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Abstract. Noisy data recovery is an important problem in machine learning
field, which has widely applications for collaborative prediction, recommenda-
tion systems, etc. One popular model is to use trace norm model for noisy data
recovery. However, it is ignored that the reconstructed data could be shrank (i.e.,
singular values could be greatly suppressed). In this paper, we present novel noisy
data recovery models, which replaces the standard rank constraint (i.e., trace
norm) using Schatten-p Norm. The proposed model is attractive due to its sup-
pression on the shrinkage of singular values at smaller parameter p. We analyze
the optimal solution of proposed models, and characterize the rank of optimal
solution. Efficient algorithms are presented, the convergences of which are rigor-
ously proved. Extensive experiment results on 6 noisy datasets demonstrate the
good performance of proposed minimum shrinkage models.

1 Introduction

In big-data era, data is always noisy, development of robust noise tolerant algorithm for
data recovery, is always useful and highly demanded. On the other hand, the available
of large amount of data makes it more difficult to control the quality the data. The
chances of the damaged data or noisy data are increasing. Given input noisy data X, the
goal of low rank data recovery problem [1, 2, 3], is to find a low rank approximation
Z. Recovered data Z is expected to be low rank, and retain minimum reconstruction
errors (such as least square error) as compared to input data matrix X. In practice,
input data can be noisy and also has missing values. This problem has attracted a lot of
attentions due to its widely applications in recommendation systems [4], collaborative
prediction [5], image/video completion [6], etc.

Data recovery problem has close relations with dimension reduction or low dimen-
sion subspace recovery, since for most of high-dimensional data, they may have low-
dimensional subspace. Many efforts have been devoted along the direction of principal
component analysis (PCA) [7], compressive sensing [8], affine rank minimization [3],
etc. For example, Principal component analysis (PCA) seeks for a low-dimensional sub-
space given data matrix, which can be efficiently computed using singular value decom-
position (SVD). However, a major drawback of classical PCA [9] is that, it breaks down
under grossly corrupted or noisy observations, such as noises/corruptions in images, and
dis-measurement in bio-informatics, etc. In Regularized PCA model (e.g., [10, 11]), it
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(b) Enlarged Fig.(1a)
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(c) p = {0.6, 0.4, 0.3, 0.2, 0.1}
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Fig. 1. Optimal solution δk given singular value σk of input data X, at different p =
{1, 0.9, 0.8, · · · , 0.1} values with fixed β = 0.5, on dataset Mnist with 20 images, i.e.,
X = {x1,x2, · · · ,x20}. To avoid clutter, part of Fig.1a is zoomed in and shown in Fig.1b.
In Fig.1d, the solution at p = 0.3 is a faithful low-rank solution, and the solution at p = 0.9 is a
suppressed low-rank solution.

aims at reducing the rank of the data without explicitly reducing the dimension. How-
ever, they do not return the clear representation of subspace and low-dimensional data
explicitly.

It is well known that it is a NP-hard problem to directly minimizing the rank of
data for recovering input data. Since trace norm can be viewed as a convex envelope of
rank function [12], different methods (e.g., [13, 14, 1, 15, 16, 17]), have been proposed
by minimizing the trace norm. In this paper, we point out that, standard trace norm
model suffers from a serious problem: shrinkage of reconstructed data and suppres-
sion of singular values (see more details in Figs.(1-2) and §3). We find that the trace
norm relaxation may deviate the solution away from the real solution of original rank
minimization problem.

The goal of this paper is to develop new methods to solve the approximation of
the rank minimization problem. In this paper, we reformulate the noisy data recovery
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problem using schatten p norm, where efficient algorithms are presented. To summarize,
the main contribution of this paper is listed as follows.

– From model construction point of view, we present new models for noisy data recov-
ery, which minimize both data recovery error and rank of recovery data. The proposed
models give the minimum shrinkage of recovered data.

– From algorithmic development point of view, we present a complete analysis for
proposed model, where the rank of optimal solution is characterized by Theorem 1.
Efficient algorithms are developed.

– Extensive experiments on noisy datasets indicate better noisy data recovery perfor-
mance at smaller p values (p is parameter of our model).

