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Abstract. Sparse models embed variable selection into model learning
(e.g., by using l1-norm regularizer). In small-sample high-dimensional
problems, this leads to improved generalization accuracy combined with
interpretability, which is important in scientific applications such as bi-
ology. In this paper, we summarize our recent work on sparse models,
including both sparse regression and sparse Gaussian Markov Random
Fields (GMRF), in neuroimaging applications, such as functional MRI
data analysis, where the central objective is to gain a better insight into
brain functioning, besides just learning predictive models of mental states
from imaging data.
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1 Introduction

Predicting person’s mental state based on his or her brain imaging data, such
as functional MRI (fMRI), is an exciting and rapidly growing research area on
the intersection of neuroscience and machine learning. A mental state can be
cognitive, such as viewing a picture or reading a sentence [8], emotional, such as
feeling happy, anxious, or annoyed while playing a virtual-reality videogame [1],
reflect person’s perception of pain [11, 12, 3], or person’s mental disorder, such
as schizophrenia [2, 10], drug addiction [6], and so on.

In fMRI, an MR scanner non-invasively records a subject’s blood-oxygenation-
level dependent (BOLD) signal, known to be related to neural activity, as a sub-
ject performs a task of interest or is exposed to a particular stimulus. Such scans
produce a sequence of 3D images, where each image typically has on the order
of 10,000-100,000 subvolumes, or voxels, and the sequence typically contains a
few hundreds of time points, or TRs (time repetitions). Thus, each voxel is as-
sociated with a time series representing the average BOLD signal within that
subvolume (i.e., voxel activity) at each TR; a task or a stimulus is associated
with the corresponding time series over the same set of TRs.

2 Sparse regression

Our work is motivated by the traditional fMRI goal of discovering task-relevant
brain areas. However, we wish to avoid limitations of traditional mass-univariate
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Fig. 1. Predictive accuracy of the Elastic Net for the task of predicting (a) “Instruc-
tions” task in PBAIC and (b) thermal pain perception. The insets visualize the sparse
solutions found by the Elastic Net.

approaches such as GLM [4] that essentially performs filter-based variable selec-
tion based on individual voxel correlations with the task, and thus can miss
important multivariate interactions, as noted by [5] and others. Thus, we focus
instead on sparse multivariate models capable of identifying a relatively small
subset of variables (voxels) that (jointly) predict the task well. In [1], we were
among the first ones to apply sparse methods to fMRI, presenting our analysis
of the PBAIC 2007 competition data [9] that we obtained using the Elastic Net
(EN) approach [15]. EN improves upon the basic LASSO [14] by using a convex
combination of l1- and l2-norm regularizers instead of just l1. The effect of such
combined penalty is that, on top of sparsity (voxel selection), a grouping effect
is encouraged, i.e. joint inclusion (or exclusion) of groups of highly correlated
variables (such as spatial clusters of voxels). The grouping property is particu-
larly important from the interpretability perspective, since we hope to discover
relevant brain areas rather than their single-voxel representatives sufficient for
accurate prediction, as the basic LASSO does. We investigate the effects of both
l1 and l2 regularization parameters on the predictive accuracy and stability, mea-
sured here as a support overlap between the regression coefficients learned for
different runs of the experiment. We conclude that, (a) EN can be highly predic-
tive about various mental states, achieving 0.7−0.9 correlation between the true
and predicted response variables (see Figure 1a), and (b) even among equally
predictive models, increasing the l2-regularization weight can help to improve
the model stability.

Furthermore, our subsequent work presented in [11], demonstrates that the
Elastic Net can be highly predictive about such subjective and seemingly hard-
to-quantify experience as pain, achieving up to 0.75 − 0.8 correlation between
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the predicted and actual pain perception ratings, drastically outperforming un-
regularized linear regression, and identifying novel areas undiscovered by GLM1.

