
Learning Graph-based Representations for Continuous

Reinforcement Learning Domains

Jan Hendrik Metzen

Robotics Group, University of Bremen

Robert-Hooke-Straße 5, 28359 Bremen, Germany

jhm@informatik.uni-bremen.de

Abstract. Graph-based domain representations have been used in discrete rein-

forcement learning domains as basis for, e.g., autonomous skill discovery and

representation learning. These abilities are also highly relevant for learning in

domains which have structured, continuous state spaces as they allow to de-

compose complex problems into simpler ones and reduce the burden of hand-

engineering features. However, since graphs are inherently discrete structures,

the extension of these approaches to continuous domains is not straight-forward.

We argue that graphs should be seen as discrete, generative models of continu-

ous domains. Based on this intuition, we define the likelihood of a graph for a

given set of observed state transitions and derive a heuristic method entitled FIGE

that allows to learn graph-based representations of continuous domains with large

likelihood. Based on FIGE, we present a new skill discovery approach for contin-

uous domains. Furthermore, we show that the learning of representations can be

considerably improved by using FIGE.

1 Introduction

Reinforcement Learning (RL) allows autonomous agents to learn to improve their per-

formance with experience in an unknown environment. However, typically represen-

tations for policies and value functions need to be carefully hand-engineered for the

specific domain and learned knowledge is not efficiently reused in situations when an

agent has to solve several different but related tasks. Representation learning for RL [7]

and hierarchical RL [1] are approaches to alleviate these drawbacks.

Graph-based representations of the domain have been used as basis for both repre-

sentation learning and hierarchical RL. For instance, Mahadevan and Maggioni [7] have

learned useful internal representations called proto-value functions based on a graph

representation of the domain. Such graphs have also been used to identify bottleneck

states of the environment [8, 10, 13] which are a common basis for skill discovery in

hierarchical RL. While these graph-based approaches have shown promising results in

domains with discrete state and action spaces, extending them to continuous domains is

not straight-forward. This is mainly due to the fact that graphs are intrinsically discrete

structures and thus cannot directly model a continuous environment.

Previous work on graph-based approaches in continuous domains has thus either

discretized the domain, i.e., placed graph nodes at a regular grid over the state space

2 Jan Hendrik Metzen

[8], or placed graph nodes at a subset of the observed states [7]. While the former suf-

fers from the curse-of-dimensionality, the later allows to exploit situations where the

effective dimensionality of the state space is smaller. However, both approaches focus

purely on covering the state space as uniformly as possible and neglect the dynamics

of the environment. We argue that graph representations should take the dynamics into

account since they can be seen as a model of the environment. That is, typical transi-

tions encountered in the domain should be representable by the graph. The hypothesis

evaluated in this paper is that a graph, which models the dynamics of its (continuous)

environment well, will yield superior results with regard to representation learning and

bottleneck identification. We propose a new heuristic called FIGE which allows to learn

graph representations that explicitly aim at modeling the environment’s dynamics.

The outline of the paper is as follows: In Section 2, we review graph-based RL

methods and discuss how graph representations have been generated in these methods.

In Section 3, we define the likelihood of a graph for a given set of transitions sampled

according to the domain’s dynamics. Thereupon, we propose the FIGE heuristic for

learning graph representations of continuous environments, which is derived from the

maximum graph likelihood formulation under simplifying assumptions. Furthermore,

we compare FIGE with other graph learning heuristics empirically with regard to the

graph likelihood. In Section 4, we propose and evaluate a new graph-based skill dis-

covery method for continuous domains, which is based on the FIGE heuristic. Similarly,

in Section 5, we present empirical evidence that Representation Policy Iteration [7] can

benefit from using FIGE for graph generation in continuous domains. We summarize the

results of this paper and provide an outlook in Section 6.

2 Graph-based Reinforcement Learning

A Markov decision process (MDP) M can be formalized as a 4-tuple M =(S,A,Pa
ss′,R

a
ss′)

where S is a set of states, A is a set of actions, Pa
ss′ = P(st+1 = s′|st = s,at = a) is

the 1-step state transition probability also referred to as the “dynamics”, and Ra
ss′ =

E{rt+1|st = s,at = a,st+1 = s′} is the expected reward. In RL, these quantities are usu-

ally unknown to the agent but can be estimated based on samples collected during ex-

ploration. If both S and A are finite, we call M a discrete MDP, otherwise we call it a

continuous MDP. If for all s ∈ S,a ∈ A there exists one s′ ∈ S with Pa
ss′ = 1, the MDP is

called deterministic otherwise it is a stochastic MDP. The goal of RL is to learn without

explicit knowledge of M a policy π∗ such that some measure of the long-term reward is

maximized. Learning is often based on approximating the optimal action-value function

Q∗(s,a) = ∑s′ P
a
ss′ [R

a
ss′+ γ maxa′Q

∗(s′,a′)], where γ ∈ [0,1] is a discount factor.

One way of representing a (finite) MDP is using a weighted labeled multigraph

G = (V,E,w). Assuming knowledge of M, we would set V = S and E = {(s,s′)a|∀s,s′ ∈
S,a ∈ A : Pa

ss′ > 0}. In a state transition graph [7, 10], edge weights encode transition

probabilities between nodes. If we set the weight of edge (s,s′)a to wa
ss′ = Pa

ss′ , a state

transition graph is just an other way of representing the domain’s dynamics. However,

the graph-based view of the MDP is particularly suited for representation learning [7]

and for identifying bottlenecks of the MDP [8–10, 12, 13], which is a common prerequi-

site for skill discovery in hierarchical RL. In small and discrete domains, learning state

Learning Graph-based Representations 3

transition graphs from experience for unknown MDPs is straightforward: one graph

node is created for each observed domain state and an edge is created for any pair of

states between which a direct transition has been observed. For domains with continu-

ous state spaces S⊂Rd , the situation is more complicated because graphs are inherently

discrete structures and thus, there cannot be a 1-to-1 correspondence between states and

graph nodes since there exists an infinite number of states. Thus, several states need to

be aggregated into one node, i.e., V (S. Accordingly, one has to choose how many

nodes there should be and where in the state space these nodes should be placed.