2 Proposed Data Recovery Models

Notation Let X = (x1 · · ·xn) ∈ <d×n be input n data, each of dimension d. For
standard Schatten p norm of matrix Z,

||Z||sp = (

r∑
k=1

σpk)

1
p

=
(

Tr[(ZTZ)
p
2 ]
) 1

p
, (1)

where σk is the singular value of Z, r = rank(Z).
Given a data matrix X, it is often of interest to compute a matrix Z that is “close” to

X and satisfies the constraint rank(Z) < rank(X). Singular value decomposition [18]
is the most popular method for such approximations. There are alternative methods that
replace this constraint with a more friendly constraint, like, for example, the trace norm.
In this paper, we present two models:

Model 1: Schatten p model
We wish to solve the data recovery problem, i.e.,

min
Z

1

2
‖Z−X‖2F + βTr[(ZTZ)

p
2 ], (2)

where Tr(ZTZ)
p
2 =

∑r
k=1 σ

p
k, and σk is the singular value of Z, β is a parameter to

control the scale of schatten p term.
The fact is that the approximation has the same eigen-vectors as the original matrix,

and that only eigen-values are shrinked in standard matrix linear algebra. The particular
shrinkage of p Schatten norm is better than trace norm (p = 1, see Fig. 1), which is
corresponding to soft thresholding. At p = 0, this is corresponding to hard thresholding
(exactly the rank).

Model 2: Robust Schatten p model
We wish to find low-rank data recovery Z given X, i.e.,

min
Z
‖Z−X‖1 + βTr[(ZTZ)

p
2 ]. (3)

This is used for noisy data recovery purpose, which can be viewed as an extension of
robust PCA [10].

Motivation
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The goal of proposed models is to provide minimum shrinkage of reconstructed
data and suppression of singular values. This is the reason, why we replace the trace
norm regularization with schatten p regularization. More detailed analysis is provided
in §3-4. Our experiment results indicate that proposed models at smaller p values give
better recovery performance.

As p becomes small, it is closer to the desired rank constraint:

lim
p→0

Tr(ZTZ)
p
2 = lim

p→0

∑
k

σpk = rank(Z).

This indicates that the lower p, the better that Schatten norm resembles the rank. Since
we wish to do reconstruction with low rank, thus parameter p is usually set to 0 ≤ p ≤
1. In general p > 1 case is un-interesting.

Differences of two models The difference of above two models of Eqs.(2, 3) lies
in the first term. In Model 1 of Eq.(2), Frobenius norm or the least square error is used
to minimize the reconstruction error. In Model 2 of Eq.(3), the L1-norm is used to
minimize the reconstruction error. As is known to us, L1 error is more robust to noises
and outliers, because ||X− Z||1 =

∑
ij |X− Z|ij , where residue term is not squared.

In real world, the observations (like images, text features, etc) can be contaminated by
noises or outliers. Model of Eq.(2) is for the data recovery problem polluted by Gaussian
noise, while model of Eq.(3) is for data contaminated by Laplacian noises. Both models
can be used to solve noisy data recovery, matrix completion problem, etc. For second
term, for computational purpose, we add p power to standard term ||Z||sp , which plays
the same role as standard schatten term for low rank approximation purpose.

Relations with previous methods At p = 1, Eq.(3) is equivalent to standard trace-
norm model, which optimizes

min
Z
||Z−X||1 + β||Z||∗, (4)

where ||Z||∗ = Tr(ZTZ)
1
2 is the trace norm, and σk is the singular value of Z. This

study is a special case of our model. Note in [10], Schatten p-Norm model at p = 1 is
called as Robust PCA, because it can correctly recover underlying low-rank structure Z
from the data X in the presence of gross errors and outlying observations.

3 Illustration of Model 1 and Model 2

Due to the non-smoothness of Schatten norm at p < 1, the computational algorithm
is challenging. We provide detailed analysis and efficient algorithms of both models in
§4, §5 and §6. Here we discuss the general features of the optimal solutions to these
two models. The key conclusion is that the solutions at small p are much better than the
solution at p = 1, which is a previously studied model.

3.1 Illustration of Model 1

To illustrate results of Model 1, we use 20 images from real-world dataset mnist (more
details of this dataset is in §7). Let δk be the singular values of the optimal solution
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Z∗. Let σk be the singular values of input data X. We show solution δk in Fig.1 along
with σk. We fix β = 0.5, but let p vary from p = 1 to p = 0.1. From Fig.1, we see
that at p = 1, the optimal solution Z∗p=1, which is represented by (δ1, δ2, · · · , δ20), is a
simple downshift of (σ1, σ2, · · · , σ20). The high rank part (k = 17− 20) is zero. As p
decreases, more high rank part of the solution {δk} becomes zero, while the lower rank
part of {δk} moves closer to {σk} of the input data. For example, in Fig.1a, Fig.1b,
in optimal solution Z∗p=0.9, the high rank part (k = 13 − 20) becomes zero, while the
low-rank part (k = 1 − 7) is higher than that of Z∗p=1, i.e., this part moves towards
corresponding {σk}.

