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Abstract. Tensor factorization has emerged as a promising approach
for solving relational learning tasks. Here we review recent results on a
particular tensor factorization approach, i.e. Rescal, which has demon-
strated state-of-the-art relational learning results, while scaling to knowl-
edge bases with millions of entities and billions of known facts.

1 Introduction

Exploiting the information contained in the relationships between entities has
been essential for solving a number of important machine learning tasks. For in-
stance, social network analysis, bioinformatics, and artificial intelligence all make
extensive use of relational information, as do large knowledge bases such as
Google’s Knowledge Graph or the Semantic Web. It is well-known that, in these
and similar domains, statistical relational learning (SRL) can improve learning
results significantly over non-relational methods. However, despite the success
of SRL in specific applications, wider adoption has been hindered by multi-
ple factors: without extensive prior knowledge about a domain, existing SRL
methods often have to resort to structure learning for their functioning; a pro-
cess that is both time consuming and error prone. Moreover, inference is often
based on methods such as MCMC and variational inference which introduce ad-
ditional scalability issues. Recently, tensor factorization has been explored as an
approach that overcomes some of these problems and that leads to highly scal-
able solutions. Tensor factorizations realize multi-linear latent factor models and
contain commonly used matrix factorizations as the special case of bilinear mod-
els. We will discuss tensor factorization for relational learning by the means of
Rescal [6,7,5], which is based on the factorization of a third-order tensor and
which has shown excellent learning results; outperforming state-of-the-art SRL
methods and related tensor-based approaches on benchmark data sets. Moreover,
Rescal is highly scalable such that large knowledge bases can be factorized,
which is currently out of scope for most SRL methods. In our review of this
model, we will also exemplify the general benefits of tensor factorization for
relational learning, as considered recently in approaches like [10,8,1,4,2]. In the
following, we will mostly follow the notation outlined in [3]. We will also assume
that all relationships are of dyadic form.
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Fig. 2. Graphical plate
model of Rescal.

2 Relational Learning via Tensor Factorization

Dyadic relational data has a natural representation as an adjacency tensor
X ∈ Rn×n×m whose entries xijk correspond to all possible relationships between
n entities over m different relations. The entries of X are set to

xijk =

{
1, if the relationship relationk(entityi, entityj) exists

0, otherwise.

Rescal [6] is a latent factor model for relational learning, which factorizes an
adjacency tensorX into a core tensorR ∈ Rr×r×m and a factor matrix A ∈ Rn×r

such that

X ≈ R×1 A×2 A. (1)

Equation (1) can be equivalently specified as xijk ≈ aT
i Rkaj , where the column

vector ai ∈ Rr denotes the i-th row of A and the matrix Rk ∈ Rr×r denotes the
k-th frontal slice of R. Consequently, ai corresponds to the latent representation
of entityi, while Rk models the interactions of the latent variables for relationk.
The dimensionality r of the latent space A is a user-given parameter which spec-
ifies the complexity of the model. The symbol “≈” denotes the approximation
under a given loss function. Figure 1 shows a visualization of the factorization.
Probabilistically, eq. (1) can be interpreted as estimating the joint distribution
over all possible relationships

P(X|A,R) =

n∏
i=1

n∏
j=1

m∏
k=1

P(xijk|aT
i Rkaj). (2)

Hence, a Rescal factorization of an adjacency tensor X computes a complete
model of a relational domain where the state of a relationship xijk depends on
the matrix-vector product aT

i Rkaj . Here, a Gaussian likelihood model would
imply a least squares loss function, while a Bernoulli likelihood model would
imply a logistic loss function [6,5]. To model attributes of entities efficiently,
coupled tensor factorization can be employed [7,11], where simultaneously to
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eq. (1) an attribute matrix F ∈ Rn×` is factorized such that F ≈ AW and where
the latent factor A is shared between the factorization of X and F . Rescal and
other tensor factorizations feature a number of important properties that can be
exploited for tasks like link prediction, entity resolution or link-based clustering:

Efficient Inference The latent variable structure of Rescal decouples in-
ference such that global dependencies are captured during learning, whereas
prediction relies only on a typically small number of latent variables. It can
be seen from eq. (2) that a variable xijk is conditionally independent from all
other variables given the expression aT

i Rkaj . The computational complexity of
these matrix-vector multiplications depends only on the dimensionality of the
latent space A, what enables, for instance, fast query answering on knowledge
bases. It is important to note that this locality of computation does not imply
that the likelihood of a relationship is only influenced by local information. On
the contrary, the conditional independence assumptions depicted in fig. 2 show
that information is propagated globally when computing the factorization. Due
to the colliders in fig. 2, latent variables (ai, aj , Rk) are not d-separated from
other variables such that they are possibly dependent on all remaining vari-
ables. Therefore, as the variable xijk depends on its associated latent variables
{ai,aj , Rk}, it depends indirectly on the state of any other variable such that
global dependencies between relationships can be captured. Similar arguments
apply to tensor factorizations such as the Tucker decomposition and CP, which
explains the strong relational learning results of Rescal and CP compared to
state-of the-art methods such as MLN or IRM [6,7,2,5].

