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Abstract. In this paper we will propose a new probabilistic topic model
to score the expertise of participants on the projects that they contribute
to based on their previous experience. Based on each participant’s score,
we rank participants and define those who have the lowest scores as out-
lier participants. Since the focus of our study is on outliers, we name the
model as Mining Outlier Participants from Projects (MOPP) model.
MOPP is a topic model that is based on directional distributions which
are particularly suitable for outlier detection in high-dimensional spaces.
Extensive experiments on both synthetic and real data sets have shown
that MOPP gives better results on both topic modeling and outlier de-
tection tasks.

1 Introduction

We present a new topic model to capture the interaction between participants
and the projects that they participate in. We are particularly interested in outlier
projects, i.e., those which include participants who are unlikely to join in based
on their past track record.

Example: Consider the following example. Three authors A1, A2 and A3 come
together to write a research paper. The authors and the paper profiles are cap-
tured by a “category” vector as shown in Table 1. A category can be a “word”
or “topic” and is dependent upon the model we use.

Table 1. Example: “category” vectors for authors and paper profiles. The dot products
determine the “outlierness” of the authors to the paper

Entity Category 1 Category 2 Category 3 Dot.P

Paper 0.1 0.1 0.8

A1 0.1 0.2 0.7 0.59
A2 0.2 0.2 0.6 0.52
A3 0.8 0.1 0.1 0.17

Then we can compute the dot products < Paper, A1 >, < Paper, A2 > and
< Paper, A3 > as shown in the last column. Based on the dot product, A3 is the
most outlier participant in the paper.



The challenge we address in this paper is to develop a new topic model to accu-
rately form categories which can be used to discover outlier behavior as illustrated
in Table 1.

A natural approach is to use Latent Dirichlet Allocation (LDA) to model the
track record of the participants and also the project descriptions. The advantage
of using LDA is that we carry out the analysis in the “topic” space, which is
known to be more robust compared to a word-level analysis. However, LDA is
not particularly suitable for outlier detection as we illustrate in the following
example.

Assume that we want to cluster five documents into two clusters (C1, C2)
and there are three unique words in the vocabulary (i.e. the dimension is three).
Let d = [n1,n2,n3] represents number of occurrences of word w1, w2, and w3

in document d. Assume we have: d1 = [3,0,0], d2 = [0,8,3], d3 = [0,9,2], d4 =
[0,2,10], and d5 = [0,2,7] (illustrated in Fig. 1(a)). It is likely that d1 does not
share any similarity with the other documents because w1 in d1 does not appear
in the other documents. On the other hand, d2, d3, d4 and d5 have some common
words, i.e., w2 and w3. Intuitively, d1 should be clustered separately (C1), while
d2, d3, d4 and d5 should be clustered together (in C2). However, because LDA
is mainly affected by the word counts, d2 will be clustered together with d3
(in C1), and d4 with d5 (in C2); while d1 will be clustered either to C1 or C2.
Figure 1(b) shows the results of running ten consecutive trials with LDA1. As we
can observe that none of the ten consecutive trials follows our first intuition (i.e.
d1 in a separate cluster). On the other hand, our proposed model gives a better
solution which is shown in Fig. 1(c). Notice from Fig. 1(d) that if we represent
the documents as unit vectors on a sphere, document d1 is well separated from
d2 and d3 or d3 and d4.

As the above example illustrates, the weakness of LDA is that it is not fully
sensitive to the directionality of data and is essentially governed by word counts.
Our proposed approach extends LDA by integrating directional distribution and
treating the observations in a vector space. Specifically, we represent very high
dimensional (and often sparse) observations as unit vectors, where direction plays
a pivotal role in distinguishing one entity from another.

We highlight the importance of our proposed model from two perspectives.
First, due to the integration of directional distribution, the resulting clusters
are more robust against outliers and it could potentially give a better clustering
solution. Secondly, because of the robustness, the outliers are well separated
from the rest of the data, which could be used as a base for outlier detection.
We present more details about the directional distribution that we use, the von
Mises-Fisher (vMF) distribution, in Sect. 2. We summarize our contributions as
follows:

1. We introduce a novel problem for discovering outlier participants in projects
based on their previous working history.

1 As LDA treats a document as a finite mixture over a set of topics, we assume a topic
with the largest proportion as the topic of a document.
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Fig. 1. Example: (a) the word counts for five documents; Topic assignments for the
five documents: (b) LDA (c) MOPP; (d) Distribution of the documents on the unit
sphere. Notice from (c) that MOPP separates d1 from the other documents 6 out of 10
times.

2. We model the proposed problem using a topic-based hierarchical generative
model based on the von Mises-Fisher (vMF) directional distribution. The
model is named MOPP: Mining Outlier Participants from Projects.

3. We have implemented MOPP and compared it with a variation of Latent
Dirichlet Allocation (LDA) on several synthetic and real data sets. We show
that MOPP improves both the ability to detect outliers and form high quality
clusters compared to LDA.

2 Related Work

The outlier or anomaly detection problem has been extensively researched in
the data mining, machine learning and statistical communities. The survey by
Chandola et. al. [1], provides an overview of contemporary data mining meth-
ods used for outlier detection. Our proposed model is mainly inspired by the
concept of hierarchical structure in topic model used in Latent Dirichlet Allo-
cation (LDA) [2]. In this section we present LDA and some work in directional
distributions.