In general in low-rank data recovery, we wish the low-rank part of Z∗ is close to
those of the input data, while the high-rank part is cut-off (close to zero). Looking
in Fig.1d, the solution at p = 0.3 is a “faithful” low-rank solution, because the low-
rank part is more close or faithful to the original data. The solution at p = 0.9 is a
“suppressed” low-rank solution because the low-rank part is far below the original data,
i.e., they are suppressed. Clearly, the solution at p = 0.3 is more desirable than solution
at p = 0.9, even though both solutions are low-rank: rank(Z∗p=0.9)= rank(Z∗p=0.3) = 12.

The Schatten p norm model at small p provides the desirable “faithful” low-rank
solution, while the previous work using p = 1 also provides a low-rank solution, but
the low-rank part is more suppressed.

3.2 Illustration of Model 2

Model 2 of Eq.(3) differs from Model 1 by using the L1 norm in error function. This
enables the model to do robust data recovery (e.g., moving outliers back to the correct
subspace). However, this model does not change the observed suppression in Model 1
at p close to 1 (see Fig.1d). The suppression of singular values leads to the shrinkage
effect in reconstructed data.

We demonstrate the robust data recovery and the shrinkage effects for Model 2
at different p values on a simple toy data in Fig.(2a). The original data X are shown
as black circles. Reconstructed data zi are shown as red-squares. We show the recon-
structed results at p = 0.2 Fig.(2b, 2e, 2f), p = 0.5 (Fig.2c, 2g), p = 1 (Fig.2d, 2h). We
have two observations.

First, at 0 ≤ p ≤ 1, outliers (x13,x14,x15) all move towards the correct subspace,
indicating the desired denoising data recovery effects.

Second, for non-outlier data, the reconstructed data shrink strongly at p = 1,
but they shrink much less at p = {0.2, 0.5}. This shrinkage is result of the singular
value suppression in computed Z. At p = {0.2, 0.5, 1}, the largest singular value are
{5.35, 4.49, 2.93}, while the second singular values are very small, i.e., {1.7e-8, 1.7e-
16, 9.8e-9}, respectively.

In summary, the Schatten model at small p enables us to do robust data recovery but
without significant shrinkage in previous models which use p = 1.

To our knowledge the singular value suppression and shrinkage (both at p = 1 and
smaller p values) have not been studied previously.



6 Deguang Kong, Miao Zhang and Chris Ding

−2 0 2
−2

−1

0

1

2

1
2
34

56
7

89
10
11
12

13
14

15

(a) original data

−2 0 2
−2

−1

0

1

2

13

13

14

14

15

15

(d)  p=1 outlier

−2 0 2
−2

−1

0

1

2

(h) p=1 non−outlier

−2 0 2
−2

−1

0

1

2

(f)  p=0.2 non−outlier

−2 0 2
−2

−1

0

1

2

13
13 14
14

15

15

(b) p=0.2 outlier

−2 0 2
−2

−1

0

1

2

13
13

14
14

15

15

(e) p=0.2 all data

−2 0 2
−2

−1

0

1

2

13

13

14

14

15

15

(c) p=0.5 outlier

−2 0 2
−2

−1

0

1

2

(g) p=0.5 non−outlier

Fig. 2. Demonstration of robust Schatten-p model of Eq.(3) on a toy data shown in panel (a):
original data shown as black circles. (x1 · · ·x12) are non-outliers and (x13 · · ·x15) are outliers.
Reconstructed data zi are shown as red-diamonds. Blue line indicates the subspace computed
from standard PCA on non-outlier data. Results of Schatten model at p = 0.2 are shown in (e).
This p = 0.2 results are split to outliers and non-outliers as shown in (b) and (f). Similarly, results
for p = 0.5 shown in (c) and (g); results for p = 1 shown in (d) and (h). At p = 1, non-outliers
shrink towards coordinate (0,0). At smaller p, non-outliers shrink far less.

4 Analysis and Algorithm of Model 1

We show how to solve Model 1 of Eq.(2) at different p values. This also serves as the
basic step in solving Model 2 of Eq.(3) using the ALM of §5. To our knowledge, this
problem has not been studied before.

Property 1 The global optimal solution for Eq.(2) at all 0 ≤ p ≤ 1, can be effi-
ciently computed, even though it is non-convex at p < 1.

