the left and right singular vectors of M respectively and σ1 ≥ σ2, . . . , σk > 0
are the singular values.

Definition 2 (Condition number). Consider a matrix M of rank k, with singular val-
ues, σ1 ≥ σ2, . . . , σk > 0. The condition number of the matrix M , denoted by κM is
defined as κM = σ1

σk

Definition 3 (Reduced–QR factorization (or simply QR factorization)). The Reduced–
QR factorization, which is often overloaded as QR factorization, of a matrix X ∈
Rm×k, m ≥ k, is given by X = QR, where Q ∈ Rm×k has orthonormal columns
and R ∈ Rk×k is an upper triangular matrix. The columns of the matrix Q is an or-
thonormal basis for the subspace spanned by the columns of X .

Definition 4 (Distance between two matrices [5]). Given two matrices Û , Ŵ ∈ Rm×k,
the distance between the subspaces spanned by the columns of Û and Ŵ is given by
dist(Û , Ŵ ) = ‖U†⊥W‖2 = ‖UW †⊥‖2 where U and W are orthonormal bases of the
spaces span(Û) and span(Ŵ ), respectively. Similarly, U⊥ and W⊥ are orthonormal
bases of the spaces span(Û⊥) and span(Ŵ⊥).

Definition 5 (Incoherence of a matrix). A matrix M ∈ Rm×n is incoherent with
parameter µ if ‖U (i)‖2 ≤ µ

√
k√
m
∀i ∈ [m] and ‖V (j)‖2 ≤ µ

√
k√
n
∀j ∈ [n] where

M = UΣV † is the SVD of M . We remind that X(i) is the ith row of matrix X .

Definition 6 (Vector to matrix conversion). The operator vec2mat() converts a vector

to matrix in column–order, i.e. ∀ x ∈ Rnk, vec2mat(x) =

 ↑ ↑ · · · ↑
x1:n xn+1:2n · · · x(k−1)n+1:kn

↓ ↓ · · · ↓


2 Related Work

Candès and Recht [3] first demonstrated that under the assumptions of random sampling
and incoherence conditions O(kn1.2 log n) samples allow for exact recovery of the true
underlying matrix via convex nuclear–norm based minimization. The sample complex-
ity result was further improved toO(kn log n) by Candès and Tao [4]. Later on, Candès
and Plan [2] analyzed the recovery guarantees for nuclear–norm based optimization al-
gorithm under bounded noise added to the true underlying matrix. However, one should
note that nuclear–norm based minimization approach is computationally expensive and
infeasible in practice for large scale matrices.

In the OptSpace algorithm [8], Keshavan et al. adopted a different approach for the
matrix completion problem where they first took the SVD of the matrix MΩ . Their
analysis showed that such a SVD provides a reasonably good initial estimate for the
spanning subspace, which can further be refined by gradient descent on a Grassmanian



4 Gunasekar et al

manifold. They show asymptotic recovery guarantees of original matrix if the number of
samples isO(nk (σ∗1/σ

∗
k)

2
log n). In a later paper, Keshavan et al. [9] also examined the

reconstruction guarantee of OptSpace under two noise models. The analysis (for both
noiseless and noisy recovery) of the algorithm only guarantees asymptotic convergence
and the convergence might take exponential time in the problem size in the worst case.

In practice, however, alternating minimization based approach produces good opti-
mal solution. Though the underlying optimization problem is non–convex, each step
is convex, computationally cheaper and solutions close to global optimal are often
reported in experiments [11]. The algorithm and its variations have been practically
deployed in many real life collaborative filtering datasets and have shown good per-
formance [10,13]. Wang and Xu [14] first showed that given a factorization algorithm
attains a global optimum, the space of the factors, U and V , and the estimated matrix
M̂ are robust against corruption of the observed entries by bounded noise. Jain et al.
[7,6], however, were the first to formulate the conditions for recovery of the underly-
ing matrix using alternating minimization. They showed that the true underlying matrix
M can be recovered within an error of ε in O(log(‖M‖F /ε)) steps and this requires
O((σ∗1/σ

∗
k)

4k7n log n log ‖M‖F /ε) number of samples. We build on the results of Jain
et al. [7] and provide recovery guarantees of noisy matrix completion problem with
alternating minimization.

3 Main Result

In the rest of the paper, the underlying true rank–k matrix to be completed is denoted
by M ∈ Rm×n. With a slight abuse of notation, the truncated SVD of M is given by
M = U∗Σ∗V ∗† with U∗ ∈ Rm×k, V ∗ ∈ Rn×k and Σ∗ = diag(σ∗1 , σ

∗
2 , . . . , σ

∗
k).

Without loss of generality, it is assumed that m ≤ n and α = n/m ≥ 1 is a constant
(independent of n). The noisy matrix which is partially observed is given by M̃ =M+
N , where N ∈ Rm×n is the noise matrix. Further, let N = UNΣNV

†
N be the SVD of

the noise matrix with UN ∈ Rm×m, VN ∈ Rn×m and ΣN = diag(σN1 , σ
N
2 , . . . , σ

N
m).

Each entry of the matrix M̃ is independently observed with probability p. Let Ω be the
set of indices where the matrix M̃ is observed. The task is to estimate M given M̃Ω

and Ω.