Unique Representation A distinctive feature of Rescal is the unique repre-
sentation of entities via the latent space A. Standard tensor factorization models
such as CP and Tucker compute a bipartite model of relational data, mean-
ing that entities have different latent representations as subjects or objects in a
relationship. For instance, a Tucker-2 model would factorize the frontal slices
of an adjacency tensor X as Xk ≈ ARkB

T such that entities are represented as
subjects via the latent factor A and as objects via the latent factor B. However,
relations are usually not bipartite and in these cases a bipartite modeling would
effectively break the flow of information from subjects to objects, as it does not
account for the fact that the latent variables ai and bi refer to the identical en-
tity. In contrast, Rescal uses a unique latent representation ai for each entity
in the data set, what enables efficient information propagation via the depen-
dency structure shown in fig. 2 and what has been demonstrated to be critical
for capturing correlations over relational chains. For instance, consider the task
to predict the party membership of presidents of the United States of America.
When the party membership of a president’s vice president is known, this can be
done with high accuracy, as both persons have usually been members of the same
party, meaning that the formula vicePresident(x, y) ∧ party(y, z) ⇒ party(x, z)
holds with high probability. For this and similar examples, it has been shown
that bipartite models such as CP and Tucker fail to capture the necessary
correlations, as, for instance, the object representation by does not reflect that
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person y is in a relationship to party z as a subject. Rescal, on the other hand,
is able to propagate the required information, e.g. the party membership of y,
via the unique latent representations of the involved entities [6,7].

Latent Representation In relational data, the similarity of entities is deter-
mined by the similarity of their relationships, following the intuition that “if two
objects are in the same relation to the same object, this is evidence that they
may be the same object” [9]. This notion of similarity is reflected in Rescal via
the latent space A. For the i-th entity, all possible occurrences as a subject are
grouped in the slice Xi,:,: of an adjacency tensor, while all possible occurrences
as an object are grouped in the slice X:,i,: (see figs. 3 and 4). According to the
Rescal model, these slices are computed by vec (Xi,:,:) ≈ aiR(1)(I ⊗A)T and
vec (X:,i,:) ≈ aiR(2)(I ⊗A)T . Since the terms R(1)(I⊗A)T and R(2)(I⊗A)T are
constant for different values of i, it is sufficient to consider only the similarity
of ap and aq to determine the relational similarity of entityp and entityq. As
this measure of similarity is based on the latent representations of entities, it
is not only based on counting identical relationships of identical entities, but
it also considers the similarity of the entities that are involved in a relation-
ship. The previous intuition could therefore be restated as if two objects are in
similar relations to similar objects, this is evidence that they may be the same
object. Latent representations of entities have been exploited very successfully
for entity resolution and also enabled large-scale hierarchical clustering on rela-
tional data [6,7]. Moreover, since the matrix A is a vector space representation
of entities, non-relational machine learning algorithms such as k-means or kernel
methods can be conveniently applied to any of these tasks.

X:,i,:

X:,j,:

Fig. 3. Incoming Links

Xi,:,:

Xj,:,:

Fig. 4. Outgoing Links

High Scalability The scalability of algorithms has become of utmost impor-
tance as relational data is generated in an unprecedented amount and the size
of knowledge bases grows rapidly. Rescal-ALS is a highly scalable algorithm to
compute the Rescal model under a least-squares loss. It has been shown that
it can efficiently exploit the sparsity of relational data as well as the structure of
the factorization such that it features linear runtime complexity with regard to
the number of entities n, the number of relations m, and the number of known
relationships nnz(X), while being cubic in the model complexity r. This prop-
erty allowed, for instance, to predict various high-level classes of entities in the
Yago 2 ontology, which consists of over three million entities, over 80 relations
or attributes, and over 33 million existing relationships, by computing low-rank
factorizations of its adjacency tensor on a single desktop computer [7].
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3 Conclusion and Outlook

Rescal has shown state-of-the-art relational learning results, while scaling up
to the size of complete knowledge bases. Due to its latent variable structure,
Rescal does not require deep domain knowledge and therefore can be easily
applied to most domains. Its latent representation of entities enables the appli-
cation of non-relational algorithms to relational data for a wide range of tasks
such as cluster analysis or entity resolution. Rescal is applicable if latent fac-
tors are suitable for capturing the essential information in a domain. In ongoing
research, we explore situations where plain latent factor models are not a very
efficient approach to relational learning and examine how to overcome the un-
derlying causes of these situations.
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