Prior work on choosing the positions of the graph nodes has mainly focused on cov-

ering the state space uniformly with nodes and neglected the domain’s dynamics Pa
ss′ .

Among these approaches are: (a) a heuristic which forms a uniform grid of vnum nodes

over the state space with a grid resolution of ⌊ d
√

vnum⌋ per dimensions. This approach

has been used in the context of graph-based skill discovery, e.g., by Mannor et al. [8].

An obvious disadvantage is that the approach will not scale to domains with many di-

mensions. (b) The on-policy sampling heuristic (also denoted as “random subsampling”

by Mahadevan and Maggioni [7]), which samples vnum graph nodes uniform randomly

from the set of states S′ encountered during exploration. The heuristic is on-policy, i.e.,

regions of the state space that are often visited by the sampling policy are represented

by more graph nodes. (c) The ε-net heuristic, also denoted as “trajectory-based subsam-

pling” [7], which aims at covering the “effective state space” as uniformly as possible.

It follows a greedy strategy for finding a locally maximal set of graph nodes V ⊂ S′ with

pairwise distance at least ε . The advantage of this approach compared to the on-policy

sampling method is that the effective state space is covered more uniformly. In order

to parametrize the heuristic by vnum instead of ε , one can perform binary search for a

value of ε that yields a set of graph nodes with cardinality vnum.

3 FIGE: Force-based Iterative Graph Estimation

While the heuristics discussed in Section 2 focus on covering the state space uniformly,

they do not take the domain’s dynamics into account. Thus, for many valid state tran-

sitions s→ s′ of the domain, there may not be any pair of graph nodes v1,v2 ∈ V such

that v1→ v2 is a good representation of s→ s′. Accordingly, the graph may not be able

to capture the domain’s dynamics Pa
ss′ accurately. In this section, we propose a genera-

tive process which defines how probable a set of observed transition has been generated

from a transition graph. We then propose the heuristic FIGE which is derived from this

generative process as maximum likelihood solution under simplifying assumptions.

3.1 Likelihood of Transition Graph

We propose to consider a graph as a generative model for transitions and to choose

graph node positions such that the likelihood p(T |G) of the resulting graph G for a set

of observed transitions T = {(si,ai,s
′
i)}n

i=1 becomes maximal. We consider transitions

to have been sampled from the graph using the following generative process: (1) Sample

a graph node v ∈ V uniform randomly, i.e., p(v) = 1/|V |. (2) Sample a state s for a

given node v according to p(s|v) = Nb exp(− 1
b2 ‖s− v‖2

2) where b controls how closely

4 Jan Hendrik Metzen

centered p(s|v) is on v and Nb is a normalization constant, which only depends on

b. (3) Sample an action a uniformly from the action space A, i.e, p(a|s) = p(a) =
1/|A|. (4) Sample the “successor node” v′ according to the graph’s edge weights, i.e.,

p(v′|v,a) = wa
vv′ . (5) Finally, sample the successor state s′ according to the distribution

p(s′|v′,v,s) = Nb exp(− 1
b2 ‖s′− (v′− v+ s)‖2

2) with the same b and Nb as before. This

distribution encourages that the state transition s→ s′ is close to parallel to the given

node transition v→ v′. This 5-step generative process can be derived as follows:

p(T |G) =
n

∏
i=1

p((si,ai,s
′
i)|G) =

n

∏
i=1

pG(si)p(ai|si)pG(s
′
i|si,ai)

Under the independence assumptions I = {v⊥ a|s;v′ ⊥ s|v,a;s′ ⊥ a|v′,v′,s}, we have

pG(s
′|s,a) = ∑

v

pG(v,s
′|s,a) = ∑

v

pG(v|s,a)pG(s
′|v,s,a)

= ∑
v

pG(v|s,a)∑
v′

pG(v
′,s′|v,s,a) = ∑

v

pG(v|s,a)∑
v′

pG(v
′|v,s,a)pG(s

′|v′,v,s,a)

I
= ∑

v

pG(v|s)∑
v′

p(v′|v,a)pG(s
′|v′,v,s)

Inserting this in p(T |G) and using Bayes rule pG(v|s) = p(s|v)p(v)/pG(s) yields

p(T |G) =
n

∏
i=1

pG(si)p(ai|si)

[

∑
v∈V

p(si|v)p(v)

pG(si)
∑

v′∈V

p(v′|v,a)p(s′i|v′,v,si)

]

=
n

∏
i=1

p(ai|si)
(3)

[

∑
v∈V

p(v)
(1)

p(si|v)
(2)

∑
v′∈V

p(v′|v,a)
(4)

p(s′i|v′,v,si)
(5)

]

.

3.2 Method

Given the generative process discussed in the previous section, the optimal state tran-

sition graph for a given set of transitions T would be G∗ = argmaxG p(T |G). Unfor-

tunately, solving this problem directly is hard; we propose the FIGE heuristic, which

aims at finding close-to-optimal transition graphs iteratively and is computationally

tractable. FIGE’s update equations are derived from the maximum likelihood objective

G∗ = argmaxG p(T |G) using two simplifying assumptions (see Appendix A): (A1) For

each transition (s,a,s′)∈ T , assume p(v′|v,a) = 1 if v= NNV (s)∧v′ = NNV (s
′) else 0,

where NNV (s) = argminv∈V ||s− v||2. This assumption implies that whenever action a

is executed in any state of the Voronoi cell Vo(v) = {s ∈ S|NNV (s) = v} the succes-

sor state will be with probability 1 in Vo(v′). (A2) Assume p(T |V) = ∏v p(T |v). This

assumption implies that the choice of the positions of the graph nodes v ∈ V can be

made independently. Both assumptions are typically oversimplifying; A1 is more over-

simplifying for domains whose dynamics are less locally smooth. A2 on the other hand

is more simplifying in strongly connected domains where many transitions from the