3.1 Noise Model

We consider a fairly general, worst case model for the noise matrix N , also used in [9].
In this modelN is distributed arbitrarily but bounded as |Nij | ≤ Nmax. This is a generic
setting, and any noise distribution with sub Gaussian tails can be approximated by this
model with high probability. However, tighter bounds can be obtained for individual
cases. Our bounds primarily depend on Nmax and the fractional operator norm of NΩ ,
‖NΩ‖2/p. We use the following result from [9]:

Theorem 1 ([9]). If N is a matrix from the worst case model, then for any realization
of N , ‖NΩ‖2 ≤ 2|Ω|

m
√
α
Nmax.
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Using, |Ω| ≈ pmn in Theorem 1, we have the following bound:

‖NΩ‖2
p

≤ 2
√
mnNmax, (1)

3.2 Algorithm

The algorithm analyzed in this paper is presented below [7]:

Algorithm 1 ALSM

1: Input: observed set Ω, values PΩ(M̃)
2: Create (2T +1) subsets from Ω — Ω1, Ω2 · · · , Ω2T , each of size |Ω|, with the elements of
Ω belonging to one of the Ωt’s with equal probability and sampled independently

3: Set Û0 = SVD(PΩ0(M̃)/p, k) i.e., top-k left singular vectors of PΩ0(M̃)/p

4: Clipping step: Set all elements of Û0 that have magnitude greater than 2µ
√
k√
n

to zero and

orthonormalize the columns of Û0 (using QR decomposition)
5: for t = 0, · · · , (T − 1) do

V̂ (t+1) ← argmin
V ∈Rn×k

‖PΩ(t+1)(Û
tV † − M̃)‖F (2)

Û (t+1) ← argmin
U∈Rm×k

‖PΩ(T+t+1)

(
U(V̂ (t+1))† − M̃

)
‖F (3)

end
6: Output: X = ÛT (V̂ T )†

For ease of analysis, we have modified the standard ALS algorithm. In Step 2 of the
algorithm, independently sampled subsets ofΩ are generated that are further used in the
rest of the algorithm. This modification was introduced purely for the ease of theoretical
analysis and is not required in practice. In the above algorithm, in each iteration, t, the
observed set Ω(t) is independent of the other iterations and hence, each iteration could
be analyzed independently. In the proof of our main result, while analyzing iteration, t,
we overload Ω to represent Ω(t) to avoid cluttering of symbols. Thus, the final sample
complexity for recovery would be 2T times the sample complexity requirements in each
iteration, where T is the total number of iterations required for convergence.

3.3 Result

Theorem 2. Let M = U∗Σ∗(V ∗)† ∈ Rm×n be a rank–k, incoherent matrix with
both U∗ and V ∗ being µ incoherent. Further, it is assumed that, Nmax ≤ C3

σ∗k
n
√
k

and
‖NΩ‖2
p ≤ C2

σ∗k
κMk

. Additionally, let each entry of M̃ = M +N be observed uniformly
and independently with probability

p > C
κ4Mµ

4k7 log n log ‖M‖Fε
mδ22k

(4)
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where, κM =
σ∗1
σ∗k

is the condition number of the M , δ2k ≤ σ∗k
64σ∗1

and C > 0 is a global

constant. Then with high probability, for T ≥ C ′ log ‖M‖Fε , the outputs ÛT and V̂ T of
Algorithm 1 with input (Ω,PΩ(M̃)) satisfy

1√
mn
‖M−ÛT (V̂ T )†‖F ≤ ε+20µκ2Mk

1.5

(
‖NΩ‖2
|Ω|

)
≤ ε+40µκ2Mk

1.5Nmax (5)

Worst case noise model requirements The theorem requires that Nmax ≤ C3
σ∗k
n
√
k

and ‖N
Ω‖2
p ≤ C2

σ∗k
κMk

. For the worst case noise model, if Nmax ≤ C2
σ∗k

2κMnk
=⇒

‖NΩ‖2
p ≤ 2

√
mnNmax ≤ C2

σ∗k
κMk

Further, Nmax ≤ C3
σ∗k

κMnk
=⇒ Nmax ≤ C3

σ∗k
nk ≤

C3
σ∗k
n
√
k

. Thus, choosing C = min{C2/2, C3}, and Nmax ≤ C
σ∗k

κMnk
, both the condi-

tions on noise matrix for Theorem 2 are satisfied.
For a well conditioned matrix M of condition number close to 1, the above require-

ment is approximately equivalent toNmax ≤ C ′k−1.5 ‖M‖F√
mn

, which is k−1.5 fraction of
root mean square value of the entries of matrix M . This is a fairly reasonable assump-
tion on the noise matrix for recovery guarantees.

3.4 Comparison with Similar Results

The most relevant work for our analysis is the analysis of low rank matrix completion
under alternating minimization approach proposed by Jain et. al. [7]. They have the
following result for ALS under noiseless setting, N = 0:

Theorem 3 ([7]). Let M = U∗Σ∗(V ∗)† ∈ Rm×n be a rank–k, incoherent matrix with
both U∗ and V ∗ being µ incoherent. Let each entry of M be observed uniformly and

independently with probability, p > C
κ4
Mµ

4k7 logn log
√
k‖M‖2
ε

mδ22k
where, δ2k ≤ σ∗k

64σ∗1
and

C > 0 is a global constant. Then with high probability, for T ≥ C ′ log ‖M‖Fε , the out-
puts ÛT and V̂ T of Algorithm 1 with input (Ω,PΩ(M̃)) satisfy ‖M−ÛT (V̂ T )†‖F ≤ ε

Even for a very general noise model, the sample complexity required for our analysis is
the same as that required by the noise–free analysis.