Property 2 Rank of the optimal solution Z∗ has a closed form solution:

Theorem 1. Let the singular value decomposition (SVD) of X be X =
∑
k σkukv

T
k .

Then rank of optimal solution Z∗: rank(Z∗) = largest k, such that

σk ≤
(βp(2− p)(2−p)

(1− p)(1−p)
) 1

2−p

, 0 < p ≤ 1. (5)

In particular, p = 1, σk ≤ β; p = 1
2 , σk ≤ (

√
27
16β)

2
3

.

Property 3 Optimal solution Z∗ has a closed form solution at p = 1
2 .
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Property 4 Optimal solution Z∗ at 0 < p < 1 can be obtained using Newton’s
method.

To prove above 4 properties for Model 1 of Eq.(2), we need the following useful
lemma.

Lemma 1. Let the singular value decomposition (SVD) of X be X =
∑
k σkukv

T
k . The

global optimal Z for Eq.(2) is given by Z =
∑
k δkukv

T
k , where δk is given by solving,

min
δ1,··· ,δr

r∑
k=1

[1
2
(δk − σk)2 + βδpk

]
, s.t. δk ≥ 0, k = 1 · · · r. (6)

4.1 Proof of Lemma 1

Proof. Let the optimal solution of Z have the SVD Z = F∆GT where F = (f1 · · · fr)
and G = (g1 · · ·gr) are the singular vectors of Z, and ∆ = diag(δ1 · · · δr) be their
singular values. The key is to prove that the singular vectors of Z∗ are the same as those
of the input data X. Using von Neumann’s trace inequality

|Tr(ZTX)| ≤ Tr∆Σ =

r∑
k=1

δkσk. (7)

From this, we have

Tr(U∆VT )TX = Tr∆Σ ≥ Tr(ZTX) = Tr(F∆GT )TX, (8)

where the inequality comes from Eq.(7). The inequality

Tr(U∆VT )TX ≥ Tr(F∆GT )TX

implies
1

2
‖U∆VT −X‖2 + βTr∆p ≤ 1

2
‖F∆GT −X‖2 + βTr∆p.

This indicates (U,V) are better singular vectors for Z than (F,G). This proves that
the optimal singular vectors for Z must be the same singular vectors of X. Setting
Z = U∆VT in Eq.(2), we obtain Eq.(6).

4.2 Analysis of Property 1

Due to Lemma 1, we now solve the simpler problem of Eq.(6) instead of the original
harder problem of Eq.(2). Clearly the optimization of Eq.(6) decouples into r indepen-
dent subproblems, each for one δk:

min
δk

1

2
(δk − σk)2 + βδpk, s.t. δk ≥ 0. (9)

KKT complementarity slackness condition for δk ≥ 0 leads to
[
(δk − σk) +

pβδp−1k

]
δk = 0. The optimization of Eq.(9) decouples into r independent subprob-

lems, and each of them is of the type:
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min
x≥0

J(x) =
1

2
(x− a)2 + βxp, (10)

where x, a ∈ <. Here the correspondence between Eq.(10) and Eq.(9) is a = σk,
x = δk.J(x) is a weight sum over two functions: J(x) = f1(x) + βf2(x), where
f1(x) = 1

2 (x − a)2, f2(x) = xp. f1(x) has a local minima at x1 = a. f2(x) is a
singular function, p ≤ 1 with singularity at x2 = 0, which is also a local minima.

Therefore, J(x) in general has two local minima (x∗1, x
∗
2). Because f2(x) is singular

at x2, for Eq.(10), the singular point (local minima) does not change with different
weight β. Thus x∗2 = 0 is always a local minima.

When β is small, x∗1 = a. As β increases, x∗1 moves towards 0. At certain (β, p),
this local minima disappears, J(x) has only one local minima x∗2 = 0. This condition is
determined by the same condition as in Theorem 1 or Eq.(12) with σk = a. x∗1 is easily
computed using Property 4.

In summary, the optimal solution of Eq.(10) is either the trivial one x∗2 = 0 or
min(x∗1, x

∗
2), when x∗1 exits. This means Eq.(9) can be easily solved. Thus Eq.(6) can

be easily solved for each rank one at a time.

4.3 Proof of Theorem 1

Proof. First, optimization of Eq.(2) is equivalent to optimizing Eq.(10), which can be
further written as,

min
z≥0

g(z) =
1

2
(z − 1)2 + β̂zp, (11)

where z = x/a, β̂ = βa(p−2). First, we note a key quantity, the zero crossing point z0
exists, where the second derivative g′′(z) changes its sign, i.e., g′′(z0) = 0. We need
two lemmas.