Voronoi cell of one node to the Voronoi cell of another node occur. To account for some

Learning Graph-based Representations 5

Algorithm 1 Force-based Iterative Graph Estimation (FIGE)

1: Input: Transitions T = {(si,ai,s
′
i)}n

i=1, parameters vnum, K

2: # Choose initial node positions V from states in T s.t. distance of closest pair is maximized

3: V = INITIALIZE(T,vnum)
4: for i = 0 to K−1 do

5: for all v ∈V do

6: SV [v] = {s | ∃(s,a,s′) ∈ T : NNV (s) = v} # Observed states in Voronoi cell Vo(v)
7: FS[v] = MEAN(SV [v])−v # Sample representation force

8: T→(v) = {NNV (s
′)− s′+ s | ∃(s,a,s′) ∈ T : NNV (s) = v} # Transitions starting in Vo(v)

9: T←(v) = {NNV (s)− s+ s′ | ∃(s,a,s′) ∈ T : NNV (s
′) = v} # Transitions ending in Vo(v)

10: FG[v] = 0.5 · [MEAN(T→(v))+MEAN(T←(v))]−v # Graph consistency force

11: V =V +αi ·0.5(FS[V]+FG[V]) # Update node positions (vector notation)

12: # Count transitions from Voronoi cell Vo(v) to Voronoi cell Vo(v′) under action a

13: Na
vv′ = |{(s,s′) | ∃ (s,a,s′) ∈ T : NNV (s) = v∧NNV (s

′) = v′}|
14: E =

{

(v,v′)a | v,v′ ∈V a ∈ A : Na
vv′ > 0

}

Edge between v and v′ labeled with action a

15: wa
vv′ = Na

vv′/∑ṽ Na
vṽ # Edge weights are empirical transition probabilities on graph

16: return (V,E,w)

of the errors made because of the oversimplifications of A1 and A2, FIGE iteratively re-

fines the graph node positions by applying the derived update equations several times.

Note that FIGE is a heuristic and no guarantee for converging to G∗ is given.

FIGE is summarized in Algorithm 1: The set of graph nodes V is initialized such that

it covers the set of states contained in T uniformly by, e.g., maximizing the distance of

the closest pair of graph nodes (line 3). Afterwards, for K iterations, the graph nodes are

moved according to two kind of “forces” that act on them: The “sample representation”

force (line 6-7) pulls each graph node v to the mean of all states Sv for which it is

responsible, i.e., the states s for which it is the nearest neighbor NNV (s) in V . Thus,

this force encourages node positions that capture the on-policy state distribution well

and corresponds to an intrinsic k-means clustering. The “graph consistency” force (line

8-10) pulls each graph node v to a position where for all (s,a,s′) ∈ T with NNV (s) = v

there is a vertex v′ such that v′− v is similar to s′− s, i.e., both vectors are close to

parallel. Thus, this force encourages node positions which can represent the domain’s

dynamics well. The nodes are then moved according to the two forces (line 11), where

the parameter αi ∈ (0,1] controls how greedily the node is moved to the position where

the forces would become minimal. In order to ensure convergence of the graph nodes,

αi should go to 0 for i approaching K. If not explicitly stated, we use αi = ⌈i/5⌉−1

and K = 15. An edge labeled with action a is added between two nodes v and v′ if

there exists at least one transition (s,a,s′) ∈ T with s being in the Voronoi cell of Vo(v)
and s in Vo(v′) (line 14). Furthermore, the edge weights are chosen as the empirical

transition probabilities P̂a
vv′ from node v to v′ under action a (line 15). It has recently

been shown that this choice of edge weights is most robust under varying degrees of

domain stochasticity and different exploration strategies of the agent [11].

6 Jan Hendrik Metzen

0 100 200 300 400 500

Number of graph nodes (vnum)

−1

0

1

2

3

4

L
o
g

L
ik

el
ih

o
o
d
-R

at
io

×103

0.0 0.2 0.4 0.6 0.8 1.0

Transition Noise (σT)

−1

0

1

2

3

4
×103

FIGE

ε-net

Grid

On-Policy Sampl.

Fig. 1. Left graph: Graph Log Likelihood-Ratio relative to grid heuristic in deterministic moun-

tain car for different values for the number of graph nodes. Right graph: Graph Log Likelihood-

Ratio relative to grid heuristic in the stochastic mountain car domain for varying stochasticity σt

and vnum = 200. Shown are mean and standard error of mean over 20 repetitions.

3.3 Evaluation: Graph Likelihood

In this section, we present an empirical comparison of the different heuristics with re-

gard to the obtained likelihood of the generated graphs in the mountain car domain

(compare Chapter 8.4 of Sutton and Barto [15]). In the left graph of Figure 1, the graph

likelihood with b = 0.02 is evaluated for different heuristics and different number of

graph nodes vnum. Since the likelihood depends on vnum, we plot the log of the ratio

of the method’s likelihood relative to the likelihood obtained by the data-independent

grid heuristic. Note that the graph likelihood has been evaluated on test transitions Ttest

which were different from the training transitions Ttrain that were used for the optimiza-

tion of graph node positions (|Ttrain|= 5000, and |Ttest |= 105).

Regardless of vnum, the largest graph likelihood is achieved by FIGE and the smallest

by the grid heuristic (for vnum > 75). The on-policy sampling heuristic performs slightly

better than ε-net for vnum < 150 while both perform similarly for larger vnum. A possi-

ble explanation for the stronger deterioration of ε-net is that for small vnum, the minimal

node distance ε gets larger than the typical distance of states and their successors and

thus, Pa
ss′ cannot be represented in any part of the state space. In contrast, on-policy sam-

pling allocates more graph nodes in densely sampled parts of the state space and thus

allows to model at least these parts of the state space. FIGE can achieve a considerably

larger graph likelihood than both by taking the domain’s dynamics into account as well.

