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Abstract. We present InVis, a tool to visually analyse data by in-
teractively shaping a two dimensional embedding of it. Traditionally,
embedding techniques focus on finding one fixed embedding, which em-
phasizes a single aspects of the data. In contrast, our application enables
the user to explore the structures of a dataset by observing and control-
ling a projection of it. Ultimately it provides a way to search and find
an embedding, emphasizing aspects that the user desires to highlight.

1 Introduction

We present an application1 that enables the user to layout a two dimensional
embedding of a possibly higher dimensional dataset by selecting and rearranging
some of the embedded data points as control points. Working with our applica-
tion resembles observing the shadow of a higher dimensional object from different
angles and actively reshaping it. As the constellation of control points and the
projection angle are dependent, specifying where the shadow of the chosen con-
trol points falls to, enforces the rest of the embedding to follow, see Figure 1.
Gradually rearranging the constellation also changes the shadow gradually. An
example for this is depicted on a real world dataset in Figure 2.

Fig. 1. The projection can be con-
trolled by arranging the control
points (dataset from [7]).

Fig. 2. Re-positioning the control point gin and
tonic (green) influences the location of related,
gin containing, cocktails (dark).

Embedding data into a lower dimensional space for visual analysis is a wide
field that is approached by a lot of different techniques. Many of them are un-
supervised, like the well known principle component analysis (PCA) [5], Isomap

1 The tool can be downloaded under:
http://www-kd.iai.uni-bonn.de/index.php?page=software_details&id=31



[11], Locally linear embedding [10], non-negative matrix factorization [6], archety-
pal analysis [3] and CUR decomposition [4].

Apart from these unsupervised embedding techniques, there are methods
that take supervision into account, like guided locally linear embedding [1] and
supervised PCA [2]. Many of the classic embedding methods also have a semi su-
pervised extensions [12]. One particularly interesting setting is utilizing must-link
and cannot-link constraints [13]. In this paper we employ the semi-supervised
least squares projections (LSP) [8, 9] method, which computes an embedding
based on a set of exemplary embedded data points.

In contrast to other authors applying semi-supervised embedding techniques,
our aim is not a fixed one-time-embedding. Our application rather exploits the
influence of the control points in order to enable the user to shape and steer a life-
updating embedding. This active layout approach ultimately empowers the user
to highlight aspects of the dataset that he considers interesting. This is illustrated
in Figure 3 on a selection of four persons from the CMU Face Images dataset.
While a regular PCA embedding does not directly convey insights, arranging
a few control points in different constellations, can highlight different semantic
aspects of the data.

Fig. 3. A dataset of facial images embedded in different ways. The left figure shows a
plain PCA embedding, while the other two figures use LSP to group the control points
by person and by pose (looking-straight, -up, -left and -right), respectively.

2 Method

Consider a dataset X with n data records x1, ..., xn from an instance space
X ⊆ Rd and the general task to map {x1, ..., xn} into an embedding space
Y ⊆ R2, yielding {y1, ...yn}. To determine this mapping, the user chooses a set
of k data records from X, denoted by X̂, and fixes their coordinates in the
embedding space, providing Ŷ . For the purpose of our application, we consider
the desired projection P : X → Y to be the linear projection matrix with the
least squared error in mapping X̂ to Ŷ . Regarding X̂ and Ŷ as data matrices of
shape d× k and 2× k we can formulate the system of linear equations PX̂ ≈ Ŷ ,
which can be solved for P with least squared error efficiently, especially since
the calculation only depends on k and not all n data points. The least squares
projection matrix P is then used to determine the final embedding Y of all
n data points X by matrix multiplication PX = Y . Note, that every time Ŷ
changes P has to be recalculated. P can be derived by right multiplying the
pseudo inverse of X̂ (given by X̂† = X̂T (X̂X̂T )†) to Ŷ . As long as the user only
relocates the k control points, X̂† does not change and P can be determined



by matrix multiplication with a time complexity of O(d2 · k). However, if the
user alters the selection of the control points, the pseudo inverse X̂† has to be
recalculated, which leads to an additional calculation with a time complexity of
O(d3 + d2 · k).

3 User Interface

Figure 4 shows the user interface of our application running an exemplary analy-
sis of a cocktail ingredient dataset. The core of our tool is the interactive canvas
on the left side, displaying the embedding. The initial control points are pro-
vided by five randomly chosen points, placed according to their coordinates of
a PCA-embedding on the whole dataset. From here the user can interact with
the canvas in the usual way by clicking and dragging. The user can select, or
de-select a control point by middle-clicking it and he can reposition the point
simply by left-clicking and dragging it to the new location. While relocating a
control point, the embedding is constantly updated to provide the user with a
“hands on” sensation.

To support practical usability of the application, we also provide some extra
features that can help a user in the exploration process. The user can shift the
center of the displayed data by Ctrl -dragging on the canvas and zoom in and out
of different regions by using the mouse wheel. He can also search for a data record
by its name and highlight it in the embedding, or request additional information
on any data point by right-clicking the according point in the embedding. In case
of the cocktail dataset, ingredients and amounts of the particular cocktail are
displayed. In case of an image database a thumbnail picture is rendered into the
embedding. For deeper inspection of an attribute, we offer the option to colorize
the data points according to the attribute-value and to fade out data points that

Fig. 4. A screenshot of InVis. The embedding shows some control points (black), a
search result (red) and ingredient information (gray box). Interaction with the embed-
ding is done by directly clicking and dragging. Setting the constraint ”orange juice:>:0”
fades the points not satisfying the restriction out.



do not satisfy a {>,<,=}-constraint. In addition, unwanted attributes can be
excluded from any calculation and running sessions can be saved and restored.

4 Conclusion

We present a tool that encourages the user to explore a dataset in a “hands on”
manner, by directly interacting with an embedding of it. In contrast to tradi-
tional one-time-embeddings our approach enables the user to develop a feeling
for the underlying structure of the dataset by browsing it from different angles
and layout the embedding in such a way that user desired aspects are emphasized.
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