Next, we compare our bounds with the bounds obtained for noisy matrix completion
by Keshavan et. al [9]. The algorithm suggested by Keshavan et. al., OptSpace, involves
optimizing the initial estimate from SVD of PΩ(M̃) over a Grassmann manifold. The
main result in their paper is stated below:

Theorem 4 ([9]). Let M̃ = M + N , where M is a rank–k, µ incoherent matrix. A
subset, Ω ⊂ [m]× [n], of entries of M̃ are revealed. Let M̂ be the output of OptSpace
on the input of (M̃,Ω). Then, there exists numerical constants, C and C ′ such that,
if |Ω| ≥ Cn

√
ακ2M max{µk

√
α log n;µ2k2ακ4M} and ‖N

Ω‖2
p ≤ C ′

σ∗k
κ2
M

√
k

then, with

probability atleast 1− 1/n3, 1√
mn
‖M − M̂‖F ≤ C ′κ2Mk0.5

(
‖NΩ‖2
|Ω|

)
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The requirements on the noise matrix for recovery guarantees by OptSpace is close to
that derived in our results for Alternating minimization. Also, the error in the recovered
matrix in our analysis is off by a small factor of k as compared to the analysis in [9].
However, the sample complexity required by ALS as evaluated by our analysis is much
higher than that of Keshavan et. al.

4 Proof of Theorem 2

In this section we present the proof of Theorem 2. The outline of the proof is as follows.
In Section 4.1, Theorem 5 states that the initialization step of the Algorithm described
in 1 provides a good starting point. In Section 4.2, we first propose a modification
to the ALSM algorithm and prove that the modification in practice is equivalent to the
original ALSM algorithm, while the modified algorithm is easier to analyze. Theorem 6
is then stated without proof. This theorem establishes that the space spanned by ALSM
estimates of Û and V̂ converge towards U∗ and V ∗ respectively. Finally, we combine
the results on initialization and above mentioned theorem to prove the main result. The
proof of Theorem 6 is deferred to Section 4.3. In each subsection, the relevant lemmata
are first presented and then the main theorems are proved. The proofs of the lemmata
are provided in the Appendix.

4.1 Initialization
Lemma 1 (Theorem 1.1 of [8]). Let M̃ = M + N be such that M is rank–k and
µ–incoherent and |Ω| ≥ Cnkmax{log n, k}. Further, from the SVD of M̃

Ω

p , we get a

rank–k approximation as, M̃Ω
k = Ũ0Σ̃0Ṽ 0†, where Ũ0 ∈ Rm×k and Ṽ 0 ∈ Rn×k. Let

α = n/m ≥ 1. Then the following is true with probability greater than (1− 1/n3),

1√
mn
‖M − M̃Ω

k ‖2 ≤ CMmax

(
mα3/2

|Ω|

)1/2

+
2m
√
α

|Ω|
‖NΩ‖2. (6)

Lemma 2. Let Ũ0 be defined as in Lemma 1. Further, under the conditions of Theorem
2, the following is true with probability greater than (1− 1/n3),

dist(Ũ0, U∗) ≤ 1

64k
.

The proof of Lemma 2 is presented in Appendix B.1.

Theorem 5 (ALSM has a good initial point). Let U c be obtained from Ũ0 defined
above, by setting all the entries greater than 2µ

√
k√

m
to zero. Let U0 be the orthonormal

basis of U c. Then under the conditions of Lemma 2, w.h.p. we have

– dist(U0, U∗) ≤ 1/2.
– U0 is incoherent with parameter µ1 =

32σ∗1µ
√
k

σ∗k
.

The proof follows directly from Lemma C.2 in [6] and Lemma 2. �
Note that the U0 defined above is the same as the the initial estimate, Û0 from the

initialization step of the Algorithm 1.
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4.2 Convergence of ALS Minimization

Consider the following modification to Equation 2 and 3 of Algorithm 1:

V̂ (t+1) ← argmin
V̂ ∈Rn×k

‖PΩ(t+1)(U tV̂ † − M̃)‖F

V (t+1)R
(t+1)
V = V̂ (t+1) (QR decomposition)

Û (t+1) ← argmin
Û∈Rm×k

‖PΩ(T+t+1)

(
ÛV (t+1)† − M̃

)
‖F

U (t+1)R
(t+1)
U = Û (t+1) (QR decomposition) (7)

Lemma 3 (Lemma 4.4 of [7]). Let Û (t) be the t-th step iterate of ALSM Algorithm
1, and Ũ (t) = U (t)R

(t)
U be that of the modified algorithm presented above. Suppose

that both Ũ (t) and Û (t) are full rank and span the same space, then the same will be
true for subsequent iterates. i.e span(V̂ (t+1)) = span(Ṽ (t+1)) and span(Û (t+1)) =

span(Ũ (t+1)) and all the matrices at iterate t+ 1 are full rank.