Lemma 2. This cross point z0 always exists at any β.

Lemma 3. If the slope of cost function of Eq.(11) at the crossing point z0 is negative,
i.e., g′(z0) < 0, there exists two distinct local minima: z2 = 0 and z1 > 0. If g′(z0) ≥ 0,
z2 = 0 is the global optimal solution.

Lemmas 2 and 3 give the key properties of optimization of Eq.(11). Set g′′(z0) = 0,
we obtain z0 = [β̂p(1 − p)]

1
2−p . Lemma 2 states that z2 = 0 is the global solution,

g′(z0) = z0 − 1 + β̂pzp−10 ≥ 0, i.e., [β̂p(1 − p)]
1

2−p − 1 + β̂p[β̂p(1 − p)]
p−1
2−p ≥ 0.

Solving for β, we have,

β ≥ 1(1− p)(1−p)

p(2− p)(2−p)
· σk(2−p), 0 < p ≤ 1. (12)

This indicates that the optimal solution δk of Eq.(11) is zero (i.e., δk = 0), if Eq.(12)
holds. This completes the proof.

4.4 Analysis of Property 3

Clearly, at p = 1
2 , from Eq.(9), we need to solve δk−σk+(β/2)δ

−1/2
k = 0, s.t. δk ≥ 0.

Let ρk = ( δkσk
)
1/2

, µ = β

2σk

3
2

, this becomes ρ3k−ρk+µ = 0,where ρk ≥ 0. The analytic

solution of this cubic equation can be solved in closed form.



Minimal Shrinkage for Noisy Data Recovery Using Schatten-p Norm Objective 9

Algorithm 1 ALM algorithm to solve Eq.(3)
Input: data matrix X, parameter ρ > 1.
Output: low rank approximation Z.
Procedure:
1: Initialize E, Z, Ω, µ > 0, t = 0, ; ρ = 1.1
2: while Not converge do
3: Updating E according to Eq.(16)
4: Updating Z according to Eq.(17)
5: Updating Ω: Ω := Ω + µ(Z−X−E)
6: Updating µ: µ := ρµ
7: end while

4.5 Analysis of Property 4

From analysis of property 1, the optimization of Eq.(10) has two local optima: x∗1 >
0, x∗2 = 0. Our algorithm is: (b1) to use Newton’s method to compute x∗1; (b2) compare
J(x∗1), J(x∗2), and pick the smaller one. It is easy to see J ′(x) = x − a + βpxp−1,
J ′′(x) = 1+βp(p−1)xp−2.Using standard Newton’s method, we can update x through
x ← x − J′(x)

J′′(x) . This algorithm has quadratic convergence. In practical applications,
we found this Newton’s algorithm typically converges to local minima within a few
iterations.

5 ALM Algorithm to Solve Model 2

Augmented lagrange multipliers(ALM) have been widely used to solve different kinds
of optimization problems ( [10], [19]). Here we adapt standard ALM method [20, 19] to
solve Schatten-p model of Eq.(3). It is worth noting that it is not trivial to solve Eq.(3)
using ALM method. One challenging step is to solve the associated Schatten-p term
shown in §4.

According to ALM algorithm, by imposing constraint variable E = Z − X, the
problem of Eq.(3) is equivalent to solve,

min
E, Z

‖E‖1 + βTr(ZTZ)
p
2 , s.t. Z−X−E = 0. (13)

According to ALM algorithm, we need to solve,

min
E, Z

‖E‖1 + 〈Ω,Z−X−E〉+ µ

2
||Z−X−E||2F + βTr(ZTZ)

p
2 , (14)

where Lagrange multiplier is Ω and µ is penalty constant. For this problem, Ω and µ
updated in a specified pattern:

Ω ← Ω + µ(Z−X−E), µ← ρµ.

We need to search for optimal E, Z iteratively until the algorithm converges. Now we
discuss how we solve E, Z in each step.
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Update E To update the error matrix E, we derive Eq.(15) with fixed Z and obtain
the following form:

min
E

µ

2
||E−A||2F + ||E||1 (15)

where A = X − Z + Ω
µ . It is well-known that the solution to the above LASSO type

problem [21] is given by,

Eij = sign(Aij) max(|Aij | −
1

µ
, 0). (16)

Update Z To update Z while fixing E, we minimize the relevant part of Eq.(14),
which is

min
Z
βTr(ZZT )

p
2 +

µ

2
||Z−X−E+

Ω

µ
||2F . (17)

Setting B = X + E − Ω
µ , β̂ = β

µ , this optimization becomes Eq.(2), which has been
solved in §4.