However, given a brain map of task-relevant voxels, does this imply that the
rest of the brain voxels is irrelevant? Not necessarily, since multiple sparse predic-
tive solutions are possible in presence of highly-correlated predictors. In [12], we
explore the space of sparse solutions, by first finding the best EN solution with
1000 voxels, removing those voxels from the set of predictors, and repeating the
procedure until there are no more voxels left. Interestingly, for multiple tasks we
considered, including pain perception and others, no clear separation between rel-
evant and irrelevant areas was observed, as shown in Figure 1b, suggesting highly
non-localized, “holographic” distribution of task information in the brain. The
only task which demonstrated fast (exponential) performance degradation, and
clear separation of relevant vs irrelevant areas, was a relatively simple auditory
task from PBAIC (Figure 1a)2. Note that standard GLM method does not reveal
such phenomenon, since, as shown in [12], individual voxel-task correlations al-
ways seem to decay exponentially, and for many reasonably predictive (but not
best) sparse solutions, their voxel would not even pass 0.1 correlation thresh-
old. Thus, multivariate sparse regression is a much better tool than GLM for
exploring actual distribution of task-relevant information in the brain.

3 Sparse Gaussian Markov Random Fields (GMRFs)

Though task-relevant brain areas are still the most common type of patterns
considered in fMRI analysis, they have obvious limitations, since the brain is an
interconnected, dynamical system, whose behavior may be better captured by
modeling interactions across different area. For example, in our recent study of
schizophrenia [2, 10], task-based voxel activations are dramatically outperformed
by network-based features, extracted from the voxel-level correlation matrices
(“functional networks”), and yielding from 86% to 93% classification accuracy
on schizophrenic vs. control subjects. Furthermore, we investigate structural dif-
ferences of sparse Gaussian Markov Random Fields, or GMRFs, constructed
from fMRI data via l1-regularized maximum likelihood (inverse covariance esti-
mation). Used as probabilistic classifiers, GMRFs often outperform state-of-art
classifiers such as SVM (e.g., see Figure 2a from [2]). In [13], we proposed a
simple, easily parallelizable greedy algorithm SINCO, for Sparse INverse CO-
variance estimation.

Next, we developed a variable-selection structure learning approach for GM-
RFs in [7]. A combination of (ℓ1,ℓp) group-Lasso penalty with the l1-penalty
selects the most-important variables/nodes, besides simply sparsifying the set of
edges. Our main advantage is a better interpretability of the resulting networks

1 The predictive accuracy can be further improved by combining EN for predicting the
intensity of the painful stimulus (e.g., the temperature) from fMRI data with a novel
analytic, differential-equation model that links temperature and pain perception [3].

2 A possible hypothesis is that, while “simple” tasks are localized, more complex
tasks/experiences (such as pain) tend to involve much more distributed brain areas
(most of the brain, potentially).
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Fig. 2. (a) Gaussian MRF classifier predicts schizophrenia with 86% accuracy using
just 100 top-ranked (most-discriminative) features, such as voxel degrees in a functional
network. (b) Structures learnt for cocaine addicted (left) and control subjects (right),
for sparse Markov net learning method with variable-selection via ℓ1,2 method (top) and
without variable-selection, i.e., standard graphical lasso approach (bottom). Positive
interactions are in blue, negative – in red. Structure density on top is 0.0016, while on
the bottom it is 0.023 (number of edges in a complete graph is ≈378000).

due to elimination of noisy variables (see below), combined with improvements
in model likelihood and more accurate recovery of ground-truth structure. From
an algorithmic point of view, we show that a block coordinate descent method
generates a sequence of positive definite solutions. Thus, we reduce the original
problem into a sequence of strictly convex (ℓ1,ℓp) regularized quadratic mini-
mization subproblems for p ∈ {2,∞}. Our algorithm is well founded since the
optimal solution of the maximization problem is unique and bounded. Figure
2b shows the network structures learnt for cocaine addicted vs healthy control
subjects, comparing the two methods. The disconnected variables are not shown.
The variable-selection sparse Markov network approach yields much fewer con-
nected variables but a higher log-likelihood than graphical lasso, as reported
in [7], which suggests that the discarded edges from the disconnected nodes
are not important for accurate modeling of this dataset. Moreover, removal of
a large number of nuisance variables (voxels) results into a much more inter-
pretable model, clearly demonstrating brain areas involved in structural model
differences that discriminate cocaine addicts from healthy control subjects. Co-
caine addicts show increased interactions between the visual cortex (back of the
brain, on the left here) and the prefrontal cortex (front of the brain image, on
the right), while at the same time decreased density of interactions between the
visual cortex with other brain areas. Given that the trigger for reward in this
experiments was a visual stimulus, and that the prefrontal cortex is involved in
higher-order cognitive functions such as decision making and reward processing,
the alteration in this pathway in the addict group is highly significant from a
neuroscientific perspective.
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