Proof. As both Ũ (t), Û (t) ∈ Rm×k have full rank and span same subspace, there exists
a k × k full rank matrix R such that Û (t) = Ũ (t)R = U (t)R

(t)
U R. Thus,

min
V ∈Rn×k

‖PΩ(t+1)

(
Û (t)V † − M̃

)
‖2 = ‖PΩ(t+1)

(
Û (t)V̂ (t+1)† − M̃

)
‖2

= ‖PΩ(t+1)

(
U (t)(V̂ (t+1)(R

(t)
U R)†)† − M̃

)
‖2 ≥ min

V ∈Rn×k
‖PΩ(t+1)

(
U (t)V † − M̃

)
‖2

= ‖PΩ(t+1)

(
U (t)Ṽ (t+1)† − M̃

)
‖2

The above equation holds with equality for V̂ (t+1) = Ṽ (t+1)
(
(RtUR)

†)−1. Further
Theorem 6 shows that Ṽ (t+1) is full rank (as dist(Ṽ (t+1), V ∗) < 1) and hence, V̂ (t+1) =

Ṽ (t+1)
(
(RtUR)

†)−1 is full rank and their columns span the same subspace. Similar ar-
guments can be used to show that Û (t+1) and Ũ (t+1) are both full rank and span the
same subspace. �

Further, as the initial estimate, Û0 satisfies the conditions of the above lemma, in
the rest of the proof it is assumed that the distances dist(Û t, U∗) and dist(V̂ t, V ∗) are
the same for the updates from both ALSM and its modified version presented above.

Theorem 6 (Each step of ALSM is good). Under the assumptions of Theorem 2, the
(t+ 1)th iterates, Û t+1 and V̂ t+1 satisfy the following w.h.p:

dist
(
V̂ t+1, V ∗

)
≤ 1

4
dist

(
Û t, U∗

)
+ 10

µκM‖NΩ‖2k
σ∗kp

dist
(
Û t+1, U∗

)
≤ 1

4
dist

(
V̂ t+1, U∗

)
+ 10

µκM‖NΩ‖2k
σ∗kp

(8)

where, κM = σ∗1/σ
∗
k is the condition number of the matrix M .

The proof of Theorem 6, involves few other lemmata and is deferred to Section 4.3. The
main theorem is now proved using the results from Theorem 5 and 6. �
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Proof of main result, Theorem 2 From Theorem 6, after T = O(log
√
k‖M‖2
ε ) steps,

we have:

dist
(
ÛT , U∗

)
≤ ε

2
√
k‖M‖2

+ 10
µκM‖NΩ‖2k

σ∗kp
(9)

Using Lemma 4, we have that:

‖M − ÛT V̂ (T+1)†‖F ≤ ‖(I − ÛT ÛT†)U∗Σ∗‖F + ‖F‖F + ‖Nres‖F (10)

Note that the bounds on ‖F‖2 and ‖Nres‖2 from Lemma 5 and Equation 16, also hold
for both ‖F‖F and ‖Nres‖F respectively. This can be seen from the proofs of Lemmata
5 and 6. Using these bounds we have the following:

‖M − ÛT V̂ (T+1)†‖F ≤
√
kσ∗1dist(ÛT , U∗) +

δ2kσ
∗
1

1− δ2k
dist(ÛT , U∗) + Cσ∗k

10µκM‖NΩ‖2k
σ∗kp

≤ ε+
20µκ2M‖NΩ‖2k1.5

p
(11)

Further, in order that each of the 2T + 1 sub-sampled indices Ωt has O
(
µ4κ4

Mk
7 logn

mδ22k

)
samples, the total sample complexity required is O

(
µ4κ4

Mk
7 logn log

√
k‖M‖2
ε

mδ22k

)
. �

4.3 Proof of Theorem 6

To avoid cluttering of notations we define a few quantities first. In the following defini-
tions, we recall that U∗ and UN are the left singular vectors of M and N respectively,
and U t is the tth step iterate of the modified algorithm (U t = Û t(RtU )

−1). Further
U (i) and Ui represent the ith row and column vectors of U respectively and Uij is the
(i, j)th entry of U . For 1 ≤ p ≤ k and 1 ≤ q ≤ k we define diagonal matrices
Bpq, Cpq, Dpq ∈ Rn×n, where, Dpq = 〈U tp, U∗q 〉In×n and the, jth diagonal entries
of Bpq and Cpq are given by:

(Bpq)jj =

1
p

∑
i:(i,j)∈Ω

U tipU
t
iq

 , (Cpq)jj =
1
p

∑
i:(i,j)∈Ω

U tipU
∗
iq

 .
Using the above matrices, we define the following matrices of dimension nk × nk:

B ,


B11 · · · B1k

...
. . .

...
Bk1 · · · Bkk

 , C ,

C11 · · · C1k

...
. . .

...
Ck1 · · · Ckk

 , D ,

D11 · · · D1k

...
. . .

...
Dk1 · · · Dkk

 , S ,

σ∗1In · · · 0

...
. . .