6 Iterative Algorithm to Solve Model 2

We present another efficient iterative algorithm to solve Eq.(3), where the variable ma-
trix Z is updated iteratively. Suppose Zt is the value of Z at t-th step. At step t, the
key step of our algorithm is to iteratively update j-th column (zj) of Z one at a time,
according to

zj = A−1(A−1 + pλD−1
j )−1xj , (18)

where A = (ZtZ
T
t )p/2−1,Wij = 1/|(Zt − X)ij |,Dj = diag(wj), wj is the j-th

column of W. This process is iteratively done for 1 ≤ j ≤ n. Then Z is updated until
the algorithm converges. More detailed algorithm is summarized in Algorithm 2. In
computing zj of Eq.(18), we first use conjugate gradient method to compute z̃j , where
(A−1 + pλD−1j )z̃j = xj , and then zj = A−1z̃j .

Algorithm 2 An iterative algorithm to solve Eq.(3)
Input: X, λ
Output: Z
1: while not converge do
2: compute A−1

3: for j = 1 : n do
4: compute D−1

j , solve zj according to Eq.(18)
5: end for
6: end while



Minimal Shrinkage for Noisy Data Recovery Using Schatten-p Norm Objective 11

6.1 Convergence of Algorithm

Let J(Z) = ‖Z−X‖1 + βTr(ZTZ)
p
2 , we have

Theorem 2. Updating Z using Eq.(18), J(Z) decreases monotonically.

The proof requires the following two Lemmas.

Lemma 4. Define the objective function

J2(Z) = ‖Z−X‖2W + pβTr(ZTAZ). (19)

where ‖A‖2W =
∑
ij A

2
ijWij . The updated Zt+1 using Eq.(18) satisfies

J2(Zt+1) ≤ J2(Zt) (20)

Lemma 5. The updated Zt+1 using Eq.(18) satisfies

J(Zt+1)− J(Zt) ≤
1

2

[
J2(Zt+1)− J2(Zt)

]
(21)

6.2 Proof of Theorem 2

Proof. From Eq.(20), clearly, LHS of Eq.(21) is LHS ≤ 0.

6.3 Proof of Lemma 4
Proof. Setting ∂J2(Z)/∂Zij = 0, we have (Z−X)ijWij + pλ(AZ)ij = 0. This can
be written as ZijWij+pλ(AZ)ij = XijWij . In matrix form, Djzj+pλAzj = Djxj .
Thus we have

zj = (Dj + pλA)−1Djxj = [Dj(A
−1 + pλD−1

j )A]−1Djxj , (22)

which gives Eq.(18).

6.4 Proof of Lemma 5
Proof. Let ∆ = LHS - RHS of Eq.(21). We have ∆ = α+ β where

α =
∑
ij

[
|(Zt+1 −X)ij | − |(Zt −X)ij | −

(Zt+1 −X)2ij
2|(Zt −X)ij |

(Zt −X)2ij
2|(Zt −X)ij |

]
=
∑
ij

−1
2|(Zt −X)ij |

[
|(Zt+1 −X)ij | − |(Zt −X)ij |

]2
≤ 0.

and

β = λ
[
Tr(Zt+1Z

T
t+1)

p
2 − Tr(ZtZTt )

p
2

]
− p

2
λ
[
TrZTt+1(ZtZ

T
t )

p
2Zt+1 − TrZTt (ZtZ

T
t )

p
2Zt

]
= λ

[
Tr(Zt+1Z

T
t+1)

p
2 − Tr(ZtZTt )

p
2

]
− p

2
λTr
[(
Zt+1Z

T
t+1 − ZtZ

T
t

)
(ZtZ

T
t )

p
2

]
≤ 0, (23)

where in the last inequality, we set A = Zt+1Z
T
t+1, B = ZtZ

T
t and used Lemma 6

below. Clearly ∆ = α+ β ≤ 0.

