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Abstract. This article presents an overview on IPSEITY [1], an open-
source rich-client platform developed in C++ with the Qt [2] frame-
work. IPSEITY facilitates the synthesis of artificial cognitive systems in
multi-agent systems. The current version of the platform includes a set
of plugins based on the classical reinforcement learning techniques like
Q-Learning and Sarsa. IPSEITY is targeted at a broad range of users
interested in artificial intelligence in general, including industrial practi-
tioners, as well as machine learning researchers, students and teachers. It
is daily used as a course support in Artificial Intelligence and Reinforce-
ment Learning and it has been used successfully to manage power flows
in simulated microgrids using multi-agent reinforcement learning [4].
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1 Introduction

Multi-agent systems constitute a fitted paradigm for solving various kinds of
problems in a distributed way or for simulating complex phenomena emerg-
ing from the interactions of several autonomous entities. A multi-agent system
(MAS) consists of a collection of agents that interact within a common environ-
ment. Every agent perceives some information extracted from its environment
and acts upon it based on these perceptions.

The individual behaviors of the agents composing a MAS can be defined by
using many decision making mechanisms and many programming languages ac-
cording to the objective at hand. For instance, a planification mechanism can
be used to fulfill the agent goals. A powerful alternative is to implement Re-
inforcement Learning (RL) algorithms that allow the agents to learn how to
behave rationally. In this context, a learning agent tries to achieve a given task
by continuously interacting with its environment. At each time step, the agent
perceives the environment state and performs an action, which causes the envi-
ronment to transit to a new state. A scalar reward evaluates the quality of each
transition, allowing the agent to observe the cumulative reward along sequences
of interactions. By trials and errors, such agents can manage to find a policy, that
is a mapping from states to actions, which maximizes the cumulative reward.

To our knowledge, there is currently no multi-agent platform that allow users
interested in multi-agent RL in particular to easily study the influence of some



(learning) parameters on the performance and the results obtained by different
dedicated algorithms using accepted benchmarks. Indeed, RL-Glue!, CLSquare?,
PIQLE?, RL Toolbox*, JRLF®, LibPG%only support single-agent RL techniques.
The MARL Toolbox” supports multi-agent reinforcement learning under Matlab,
but unlike IPSEITY, it is not possible to remotely control other systems.

2 Overview

IPSEITY is a rich-client platform especially dedicated to facilitating the imple-
mentation and the experimental validation of different kinds of behaviors for
cooperative or competitive agents in MASs.

2.1 Kernel Concepts

In IPSEITY, a set A of agents interact within a given environment. A set G =
{G1,---,Gn} of agent groups, called tazxons in IPSEITY, can be defined. Agents
grouped together into the same taxon are likely to behave similarly (they share
the same decision making mechanism). The behavior of an agent is exhibited
according to its cognitive system. A cognitive system implements the decision
process that allows an agent to carry out actions based on its perceptions. It
can be plugged directly to a given agent or to a taxon. In the latter case, all the
agents associated to the same taxon use the same decision process. If a cognitive
system is based on RL techniques, plugging it to a taxon shared by several agents
may speed up their learning in some cases, as any agent can immediately benefit
from the experiences of the others.

The agents interact within the environment from different possible initial
configurations, or scenarios. Scenarios allow the user to study the quality of
the decisions taken individually or collectively by the agents under some initial
environmental conditions. During a simulation, the agents evolve within the
environment by considering several predefined scenarios whose order is handled
by a supervisor, who can be the user himself or an agent.

2.2 Platform Architecture

IPSEITY simulates discrete-time or continuous-time multi-agent environments
inherating from AbstractEnvironment (see Fig. 1la). Several agents (inherating
from AbstractAgent) interact in a multi-agent environment on the basis of their
cognitive system inherating from AbstractCognitiveSystem. A set of scenarii has
to be defined in order to carry out the simulations. These are selected by a
AbstractSupervisionModule.
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The cognitive systems in IPSEITY can be decomposed into several plugins.
Each of them takes part in the decision process. As shown in Fig. 1b, the re-
inforcement learning cognitive system is currently built from three classes of
plugins: a behavior module, that selects actions from states, a memory, that
stores the Q-values of the state-action pairs, and a learning module, that updates
the contents of the memory from data obtained after environmental transitions.
Currently, Epsilon-Greedy and Softmaz are predefined plugins that can be used
as behavior modules, @-Learning and Sarsa have been implemented and can
be used as learning modules. The @Q-value memory can be instanciated by a
plugin implementing either a static or a dynamic lookup table, or a linear func-
tion approximator using a feature extraction module like CMAC for example.
More details about the kernel concepts and about the software architecture are
available on the web site!®.

(a) IPSEITY (b) RL Cognitive System

Fig. 1. Architecture of IPSEITY and architecture of a RL cognitive system
2.3 Properties
IPSEITY was designed to possess the following properties:

Flexibility: IPSEITY uses kernel concepts and components (i.e. data represen-
tations and algorithms) that are as flexible as possible. For example, the
perceptions and the responses of agents are represented by 64-bit float vec-
tors, allowing agents to be immerged either in discrete environments or in
continuous environments.

Modularity: IPSEITY uses modules, or plugin, to implement kernel concepts
and components. For example, the environments, the cognitive systems, the
agent scheduling, and the selection of the simulation scenarios are all defined
as plugins.

Easy integration: These plugins (and in particular those related to cognitive
systems) can be easily integrated in other systems and applications. For
example, IPSEITY can be used to learn the behaviors of some agents. Once

15 At http://www.ipseity-project.com/docs/IpseityTechnicalGuide.pdf.



the learning phase is finished, agents can perceive information from a remote
environment and act according to the learnt behavior. Such integration has
been realized between IPSEITY and JANUS [3]: remote cognitive systems with
behaviors learnt using IPSEITY communicate using TCP-IP sockets with
agents of a microgrid simulator developed under JANUS.

Extensibility: IPSEITY can easily be extended by specialized plugins for the

target application area. Customized extensions include new environments,
algorithms that take part in the decision processes of some cognitive systems
or rendering modules for some predefined environments.

System analysis: IPSEITY supports the user in keeping track of all the data,

performed actions and results of a RL task. This data set is linked to a
session, allowing the user to easily and rapidly compare the results obtained
from different algorithms.

Graphical interface: IPSEITY provides a user-friendly interface (see Fig.2)

with informative icons and widgets for setting up all the parameters involved
in the simulation of a MAS, including those of a cognitive system.

Fig. 2. Screenshots of some tabs in IPSEITY.

3 Conclusion

An overview of IPSEITY has been presented in this article, focusing on RL. IPSE-
ITY is highly modular and broadly extensible. It can be freely downloaded from
http://www.ipseity-project.com under a GNU GPLv3 open-source licence.
It is intended to be enriched with state-of-the-art RL techniques very soon. Per-
sons who want to contribute to this project are cordially encouraged to contact
the first author.
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