...
0 · · · σ∗kIn

 .
Analogously, we define matrices, CN ∈ Rnk×nm and SN ∈ Rnm×nm as follows:

CN ,

C
N
11 · · · CN1m
...

. . .
...

CNk1 · · · CNkm

 , SN ,
σ

N
1 In · · · 0
...

. . .
...

0 · · · σNmIn

 (12)
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where, ∀ 1 ≤ p ≤ k and 1 ≤ q ≤ m, diagonal matrices CNpq ∈ Rn×n are defined as

(CNpq)jj =

 1
p

∑
i:(i,j)∈Ω

U tipU
N
iq

. Additionally, we define the following vectors:

v∗ = [V †1 , V
†
2 , · · · , V

†
k ]
† ∈ Rnk, vN = [V N†1 , V N†2 , · · · , V N†m ]† ∈ Rnm.

Finally, we define the matrices, F = vec2mat
(
B−1(BD − C)Sv∗

)
∈ Rn×k and

Nres = vec2mat
(
B−1CNSNvN

)
∈ Rn×k.

Lemma 4. Let Û t be the tth step iterate of the above algorithm and let U t, V̂ t+1 and
V t+1 be obtained by Updates in 7. Then, using the matrices defined above, we have:

V̂ t+1 = V ∗Σ∗U∗†U t − F +Nres (13)

The proof of the above lemma is provided in Appendix B.2.

Lemma 5. Let F be the error matrix defined above and let U t be a µ1 incoherent
orthonormal matrix obtained from the tth update. Under the conditions of Theorem 2,
with probability at least 1− 1/n3, ‖F‖2 ≤ δ2kσ

∗
1

1−δ2k dist(U t, U∗).

This is the same as Lemma 5.6 of [7] and the proof follows exactly for the noisy case.

Lemma 6. Let Nres be the matrix defined above. Under the conditions of the Theorem
2 with probability at least 1− 1/n3

‖Nres‖2 ≤
µ1

√
k

(1− δ2k)

(
‖NΩ‖2
p

)
(14)

Lemma 7. Let R(t+1)
V be the upper triangular matrix obtained by QR decomposition

of V̂ t+1 an. Let F , Nres and U t be defined as above. Then,∥∥∥∥(R(t+1)
V

)−1∥∥∥∥
2

≤ 1[
σ∗k

√
1− dist2(U t, U∗)− ‖F‖2 − ‖Nres‖2

] (15)

The proof of Lemma 6 and 7 are provided in Appendix B.3 and B.4 respectively. We
now use the above lemmata to prove Theorem 6.

If δ2k ≤ σ∗k
Cσ∗1

for appropriate C > 1, then 1
1−δ2k ≤ C/(C − 1) = C1. Fur-

ther as dist(U (t), U∗) ≤ dist(U (0), U∗) ≤ 1/2, we have
√

1− dist2(U (t), U∗) ≥
√
3/2. Finally, from Lemma 8, we have µ1 =

32σ∗1µ
√
k

σ∗k
. This implies that ‖Nres‖2 ≤

32µκMk
1−δ2k

(
‖NΩ‖2
p

)
. If further we have that ‖N

Ω‖2
p ≤ C2

σ∗k
κMk

, then for small enough C2,
we have

‖Nres‖2 ≤ C4µκMk
‖NΩ‖2
p

≤ C ′σ∗k (16)
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Using Lemma 4, we have:

dist
(
V ∗, V (t+1)

)
=
∥∥∥[V ∗†⊥ V ∗Σ∗U∗† − V ∗†⊥ F + V ∗†⊥ Nres

]
(R

(t+1)
V )−1

∥∥∥
2

≤
(
‖F‖2 + ‖Nres‖2

) ∥∥∥∥(R(t+1)
V

)−1∥∥∥∥
2

(17)

For appropriate choice of C > 1 and small enough C ′ < 1, we have From Lemma
5, 6 and 7 and Equation 17, we have the following:

dist(V ∗, V (t+1)) ≤ 1

4
dist(U (t), U∗) + 10

µκM‖NΩ‖2k
σ∗kp

Incoherence of Solutions in Each Iteration

Lemma 8. Under the conditions of Theorem 2, let U t be the tth step iterate obtained
by Eq. 3. If U t is µ1 =

32σ∗1µ
√
k

σ∗k
incoherent then with probability at least (1 − 1/n3),

the solution V (t+1) obtained from Eq. 7 is also µ1 incoherent.

The proof of the above lemma can be found in Appendix B.5. As for t = 0, U0 is
µ1 incoherent, the theorem can be used for inductively proving that U t and V t are µ1

incoherent for all t. �

5 Conclusion

We have established the first theoretical guaranties for recovery of a low rank matrix
perturbed by bounded noise, using alternating least squares minimization algorithm.
The algorithm is computationally more scalable than the algorithms that have previ-
ously established error bounds under noisy observations. We use the worst case noise
model and it is observed that for well conditioned matrices, the main result requires
a reasonable bound on the maximum noise entry. The results establish that under the
conditions of incoherence of the underlying matrix M and bounded noise, with suffi-
cient samples, the Frobenius norm of the deviation of the recovered matrix, M̂ , from
the original matrix M , ‖M−M̂‖F√

mn
can be made arbitrarily close to Ck1.5Nmax. Finally,

for well conditioned matrices, the sample complexity isO(k7n log n). This is the same
complexity as that required by the current proof of recovery guaranties of ALSM under
noiseless setting. However, this is looser compared to the established bounds of other
algorithms like nuclear norm minimization and OptSpace and tightening the sample
complexity will be considered in the future work. Another direction for future work
would include bounding the ALSM algorithm with cost function modified to include
regularization on the factors U and V .
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0105, NSF Grants (IIS-0713142 and IIS-1016614). We also thank Praneeth Netrapalli
for his valuable comments.