In a second experiment, we evaluate how robust the different heuristics are with

regard to increasing stochasticity in the domain’s state transition probability Pa
ss′ . For

this, we modify any transition from state s to s′ governed by the domain’s determin-

istic dynamics such that the i-the dimension of the actual successor state becomes

s′i ← s′i + σi(s
′
i − si) with σi sampled uniformly from [−σt ,σt]. Note that this is not

purely observation noise since the actual internal state of the environment is altered.

σt controls how “strong” the stochasticity of the domain is, with σt = 0 corresponding

to the deterministic domain. The same amount of transition noise was also used for

generating the test transitions Ttest . The results are shown in the right graph in Figure

Learning Graph-based Representations 7

1. As expected, the grid-based heuristic deteriorates less with increasing stochasticity

as it does not take the observed transitions into account. Nevertheless, the other data-

dependent heuristics achieve better graph likelihood for σt < 0.8 with FIGE remaining

the best heuristic for the whole investigated range of σt ∈ [0,1]. This shows that FIGE is

also suited for stochastic domains.

4 Graph-based Skill Discovery

Next to continuous action spaces, scaling RL to real-world problems with large or con-

tinuous state spaces remains a challenge since the amount of experience the agent can

collect is limited. One approach to alleviate this problem is hierarchical RL [1], which

aims at dividing a problem into simpler subproblems, learning solutions for these sub-

problems, and encapsulate the acquired knowledge into so-called skills that can poten-

tially be reused later on in the learning process. It has been shown that skills can help

an agent to adapt to non-stationarity of the environment and to transfer knowledge be-

tween different but related tasks [3] and can increase the representability of the value

function in continuous domains [5]. A major challenge in hierarchical RL is to iden-

tify what might constitute a useful skill, i.e., how the problem should be decomposed.

Skills should be reusable, distinct, and easy to learn. The task of identifying such skills

is called skill discovery [2, 4].

Most prior work on autonomous skill discovery is based on the concept of bottle-

neck areas in the state space. Informally, bottleneck areas have been described as the

border states of densely connected areas in the state space [10] or as states that allow

transitions to a different part of the environment [12]. Several heuristics have been pro-

posed to identify bottlenecks. One class of heuristics are frequency-based approaches

that compute local statistics of states like diverse density [9] and relative novelty [12].

An other class of heuristics that is typically more sample-efficient are graph-based ap-

proaches which are based on estimates of the domain’s state transition graph (see Sec-

tion 2). Graph-based approaches to skill discovery aim at partitioning this graph into

subgraphs which are densely connected internally but only weakly connected with each

other. Menache et al. [10] propose a top-down approach for partitioning the global

transition graph based on the max-flow/min-cut heuristic. Şimşek et al. [13] follow a

similar approach but partition local estimates of the global transition graph using a

spectral clustering algorithm and use repeated sampling for identifying globally con-

sistent bottlenecks. Mannor et al. [8] propose a bottom-up approach that partitions the

global transition graph using agglomerative hierarchical clustering.

Relatively few works on autonomous skill discovery in domains with continuous

state spaces exist. Mannor et al. [8] have evaluated their approach in the mountain car

domain by uniformly discretizing the state space. However, such a uniform discretiza-

tion is suboptimal since it does not scale well to higher dimensional state spaces. One

skill discovery method that has been designed for continuous domains is “skill chain-

ing” [5]. Skill chaining produces chains (or more general: trees) of skills such that each

skill allows to reach a specific region of the state space, such as a terminal region or a

region where an other skill can be invoked. Skill chaining requires to specify an area of

interest (typically the terminal region of the state space) which is used as target for the

8 Jan Hendrik Metzen

skill at the root of the tree. For multi-task domains with several goal regions, it is unclear

how the root of the skill tree should be chosen. In the next section, we present a generic

algorithm for graph-based skill discovery in MDPs with continuous state spaces.

4.1 Approach: Skill Discovery by Clustering of Transition Graph

We adopt the options framework [14] for Hierarchical RL, in which skills are formalized

as options: An option o consists of three components: the option’s initiation set Io ⊂ S

that defines the states in which the option may be invoked, the option’s termination

condition βo : S→ [0,1] which specifies the probability of option execution terminating

in a given state, and the option’s policy πo which defines the probability of executing

an action in a state under option o. In the options framework, the agent’s policy π may

in any state s decide not solely to execute a primitive action but also to call any of the

options for which s ∈ Io. If an option is invoked, the option’s policy πo is followed for

several time steps until the option terminates according to βo. The option’s policy πo is

defined relative to an option-specific reward function Ro that may differ from the global

external reward function. Skill discovery thus requires to choose Io, βo, and Ro.

For a given set of observed transitions T that have been sampled from the MDP,

we can generate the state transition graph using any of the approaches discussed in this

paper. Based on the generated transition graph, any of the graph-based skill discovery

approaches for discrete MDPs could be used to identify skills. We adopt the concept

of identifying densely connected subgraphs of the transition graph, which correspond

to densely connected regions in the state space. In order to quantify to what extent the

edges connecting two disjoint subgraphs form a bottleneck, a so-called linkage crite-

rion is used. A linkage criterion is a function mapping two disjoint subgraphs A,B⊂ G

onto a scalar, which is the larger the “stronger” the bottleneck between A and B in G

is. In this paper, we adopt the off-policy N̂cut linkage criterion that was proposed by

Metzen [11]. The N̂cut criterion is an approximation of the sum of probabilities that

the agent transitions in one time step from a state in subgraph A to a state in sub-

graph B or vice versa. For identifying densely connected subgraphs of a graph G, we

aim to determine a partition C∗ of minimal cardinality of the graph nodes into dis-

joint sets ci such that each induced subgraph does not contain a bottleneck. Formally:

C∗ = arg min
C∈C (V)

|C| s.t. max
ci∈C,di⊂ci

N̂cut (ci \di,di)≤ ψ , with C (V) being the set of all possi-

ble partitions of V and ψ a parameter controlling the granularity of the clustering. Note

that the maximization goes over all possible ways of splitting ci into two parts di and

ci \ di and the constraint guarantees that there is no bottleneck with N̂cut > ψ in any of

the ci. Since finding the optimal solution for this problem is NP-hard, we use an ap-

proximate approach that is based on agglomerative hierarchical clustering and similar

to the one proposed by Mannor et al. [8]. This algorithm starts by assigning each node

into a separate cluster and afterwards merges greedily the pair of clusters with minimal

linkage until no pair remains with a linkage below ψ . As proposed by Mannor et al.,

only clusters which are connected in G can be merged.