Lemma 6. [24] For any two symmetric positive definite matrices F,G and 0 < p ≤ 2,

Tr [Fp/2 −Gp/2] ≤ p

2
Tr [(F−G)Gp/2−1] (24)

Due to space limit, we omit the proofs of Lemma 6 here.
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Table 1. Description of Data sets

Dataset #data #dimension #class
AT&T oc 400 2576 40

Binalpha oc 1404 320 36
Umist oc 360 644 20

YaleB 256 2016 4
CMUPIE oc 680 1024 68

Mnist oc 150 784 10

7 Connection to Related Works
We note [22] proposes an algorithm to solve squared schatten p model, i.e., minZ f(Z)+

β
(

Tr(ZTZ)
p
2

) 2
p

, which cannot be directly applied here. [23] proposes an iterative
reweighted algorithm for trace norm minimization problem, in the similar vein as what
has been proposed for adaptive lasso. However, it cannot be directly applied to solve
Eq.(3). As compared to [24, 25, 26, 27], our goal is for noisy data recovery problem
raised in computer vision, instead of for matrix completion problems with missing val-
ues.

8 Experiments
We use six widely used image data sets, including four face datasets: AT&T Umist,
YaleB [28] and CMUPIE; and two digit datasets: Mnist [29] and Binalpha 1. We gener-
ate occluded image datasets corresponding to 5 original data sets (except YaleB). For
YaleB dataset, the images are taken under different poses with different illumination
conditions. The shading parts of the images play the similar role of occlusion (noises).
Thus we use the original YaleB data with first 4 persons in our experiments. For the
other 5 datasets, half of the images are selected from each category for occlusion with
block size of wxw pixels (e.g., w = 10). The locations of occlusions are random gen-
erated without overlaps among the images from the same category. Occluded images
(with occlusion size 7× 7) generated from Umist data sets are shown in Fig. 4. Table 1
summarizes the characteristics of these occluded data sets.

We did all experiments using Eq.(3). At p < 1, objective function in Eq.(3) is
not convex any more, and we cannot get global minima. We initialize Z using trace
norm minimization solution, i.e., set p = 1 in Eq.(3). In the following experiments, we
did both algorithms proposed in §5-6, and reported the results using the one achieving
smaller objectives.

Illustrative examples To visualize the denoising effect of proposed method, we
apply our model on YaleB dataset. YaleB contains images with different shading which
plays similar role of occlusion (noises). Thus we did not add occlusion and use the
original data. In this demonstration and following experiment, each data (image) is
linearized into a vector each xi, and the input matrix X is constructed as X = (x1,x2, ··
·,xn). We typically set the rank k equal to the number of classes in the dataset. Due to
space limit, computed Z at different p values for the two persons are shown. In Fig.(3),
1 http://www.kyb.tuebingen.mpg.de/ssl-book/ benchmarks.html
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Fig. 3. Reconstructed images (Z) of YaleB dataset using Model 2 of Eq.(3) shown in 1 panel.
First line: original images of one person, Second line: reconstructed images Z at p = 1, Third
line: reconstructed images at p = 0.2. One can see p = 1 images are very similar to each other
(most fine details are lost), while p = 0.2 images retain some fine details and are closer to original
images.

Fig. 4. Occluded image dataset Umist.

20 images are shown as 2 panels, each panel for one person. On each panel, the first
line images are original images X, the 2nd line are computed Z at p = 1, and 3rd line
are computed Z at 0.2.

Clearly, at different p values (such as p = {1, 0.2}), Schatten p-Norm model can
effectively recover the original data by removing the shadings. See 2nd line on each
panel in Fig.(3), almost every person is recovered to same template, not any difference
any more. In contrast, we have much better visualization results (with more details)
when p = 0.2 (see 3rd line on each panel). Moreover, these fine details are expected to
be helpful for classification on images from different persons.

Table 2. True data recovery: True signal reconstruction error at different p on six datasets

dataset ||XE ||F
||X0||F

Noise-free reconstruction error at different p
p = 1 p = 0.75 p = 0.5 p = 0.2 p = 0

AT&T 0.3657 0.2672 0.2240 0.2199 0.2159 0.2132
Binalpha 0.2359 0.2023 0.1974 0.1845 0.1594 0.1729
Umist 0.3123 0.2816 0.2290 0.2199 0.2153 0.2151
YaleB N/A 0.2304 0.2264 0.2174 0.1912 0.2126
CMUPIE 0.2542 0.2012 0.1925 0.1845 0.1594 0.1729
Mnist 0.5574 0.5123 0.4993 0.4814 0.4542 0.4553
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True data recovery: true signal reconstruction error Given noisy data X, X =
X0 + XE , where X0 is the true signal and XE is the noise. Our goal is to recover X0

using Eq.(3). We did experiments on above 6 datasets. To evaluate the performance,
we define the true signal data recovery error, Etrue-signal = ||Z−X0||F

||X0||F . Clearly, smaller
Etrue-signal values indicate better recovery. Computed true signal reconstruction error are
shown in Table.2. The experiment results indicate that true signal reconstruction errors
are smaller at smaller p values. We also list ||XE ||F

||X0||F values in Table.2 to indicate the

level of occlusions. Interestingly, Etrue-signal <
||XE ||F
||X0||F on all datasets at different p

values. This further confirms “de-noisy” effects of proposed data recovery model.