12 Gunasekar et al

References
1. M Bertalmio, L Vese, G Sapiro, and S Osher. Simultaneous structure and texture image

inpainting. IEEE Transactions on Image Processing, 2003.
2. E. J. Candès and Y. Plan. Matrix completion with noise. CoRR, 2009.
3. E. J. Candès and B. Recht. Exact matrix completion via convex optimization. Foundations

of Computational Mathematics, 2009.
4. E. J. Candès and T. Tao. The power of convex relaxation: near-optimal matrix completion.

IEEE Transactions on Information Theory, 2010.
5. G. H. Golub and C. F. van Van Loan. Matrix Computations (Johns Hopkins Studies in

Mathematical Sciences)(3rd Edition). The Johns Hopkins University Press, 1996.
6. P. Jain, P. Netrapalli, and S. Sanghavi. Low-rank matrix completion using alternating mini-

mization. ArXiv e-prints, December 2012.
7. P. Jain, P. Netrapalli, and S. Sanghavi. Low-rank matrix completion using alternating mini-

mization. In STOC, 2013.
8. R. H. Keshavan, A. Montanari, and S. Oh. Matrix completion from a few entries. IEEE

Transactions on Information Theory, 2010.
9. R. H. Keshavan, A. Montanari, and S. Oh. Matrix completion from noisy entries. JMLR,

2010.
10. Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for recommender sys-

tems. IEEE Computer, 2009.
11. K. Mitra, S. Sheorey, and R. Chellappa. Large-scale matrix factorization with missing data

under additional constraints. In NIPS, 2010.
12. A. M. C. So and Y. Ye. Theory of semidefinite programming for sensor network localization.

In ACM-SIAM symposium on Discrete algorithms, 2005.
13. G. Takács, I. Pilászy, B. Németh, and D. Tikk. Investigation of various matrix factorization

methods for large recommender systems. In KDD Workshop on Large-Scale Recommender
Systems and the Netflix Prize Competition, 2008.

14. Y. Wang and H. Xu. Stability of matrix factorization for collaborative filtering. In ICML,
2012.

15. K. Yu and V. Tresp. Learning to learn and collaborative filtering. In NIPS Workshop on
Inductive Transfer: 10 Years Later, 2005.

16. Y. Zhou, D. Wilkinson, R. Schreiber, and R. Pan. Large-scale parallel collaborative filter-
ing for the netflix prize. In Proc. 4th IntŠl Conf. Algorithmic Aspects in Information and
Management, LNCS 5034, 2008.

Appendix A

– ‖M‖2 ≤ ‖M‖F ≤
√
k‖M‖2

– If a matrix M is µ-incoherent, then,

Mmax ≤
µ2
√
k√

mn
‖M‖F ≤

µ2k√
mn
‖M‖2 (18)

– Bernstein’s Inequality: LetXi, i = {1, 2, . . . , n} be independent random numbers.
Let |Xi| ≤ L ∀ i w.p. 1. Then we have the following inequalities:

P [
∑n
i=1Xi −

∑n
i=1 E[Xi] > t] ≤ exp

(
−t2/2∑n

i=1 V ar(Xi)+Lt/3

)
P [
∑n
i=1Xi −

∑n
i=1 E[Xi] < −t] ≤ exp

(
−t2/2∑n

i=1 V ar(Xi)+Lt/3

)
(19)
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Appendix B

B.1 Initialization Proofs

Proof (Proof of Lemma 2).

‖M − M̃Ω
k ‖22 = ‖U∗Σ∗V ∗† − Ũ0Σ̃0Ṽ 0†‖22

= ‖(I − Ũ0Ũ0†)U∗Σ∗V ∗† + Ũ0(Ũ0†U∗Σ∗V ∗† − Σ̃0Ṽ 0†)‖22
(1)
= ‖(I − Ũ0Ũ0†)U∗Σ∗V ∗†‖22 + ‖Ũ0(Ũ0†U∗Σ∗V ∗† −ΣV †)‖22
≥ ‖(I − Ũ0Ũ0†)U∗Σ∗V ∗†‖22 = ‖Ũ0†

⊥ U
∗Σ∗‖22 ≥ σ∗2k ‖Ũ

0†
⊥ U

∗‖22
where, (1) follows as the two terms span orthogonal spaces. Hence,

dist(Ũ0, U∗) ≤ 1

σ∗k
‖M − M̃Ω

k ‖2
(2)

≤ 1

σ∗k

CMmax

√
mα3/2

p
+ 2
‖NΩ‖2
p


(3)

≤ Cµ2k
σ∗1
σ∗k

√
mα3/2

pmn
+

2‖NΩ‖2
pσ∗k

≤ 1

64k
, if p >

C ′k4µ4σ∗21
mσ∗2k

and
‖NΩ‖2
p

≤ C ′′σ
∗
k

k
.

where, (2) follows from Lemma 1 and (3) follows from Equation 18

B.2 Proof of Lemma 4

We recall that M (i) is the ith row of the matrix M . Given, U t, the tth step iterate. The
update of V̂ (t+1) is guided by the following equation from 7.