For learning an option o based on a newly discovered skill, we need to choose ap-

propriate Io, βo, and Ro based on the identified partitioning CG of the transition graph.

For this, the partition CG of the transition graph is generalized to a partition of the en-

Learning Graph-based Representations 9

tire state space CS by a nearest-neighbor based approach, i.e., for all clusters ci ∈ CG:

CS(ci) = {s ∈ S | NNV (s) ∈ ci}. For each cluster A, one skill is generated for each adja-

cent cluster B, where A and B are adjacent if there exists va ∈A,vb ∈ B and action a such

that (va,vb)a ∈ E . The corresponding skill prototype (IA→B,βA→B,RA→B) is defined as:

IA→B =CS(A) βA→B(s) = 0 if s ∈ IA→B else 1

RA→B((s,a,r,s
′)) =−1 if s′ ∈ (CS(A)∪CS(B)) else rp,

where rp is a parameter of the algorithm that determines the penalty for failing to ful-

fill a skill’s objective. Additionally, for each cluster that contains nodes in which an

episode has terminated, a special skill is created that can be invoked in any state of

the cluster, terminates successfully when the episode terminates, and terminates unsuc-

cessfully (i.e., obtains the penalty reward) if the clusters is left. Note that in contrast

to Mannor et al. [8], the generalization of the graph partition to the entire state space

allows to perform the learning of skills and higher-level policies in the original MDP

and not in a discretized version of it.

4.2 Evaluation

In this section, we present an empirical evaluation of the proposed skill discovery ap-

proach in the 2D Multi-Valley environment, which is an extension of the basic moun-

tain car domain. The car the agent controls is not restrained to a one-dimensional sur-

face, however, but to a two-dimensional surface. This two-dimensional surface con-

sists of 2× 2 = 4 valleys, whose borders are at (π/6± π/3,π/6± π/3). The agent

observes four continuous state variables: the positions in the two dimensions (x and

y) and the two corresponding velocities (vx and vy). The agent can choose among

the four discrete actions northwest, northeast, southwest, southeast which add

(±0.001,±0.001) to (vx,vy). In each time step, due to gravity 0.004cos(3x) is added

to vx and 0.004cos(3y) to vy. The maximal absolute velocity in each dimension is re-

strained to 0.07. The agent is faced with a multi-task scenario: in each episode, the agent

has to solve one out of twelve tasks. Each task is associated with a combination of two

distinct valleys; e.g., in task (0,1) the agent starts in the floor1 of valley 0 and has to

navigate to the floor of valley 1 and reduce its velocity such that
∣

∣

∣

∣(vx,vy)
∣

∣

∣

∣

2
≤ 0.03.

In each time step, the agent receives a reward of r = −1. Once a task is solved, the

next episode starts with the car remaining at its current position and one of the tasks

that starts in this valley is drawn at random. The current task is communicated as an

additional state space dimension to the agent; the agent uses it for learning the top-level

policy but ignores it during graph generation, graph clustering, and skill learning such

that skills are reusable in different tasks.

We present an empirical comparison of the learning performance of the entire hier-

archical RL architecture with different graph node selection heuristics as base for skill

discovery. We compare the performance to two baselines: (i) a monolithic approach

which learns a flat policy for every task without using skills, and (ii) the same hierar-

chical RL framework but with predefined skills prototype (Io, βo, Ro). These prototypes

1 The floor of valley 0 corresponds to the region ((−1/6±2/15)π,(−1/6±2/15)π).

10 Jan Hendrik Metzen

0

−1

−2

−3

−4

A
cc

u
m

u
la

te
d

re
w

ar
d

×106

Predefined

Monolithic

vnum = 50 vnum = 100

0 500 1000 1500 2000

Episodes

0

−1

−2

−3

−4

A
cc

u
m

u
la

te
d

re
w

ar
d

×106

vnum = 150

0 500 1000 1500 2000

Episodes

vnum = 500

FIGE

ε-net

On-Policy Sampl.

Grid

Fig. 2. Accumulated reward in the 2D Multi-Valley domain during 2400 episodes of learning for

different graph generation heuristics and graph sizes. Baselines show performance of a monolithic

learner and for the optimal predefined skill prototypes. Shown are mean and standard error of

mean over 10 repetitions.

have been generated in the same way as those discovered using graph clustering but

are based on the ground-truth partition of the domain into the 4 valleys. Thus, baseline

(ii) presents probably an upper boundary for the performance that any skill discovery

method can achieve within the given hierarchical RL architecture.

Skill discovery has been performed after n = 105 state transitions have been ob-

served in the environment and graphs with vnum ∈ {50,100,150,500} nodes have been

generated. These have been clustered with the approach presented in Section 4.1 for

ψ = −0.03. Each option’s value function has been represented by an CMAC function

approximator consisting of 10 independent tilings with 72 · 52 tiles, where the higher

resolutions have been used for the x and y dimensions. The penalty reward of an unsuc-

cessful option has been set to rp =−1000 and the value functions have been initialized

to −100. For learning the compositional option π , a lower resolution of 52 ·32 tiles has

been used and the value functions have been initialized to −1000. The discounting fac-

tor has been set to γ = 1 and all policies have been ε-greedy with ε = 0.01. The value

functions were learned using Q-Learning and updated only for currently active options

with a learning rate of 1. Episodes have been interrupted after 104 steps without solving

the task and a new task was chosen at random. All parameters have been chosen based

on preliminary investigations.