Table 3. Loss of fine-details: variance of reconstructed Z on six datasets, original images: X0,
occluded images: X

dataset X0 X Variance of Z at different p
p = 1 p = 0.75 p = 0.5 p = 0.2 p = 0

AT&T 8.89 9.03 5.83 7.13 7.45 8.11 7.80
Binalpha 27.90 31.13 13.40 22.89 25.38 26.89 26.73
Umist 7.01 7.42 3.87 5.31 5.71 6.38 6.01
YaleB 9.75 9.75 7.28 8.22 8.59 9.19 8.76
CMUPIE 12.09 13.16 8.12 10.07 10.54 11.30 10.87
Mnist 9.24 10.26 0.49 4.41 5.45 7.04 5.85

Loss of fine details in recovered data and its measure Due to suppression of
higher order/frequency terms associated with smaller singular values, fine details of
original data X are lost in the recovered Z. As a consequence, recovered individual
images are very similar to each other. One numeric measure is the variance of recon-
structed images. We therefore define var(Z) =

∑n
i=1 ||zi − z̄||2, z̄ = 1

n

∑n
i=1 zi,

where zi ∈ <d×1 is the reconstructed image corresponding to each original image xi.
Larger variance values indicate more fine details are preserved in the solution Z. Com-
puted variance of Z are shown in Table.3. Clearly, reconstructed images preserve more
detailed information at small p (say p = 0.2). One demonstrating example is shown in
Fig.3, where fine details of individual images are mostly suppressed at p = 1, but are
generally preserved/reetained at p = 0.2.

Classification results using recovered Z So far we have discussed low rank re-
covery capability of computed Z. Reconstructed low rank Z is expected to have much
clear structure after removing noises and outliers. As a by-product of solving low-rank
data recovery problem, computed Z can be used for classification tasks. We compare
the classification results by using the occluded images X and recovered data Z at dif-
ferent p. The experiments are done on two widely used classifiers: k nearest neighbor
(kNN) and support vector machine1 using 5 fold cross validation. Since the regular-
ization coefficient is also a hyper-parameter, the performance of each Schatten-p norm
model is evaluated at an optimal value of β (which is determined by cross validation).
The experiment results are shown in Table.4. We have two important observations from
1 http://www.csie.ntu.edu.tw/ cjlin/libsvm/
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Table 4. classification accuracy(shown as percentage) on six occluded datasets using input cor-
rupted data X and reconstructed Z at different p values

dataset method X Reconstructed Z at different p
p = 1 p = 0.75 p = 0.5 p = 0.2 p = 0

AT&T
SVM 29.75 30.52 33.75 34.25 36.78 35.53
KNN 25.75 28.63 30.25 28.75 29.31 28.33

Binalpha
SVM 38.35 44.78 42.74 43.84 48.53 47.43
KNN 52.09 56.78 55.10 54.65 58.23 57.87

Umist
SVM 59.83 65.89 63.17 64.35 68.33 67.67
KNN 89.12 93.89 92.67 93.75 94.23 93.01

YaleB
SVM 46.11 52.12 51.89 53.78 54.67 54.96
KNN 85.43 90.89 90.36 91.15 91.76 91.40

CMUPIE
SVM 29.24 33.57 36.74 34.21 35.39 34.98
KNN 58.12 64.03 65.38 64.27 66.39 65.64

Mnist
SVM 49.38 51.93 53.24 57.18 56.79 54.67
KNN 76.63 81.35 80.75 81.56 82.47 82.34

experiment results. (1) Performances for image categorization tasks are improved by
using computed Z at different p values; (2) Classification accuracy is consistently bet-
ter at smaller p values on both SVM and kNN classifiers, as compared to that at large p
values. All above results suggest us to use Schatten p-Norm at small p values.

9 Conclusion
We present novel models for low-rank data recovery, where efficient algorithms are
proposed. Extensive experiment results indicate schatten p model gives relatively better
reconstructed results at small p values. In the next step, we will further explore how to
scale our model for large-size problems.
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