V̂ (t+1) = argmin
V ∈Rn×k

‖PΩ(U tV †)− PΩ(M̃)‖2F

= argmin
V ∈Rn×k

∑
(i,j)∈Ω

(
U t(i)†V (j) − U∗(i)†Σ∗V ∗(j) − U (i)†

N ΣNV
(j)
N

)2
Taking the gradient with respect to each V (j) and setting it to 0 for the optimum

V = V̂ (t+1), we have the following ∀ j ∈ [n]:∑
i:(i,j)∈Ω

U t(i)
(
U t(i)†

(
V̂ (t+1)

)(j)
− U∗(i)†Σ∗V ∗(j) − U (i)†

N ΣNV
(j)
N

)
= 0 (20)

We further define matrices Bj , Cj , Dj ∈ Rk×k and CjN ∈ Rk×m for 1 ≤ j ≤ n as
follows:

Bj =
1

p

∑
i:(i,j)∈Ω

U t(i)U t(i)†, Cj =
1

p

∑
i:(i,j)∈Ω

U t(i)U∗(i)†,

Dj = U t†U∗, CjN =
1

p

∑
i:(i,j)∈Ω

U t(i)UN(i)†. (21)
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It is useful to note that Bj ∈ Rk×k is obtained by taking the jth diagonal elements
of Bpq (defined in Equation 12), for 1 ≤ p, q ≤ k, i.e. (Bj)pq = (Bpq)jj . The other
matrices are defined similarly. Using the above matrices, we have from the previous
equation:(
V̂ (t+1)

)(j)
= DjΣ∗V ∗(j) − (Bj)−1

(
BjDj − Cj

)
Σ∗V ∗(j) + (Bj)−1CjNΣNV

(j)
N

V̂ (t+1) = V ∗Σ∗U∗†U t − F +Nres
(22)

The last equation above can be easily seen by writing the structure of matrices defined
above.

B.3 Proof of Lemma 6
From Lemma C.6 of [6], under the assumptions on p andM specified in the Lemma, we
have, ‖B−1‖2 ≤ 1

1−δ2k . Further from the structure of the matrices CN , SN and CjN , it

can be verified that ‖CNSNvN‖22 =

n∑
j=1

‖C(j)
N ΣNV

(j)
N ‖

2
2. Recall that V (j)

N ∈ Rm×1 is

the jth row of VN ∈ Rn×m (a similar decomposition is used in Equation 22). Thus we
have:

∥∥CNSNvN∥∥2
2
=

n∑
j=1

∥∥∥C(j)ΣNV
(j)
N

∥∥∥2
2
=

n∑
j=1

∥∥∥∥∥∥1p
∑

i:(i,j)∈Ω

U t(i)U
(i)†
N ΣNV

(j)
N

∥∥∥∥∥∥
2

2

≤ 1

p2

n∑
j=1

∑
i:(i,j)∈Ω

‖U t(i)Nij‖22 ≤
1

p2

∑
(i,j)∈Ω

‖U t(i)‖22|Nij |22

≤ µ2
1k

(
‖NΩ‖F√

mp

)2

≤ µ2
1k

(
‖NΩ‖2
p

)2

(23)

This implies that

‖Nres‖2 ≤ ‖Nres‖F = ‖B−1CNSNvN‖2 ≤ ‖B−1‖2‖CNSNvN‖2 (24)

≤ µ1

√
k

(1− δ2k)

(
‖NΩ‖2
p

)
.

B.4 Proof of Lemma 7

1

‖(R(t+1)
V )−1‖2

= σmin(R
(t+1)
V ) = min

z:‖z‖2=1
‖R(t+1)

V z‖2 = min
z:‖z‖2=1

‖V (t+1)R
(t+1)
V z‖2

= min
z:‖z‖2=1

‖V̂ (t+1)z‖2 = min
z:‖z‖2=1

‖
(
V ∗Σ∗(U∗)†U t − F +Nres

)
z‖2

≥ min
z:‖z‖2=1

[
‖V ∗Σ∗(U∗)†U tz‖2 − ‖F‖2 − ‖Nres‖2

]
≥ σ∗k min

z:‖z‖2=1
‖(U∗)†U tz‖2 − ‖F‖2 − ‖Nres‖2

= σ∗k
√
1− dist(U t, U∗)2 − ‖F‖2 − ‖Nres‖2
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Thus, ‖(R(t+1)
V )−1‖2 ≤ 1

σ∗k

√
1−dist(Ut,U∗)2−‖F‖2−‖Nres‖2

B.5 Proof of Lemma 8

In this proof, we use the following set of inequalities:

‖(Bj)−1‖2 ≤
1

1 + δ2k

‖Bj‖2 ≤ 1 + δ2k, ‖Cj‖2 ≤ 1 + δ2k, ‖Dj‖ ≤ ‖U∗‖2‖U t‖2 = 1.