Learning Graph-based Representations 11

Figure 2 shows the accumulated reward obtained during the first 2400 learning

episodes (the phase of learning during which the explorative bias provided by skills

has the strongest impact) for different graph node selection heuristics and different

number of graph nodes vnum. For too small vnum, e.g., vnum = 50, all graph node se-

lection heuristic perform worse than learning a flat policy. Furthermore, one can see

that the grid-based heuristic obtains poor results for any choice of vnum. When using

many graph nodes (vnum = 500), no considerable differences between the other heuris-

tics exist and the performance is considerably better than when learning a flat policy

and only slightly worse than for predefined skills. However, for intermediate values of

vnum, e.g., vnum ∈ {100,150}, FIGE obtains significantly better results than the ε-net and

the on-policy sampling heuristic (p < 0.001, Mann-Whitney U-test). Furthermore, the

accumulated reward obtained by FIGE for vnum = 150 is considerably larger than when

learning a flat policy, which is not the case for the other heuristics. In summary, FIGE

allows to create skills that can provide a useful explorative bias during learning based

on smaller graphs than other heuristics which allows to reduce computation time during

graph clustering and learning.

5 Representation Learning

Representation Policy Iteration (RPI) is an approach proposed by Mahadevan and Mag-

gioni [7] that aims at solving MDPs by jointly learning representations and optimal

policies. In contrast to most other RL algorithms, RPI does not require an a-priori spec-

ification of basis functions. The main idea for learning basis functions is to first learn

a state transition graph of the domain and to construct a symmetric diffusion opera-

tor on this graph. The normalized graph Laplacian L = D−1/2(D−W)D−1/2 and the

combinatorial Laplacian L = D−W are examples for such diffusion operators—with

W being the graph’s symmetrized weight matrix and D being a diagonal matrix whose

entries are the row sums of W . The smoothest eigenvectors of these operators, the so-

called proto-value functions, are used as basis functions for representing value func-

tions. Least-squares policy iteration (LSPI) as proposed by Lagoudakis and Parr [6] is

used for control learning, i.e., for learning the parameters wπ of the action value func-

tion Qπ =wπ Φ of an ε-optimal policy π within the linear span of the basis functions Φ .

In the original paper, at the end of each episode an additional set of samples is collected

either on- or off-policy. We skip this additional sampling and use the samples collected

during control learning also for representation learning to show that some graph node

selection heuristics can deal with this better than others. In order to initialize representa-

tion and control learning, the agent explored the environment uniform randomly during

the first 10 episodes. Thereupon, RPI was performed at the end of each episode and the

policy obtained was followed ε-greedily.

RPI can also be used in MDPs with continuous state space. In such continuous do-

mains, one challenge is to select the graph node position (“to subsample a set of states”

in the terminology of Mahadevan and Maggioni). The authors discuss the usage of the

on-policy subsampling and the ε-net heuristics; however we will show that considerable

better results can be achieved by using FIGE. In RPI, each graph node is connected to

its k nearest neighbor nodes in the euclidean space and the edge weight between nodes

12 Jan Hendrik Metzen

xi and x j is W (i, j) = τ(i)exp(−||xi−x j ||22/κ) where τ(i) and κ are parameters to be spec-

ified. Note that this way of connecting graph nodes has the potential disadvantage that

proximity of nodes in the euclidean space does not necessarily imply that a transition

between these nodes is possible, e.g., if an obstacle lies between those states. Choosing

graph edges based on observed transitions between states (compare Section 2) lessens

this issue and seems thus preferable. However, for consistency with the original ap-

proach of Mahadevan and Maggioni [7], we adhere the “euclidean” connectivity.

5.1 Evaluation: Mountain Car

In a first experiment, we evaluate the performance of RPI for different graph node se-

lection heuristics and different degrees of transition noise σt in mountain car (compare

Section 3.3) for vnum = 50. For all node selection heuristics, we obtained the best results

when setting the number of proto value-functions equal to the number of graph nodes,

i.e., pnum = vnum. Furthermore, in accordance with Mahadevan and Maggioni [7] we set

the discount factor γ to 0.99 and the exploration rate to ε = 0.01. We used the normal-

ized Laplacian L as graph operator. The results are shown in Figure 3. The left plot

shows learning curves of RPI in the deterministic mountain car domain: RPI performs

best when combined with FIGE and worst when combined with the grid heuristic while

on-policy sampling and ε-net achieve approximately the same results (no significant

differences). This can be attributed to the fact that due to the randomly chosen start

states of episodes, the on-policy state distribution (over several episodes) does not vary

too strongly over the effective state space. Thus, sampling from the on-policy distri-

bution yields in this domain graph nodes that cover the effective state space close to

uniform. The worse results of the grid heuristic show that even for low-dimensional

domains, a uniform discretization can be detrimental. The right plot shows how the re-

ward accumulated after 100 episodes changes for different degrees of stochasticity of

the domain. In general, increasing transition noise seems to make the task easier as the

performance increase for all heuristics; probably because the value function becomes

smoother and thus better representable. However, the relative order of different methods

remains the same. This reinforces that FIGE can be used in stochastic domains as well.

5.2 Evaluation: Octopus Arm

In a second experiment, we investigate the performance of RPI using FIGE for graph

node selection in the octopus arm domain [16]. The specific task is depicted in the left

plot of Figure 4: the agent has to control the octopus arm such that it moves two food

items (small yellow circles) into its mouth (large red circle). The base of the arm is

restricted and cannot be actuated directly. The agent may control the arm in the follow-

ing way: elongating or contracting the entire arm, bending the first half of the arm in

either of the two directions, and bending the second half of the arm in either of the two

directions. In each time step, the agent can control the elongation, the first half, and the

second half of the arm independently, resulting in 8 discrete actions. The agent observes

the positions xi, yi and velocities ẋi, ẏi of the food items and of 24 selected parts of its

arm (denoted by small black dots in Figure 4) and the angle and angular velocity of the

arm’s base. Thus, the state space is continuous and consists of 106 dimensions. Each

Learning Graph-based Representations 13

0 20 40 60 80 100

Episodes

−5

−4

−3

−2

−1

0

A
cc

u
m

u
la

te
d

R
ew

ar
d

×104

FIGE

ε-net

On-Policy S.

Grid

0.0 0.2 0.4 0.6 0.8 1.0

Transition Noise (σT)

−5

−4

−3

−2

−1

0

A
cc

u
m

u
la

te
d

R
ew

ar
d

×104

FIGE

ε-net

On-Policy S.

Grid

Fig. 3. Accumulated reward obtained by RPI in mountain car for different graph node selection

heuristics. Left plot: learning curves in the deterministic domain. Right plot: reward accumulated

after 100 episodes for different degrees of transition noise σT . Shown are mean and standard error

of mean over 10 repetitions.

dimension is normalized such that its values fall into [0,1]. The agent obtains a reward

of −0.01 per time step, a reward of 5 for moving the left food item into its mouth, and

a reward of 7 for the right food item. The episode ends after 100 time steps or once

both food items have been eaten. Because of the high-dimensional state space and the

complex dynamics of the domain, the octopus arm problem is a challenging task.

We compare RPI combined with FIGE for vnum = 75 and pnum = 5 to LSPI using 75

radial basis functions (RBFs) as features (γ = 0.99, ε = 0.01). In the first 10 episodes,

pure exploration without learning was conducted. The RBF centers ci have been set to

observed states such that the pairwise distance of the centers becomes maximal; the

feature activation of center ci for state s is computed as φi(s) = exp(10||ci− s||22). The

right plot of Figure 4 summarizes the results: using FIGE-based proto-value functions

performs considerably better than standard RBF features; in particular, the agent learns

in each run to move at least one food item into its mouth, which is not the case for

LSPI. The main difference between the two approaches is that RBFs are local while

proto-value functions can also capture more global properties. We suppose that since

FIGE allows to capture the dynamics of a domain well, it allows to learn non-local proto-

value functions that provide a useful bias to LSPI. In summary, the results suggest that

FIGE can also support learning in high-dimensional problems.

6 Summary and Outlook

We have presented a new view on graph-based RL in continuous domains. Based on

interpreting state transition graphs as generative models of the domain’s dynamics, we

have proposed a formulation for the likelihood of a graph for a given set of transitions.

We have derived the new heuristic FIGE from the maximum likelihood objective under

simplifying assumptions. FIGE allows to generate transition graphs that capture the do-

main’s dynamics better than other heuristics. This is also reflected in the performance

of representation learning and skill discovery methods that are built upon transition

14 Jan Hendrik Metzen

0 50 100 150 200 250

Episodes

−200

0

200

400

600

800

1000

1200

1400

1600

A
cc

u
m

u
la

te
d

re
w

ar
d

RPI+FIGE

LSPI

Fig. 4. Left plot: Visualization of the octopus arm task. Right plot: Accumulated reward obtained

by LSPI and RPI using FIGE for graph node selection in the octopus arm domain. Shown are

mean and standard error of mean over 20 repetitions.

graphs: in both kind of methods and across different domains, FIGE has achieved su-

perior and more robust results than prior heuristics for transition graph generation. In

general, our empirical results show that it makes a considerable difference how tran-

sition graphs are generated; for instance, using a grid-based discretization often had a

catastrophic effect on the performance, even for low-dimensional domains.

FIGE is an offline, batch algorithm that requires considerable amounts of computa-

tion. This is less critical when it is combined with other offline approaches like RPI,

LSPI, and non-incremental skill discovery based on graph-clustering, which are even

more expensive in terms of computation. However, for making use of transition graphs

in online methods like, e.g., OGAHC [11] for skill discovery, it would be highly desir-

able to develop an online method for graph generation that aims at similar objectives as

FIGE. A further direction for future research would be to extend FIGE to domains with

continuous action spaces and to use it for learning a policy representation that can be

used within direct policy search approaches.

Acknowledgment This work was supported through a grant of the German Federal Min-

istry of Economics and Technology (BMWi, FKZ 50 RA 1217). The author would like

to thank Yohannes Kassahun and the anonymous reviewers for many helpful comments.

References

1. Barto, A.G., Mahadevan, S.: Recent advances in hierarchical reinforcement learning. Dis-

crete Event Dynamic Systems 13(4), 341–379 (2003)

2. Digney, B.L.: Emergent hierarchical control structures: Learning reactive/hierarchical rela-

tionships in reinforcement environments. In: From Animals to Animats: The 4th Conference

on Simulation of Adaptive Behavior. pp. 363–372. Cambridge, MA (1996)

3. Digney, B.L.: Learning hierarchical control structures for multiple tasks and changing envi-

ronments. In: 5th Conference on the Simulation of Adaptive Behavior. pp. 321–330 (1998)

4. Kirchner, F.: Automatic decomposition of reinforcement learning tasks. In: AAAI 95 Fall

Symposium Series on Active Learning. pp. 56–59. Cambridge, MA, USA (1995)

Learning Graph-based Representations 15

5. Konidaris, G., Barto, A.G.: Skill discovery in continuous reinforcement learning domains

using skill chaining. In: NIPS. vol. 22, pp. 1015–1023 (2009)
6. Lagoudakis, M.G., Parr, R.: Least-squares policy iteration. Journal of Machine Learning

Research 4, 1107–1149 (2003)