(25)

The above set of equations involve terms that does not depend on the noise and hence
are incorporated from Appendix C.3 of [7]. It can be verified that the proof does not
change for the noisy case. We omit the derivation here to avoid redundancy.

Lemma 9. Under the conditions of Theorem 2, w.p. greater that 1− 1/n3

‖CjNΣNV
(j)
N ‖2 ≤ Nmaxµ1

√
km(1 + δ2k)

We prove the above lemma at the end of this section. Now, from Equation 22, we have:(
V̂ (t+1)

)(j)
= DjΣ∗V ∗(j) − (Bj)−1

(
BjDj − Cj

)
Σ∗V ∗(j) + (Bj)−1CjNΣNV

∗(j)
N

Thus,∥∥∥∥(V (t+1)
)(j)∥∥∥∥

2

≤ ‖(R(t+1))−1‖2
[(
‖Dj‖2 + ‖(Bj)−1‖2(‖BjDj‖2 + ‖Cj‖2)

)
‖Σ∗‖‖V ∗(j)‖2

+ ‖(Bj)−1‖2‖CjNΣNV
∗(j)
N ‖2

]
(26)

Using equations from 25, Lemma 9 and 7, and δ2k ≤ 1
C , C > 1 we have the following:∥∥∥∥(V (t+1)

)(j)∥∥∥∥
2

≤ ‖(R(t+1))−1‖2

[
σ∗1µ
√
k√

n

(
1 +

(2(1 + δ2k))

1− δ2k

)
+
Nmaxµ1

√
km(1 + δ2k)

1− δ2k

]

= ‖(R(t+1))−1‖2

[
4σ∗1µ

√
k√

n
+ 2Nmaxµ1

√
km

]
(27)

We now use that for, µ1 =
32µσ∗1

√
k

σ∗k
and further, Nmax ≤ C3

σ∗k
n
√
k

. Choosing C3 ap-

propriately, we have Nmaxµ1

√
km ≤ 2σ∗1µ

√
k√

n
. Finally, using Lemmata 5 and 6, the

fact that dist(U∗, U t) ≤ dist(U∗, U0) ≤ 0.5 and using the conditions on ‖NΩ‖2 from
Theorem 2 , we have, ‖(R(t+1))−1‖2 ≤ 4

σ∗k
. Using these we have:∥∥∥∥(V (t+1)

)(j)∥∥∥∥
2

≤ ‖(R(t+1))−1‖2
8σ∗1µ

√
k√

n
≤ 32σ∗1µ

√
k

σ∗k
√
n

(28)

Thus we have, µ(V (t+1)) ≤ 32σ∗1µ
σ∗k
≤ 32σ∗1µ

√
k

σ∗k
.
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Proof of Lemma 9 ‖CjNΣNV
(j)
N ‖2 = maxx:‖x‖2=1 x

†CjNΣNV
(j)
N . Given any x such

that ‖x‖2 = 1, then

x†CjNΣNV
(j)
N =

1

p

∑
i:(i,j)∈Ω

x†U t(i)U
(i)†
N ΣNV

(j)
N =

1

p

∑
i:(i,j)∈Ω

x†U t(i)Nij (29)

We define δij =
{
1 if (i, j) ∈ Ω
0 otherwise , Zi = 1

pδijx
†U t(i)Nij and Z =

∑m
i=1 Zi

E[Z] =

m∑
i=1

E[Zi] =

m∑
i=1

x†U t(i)Nij ≤ Nmax
m∑
i=1

‖U t(i)‖2 = Nmaxµ1

√
km (30)

var(Z) =

m∑
i=1

E[Z2
i ]− (E[Zi])

2 =
1− p
p

m∑
i=1

(
x†U t(i)

)2
N2
ij

≤ 1

p
N2
max

m∑
i=1

‖U t(i)‖22 =
1

p
N2
max‖U t‖2F =

N2
maxk

p

(31)

max
i
Zi =

1

p
max
i
xtU t(i)Nij ≤

Nmaxµ1

√
k

p
√
m

(32)

From Equations 29, 30, 31, 32 and using Bernstein’s inequality in Equation 19, we have
the following:

P
(
Z ≥ Nmaxµ1

√
km(1 + δ2k)

)
≤ exp

 −δ22kN2
maxµ

2
1km/2

N2
maxk
p +

N2
maxµ

2
1kδ2k

3p

 = exp

 −δ22kµ2
1mp

2
(
1 +

µ2
1δ2k
3

)


From the conditions of Theorem 2, δ2k ≤ σ∗1
Cσ∗k

, p > 12 logn
mδ2k

, using (1 + µ2
1δ2k/3) ≤

(1 + µ2
1) ≤ 2µ2

1, we have:

P
(
Z ≥ Nmaxµ1

√
km(1 + δ2k)

)
≤ exp

(
−12µ2

1 log n

4µ1

)
=

1

n3
.

Thus, we have with probability grater that 1− 1/n3, ∀ x : ‖x‖2 = 1, including the
maximizing x, we have x†CjNΣNV

(j)
N ≤ Nmaxµ1

√
km(1+δ2k). Thus, ‖CjNΣNV

(j)
N ‖2 ≤

Nmaxµ1

√
km(1 + δ2k). �
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