7. Mahadevan, S., Maggioni, M.: Proto-value functions: A laplacian framework for learning

representation and control in markov decision processes. Journal of Machine Learning Re-

search 8, 2169–2231 (2007)
8. Mannor, S., Menache, I., Hoze, A., Klein, U.: Dynamic abstraction in reinforcement learning

via clustering. In: 21st International Conference on Machine Learning. pp. 560–567 (2004)
9. McGovern, A., Barto, A.G.: Automatic discovery of subgoals in reinforcement learning us-

ing diverse density. In: 18th International Conference on Machine Learning. pp. 361–368

(2001)
10. Menache, I., Mannor, S., Shimkin, N.: Q-Cut - dynamic discovery of sub-goals in reinforce-

ment learning. In: 13th European Conference on Machine Learning. pp. 295–306 (2002)
11. Metzen, J.H.: Online skill discovery using graph-based clustering. Journal of Machine Learn-

ing Research W&CP 24, 77–88 (2012)
12. Şimşek, Ö., Barto, A.G.: Using relative novelty to identify useful temporal abstractions in

reinforcement learning. In: 21st International Conference on Machine Learning. pp. 751–758

(2004)

13. Şimşek, Ö., Wolfe, A.P., Barto, A.G.: Identifying useful subgoals in reinforcement learning

by local graph partitioning. In: 22nd International Conference on Machine Learning. pp.

816–823 (2005)
14. Sutton, R.S., Precup, D., Singh, S.: Between MDPs and semi-MDPs: A framework for tem-

poral abstraction in reinforcement learning. Artificial Intelligence 112, 181–211 (1999)
15. Sutton, R., Barto, A.: Reinforcement Learning: An Introduction. MIT Press (1998)
16. Yekutieli, Y., Sagiv-Zohar, R., Aharonov, R., Engel, Y., Hochner, B., Flash, T.: A dynamic

model of the octopus arm. I. biomechanics of the octopus reaching movement. Journal of

Neurophysiology 5, 291–323 (2005)

A Appendix: Derivation of FIGE’s update equations

Let T = {(si,ais
′
i)}n

i=1 be a set of n transitions. We aim at finding a state transition graph

G∗ with vnum nodes such that G∗ = argmaxG p(T |G). We derive the FIGE update equa-

tions as maximum likelihood solutions for p(T |G) under two simplifying assumptions.

(A1) For (s,a,s′) ∈ T , assume p(v′|v,a) = 1 if v = NNV (s)∧ v′ = NNV (s
′) else 0.

Assumption A1 allows to effectively decouple the likelihood p(T |G) from the graph’s

edges and their weights wa
vv′ such that it depends solely on the graph node positions and

can thus be written as p(T |V). By using assumption A1, we obtain:

log p(T |G) = log
1

|A|n|V |n
n

∏
i=1

[

∑
v∈V

p(si|v) ∑
v′∈V

p(v′|v,a)p(s′|v′,v,si)

]

A1
= log

1

|A|n|V |n
n

∏
i=1

p(si|NNV (si))p(s′i|NNV (s
′
i),NNV (si),si)=̂ log p(T |V)

log p(T |V) = −n log |A‖V |+
n

∑
i=1

[

log p(si|NNV (si))+ log p(s′i|NNV (s
′
i),NNV (si),si)

]

= −n log |A‖V |+ n logNb−
1

b2
D

16 Jan Hendrik Metzen

with D =
n

∑
i=1

[

‖si−NNV (si)‖2
2 + ‖(NNV (s

′
i)−NNV (si))− (s′i− si)‖2

2

]

. For given V we

create 2 partitions of T into vnum sets: T→(v) = {(s,s′)|∃(s,a,s′) ∈ T : NNV (s) = v}
and T←(v) = {(s,s′)|∃(s,a,s′) ∈ T : NNV (s

′) = v}. Furthermore, we create vnum sets

SV (v) = {s | ∃(s,a,s′) ∈ T : NNV (s) = v}. For |V | = vnum = const, we can now maxi-

mize the log-likelihood log p(T |V) by minimizing D:

D =
n

∑
i=1

[

‖si−NNV (si)‖2
2 + 2

1

2
‖(NNV (s

′
i)−NNV (si))− (s′i− si)‖2

2

]

= ∑
v

[

∑
s∈SV (v)

‖s− v‖2
2+

1

2
∑

s,s′∈T→(v)

‖NNV (s
′)− v− s′+ s‖2

2

+
1

2
∑

s,s′∈T←(v)

‖v−NNV (s)− s′+ s)‖2
2

]

Each term of the outer sum corresponds to the contribution of node v’s position to D;

however, the terms cannot be minimized separately since they are coupled via NNV (s)
and NNV (s

′). Minimizing them jointly is difficult because of the discontinuities of the

nearest-neighbor terms. Thus, FIGE makes the following simplifying assumption:

(A2) Assume p(T |V) = ∏v p(T |v)

This assumption implies that the couplings between the terms of D can be ignored

and each v can be set greedily to the position where the respective term in the outer

sum would become minimal as if all other ṽ ∈V would remain unchanged. Finally, the

greedy FIGE update equation which moves a node from position vold to position vnew is

vnew = argmin
v

[

∑
s∈SV (vold)

‖s− v‖2
2+

1

2
∑

s,s′∈T→(vold)

‖(NNV (s
′)− s′+ s)− v‖2

2

+
1

2
∑

s,s′∈T←(vold)

‖v− (NNV (s)− s+ s′)‖2
2

]

In this, the first sum is minimized by choosing vnew = va = MEANs∈SV (vold)
(s), the

second sum by choosing vnew = vb = MEANs,s′∈T→(vold)
(NNV (s

′)− s′+ s), and the

third by vnew = vc = MEANs,s′∈T←(vold)(NNV (s)− s + s′). By using forces that pull

vnew to va, vb, and vc with the respective weights, we obtain the FIGE update rule

vnew = vold +α

[

1

2
(va− vold)+

1

4
(vb− vold)+

1

4
(vc− vold)

]

.

Since A2 is oversimplifying, one sweep of the FIGE update equations will typically not

find the maximum likelihood solution. Thus, FIGE performs several update iterations to

account for couplings between nodes.