2.1 Latent Dirichlet Allocation

Latent Dirichlet Allocation (LDA) is a generative probabilistic model proposed
by Blei et al. [2]. LDA describes the generative process and captures the latent
structure of topics in a text corpus. LDA is now widely used for the clustering and
topic modeling tasks. The graphical representation of LDA is shown in Fig. 2.

The plate M represents documents and the plate Nm represents words in
document m. Wm,n represents the observed word n in document m. Zm,n repre-
sents topic assignment of word n in document m. θm represents topic mixture in
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Fig. 2. LDA: Graphical Representation

document m. β represents the underlying latent topics of those documents. Both
α and η represent the hyperparameters for the model. The generative process of
LDA is summarized as follows:

Topic mixture: θm|α ∼ Dirichlet(α), m ∈ M
Topic: βk|η ∼ Dirichlet(η), k ∈ K
Topic assignment: Zm,n|θm ∼ Multinomial(θm), n ∈ Nm
Word: Wm,n|βZm,n ∼ Multinomial(βZm,n)

2.2 Directional Distribution

Mardia [3, 4] and Fisher [5] discussed von Mises-Fisher (vMF) distribution as
a natural distribution and the simplest parametric distribution for directional
statistics. The vMF distribution has support on Sd−1 or unit (d-1)-sphere em-
bedded in Rd, and has properties analogous to the multi-variate Gaussian distri-
bution. More details about vMF distribution can be found in [3]. The probability
density function of vMF distribution is described as follows:

f(x|µ, κ) =
κd/2−1

(2π)d/2Id/2−1(κ)
eκµ

Tx (1)

where µ is called mean direction, ‖µ‖ = 1; κ is called concentration parameter
and characterizes how strongly the unit random vectors are concentrated2 about
the mean direction (µ), and κ ≥ 0. Ir(·) represents the modified Bessel function
of the first kind of order r.

A body of work has shown the effectiveness of directional distribution for
modeling text data. Zhong et al. [6] shown that vMF distribution gives supe-
rior results in high dimensions comparing to Euclidean distance-based measures.
Banerjee et al. [7, 8] proposed the use of EM algorithm for a mixture of von
Mises-Fisher distributions (movMF). Banerjee et al. [9] also observed the con-
nection between vMF distributions in a generative model and the spkmeans algo-
rithm [10] which is superior for clustering high-dimensional text data. Reisinger
et al. [11] proposed a model named SAM that decomposes spherically distributed
data into weighted combinations of component vMF distributions. However, both
movMF and SAM lack a hierarchical structure and cannot be scaled-up for do-
mains involving multiple levels of structure.

The effectiveness of vMF distribution has also been studied in many outlier
detection studies. Ide et al. [12] proposed an eigenspace-based outliers detection
in computer systems, especially in the application layer of Web-based systems.

2 Specifically, if κ = 0, the distribution is uniform and, if κ → ∞, the distribution
tends to concentrate on one density.



Fujimaki et al. [13] proposed the use of vMF distribution for spacecraft outliers
detection. Both of these two papers use a single vMF distribution and compute
the angular difference of two vectors to determine outliers. Kriegel et al. [14] pro-
posed an approach to detect outliers based on angular deviation. Our proposed
model uses a mixture of K-topics as latent factors that underlie the generative
process of observations to detect outlier participants from projects.

3 Mining Outlier Participants

3.1 The Proposed Model

Figure 3(a) shows the graphical model of our proposed model. We use the fol-
lowing assumption: rectangular with solid line represents replication of plates,
rectangular with dashed-line represents a single plate (named as a dummy plate),
a shaded circle represents an observable variable, an unshaded circle represents
latent/unobservable variable, and a directed arrow among circles represents a
dependency among them. 

α 

 

K

µ  
Pc Previous projects 

Zcp Fcp θc 

 Participants of the investigated projects 

Zgp Fgp θg 

Pg Investigated projects 

 Dummy plate 

(a)

 
 

 

 α    

K

μ 

(b)

Fig. 3. Graphical representation: (a) MOPP, (b) The simplified MOPP

Recall that each project has a profile vector and each participant has a set of
profile vectors. We refer the project as the investigated project. Each investigated
project is represented by an L2-normalized TF-IDF unit vector and each par-
ticipant of the investigated project at time t has a number of previous projects
before t. The subscripts on the participants and the investigated projects plates
in Fig. 3(a) are used to differentiate between the two plates. We keep a record
about the respective subscripts and merge them to simplify MOPP. We call the
new model as simplified MOPP and use it in the learning and inference process.
The record will be used later after the learning and inference process to recover
information about which plates the learnt latent values originally belong to. We
show the simplified MOPP in Fig. 3(b). Notice that in the simplified MOPP, we
“stack” the dummy plate G (with Pg) and the participants of the investigated
projects plates CPg (with Pc). We then refer the stacked G and CPg as S. Pg and
Pc on the respective G and CPg plates are referred as Rs. We also rename the
subscripts c and g as s, and the subscripts p as r. Table 2 summarizes the main



symbols we use in this work. We present the generative process of the proposed
model in Algorithm 1.

Table 2. Main symbols and their definitions used in this work

Symbol Definition Symbol Definition

α Hyperparameter θg Topic proportions for dummy plate
K Numb. of topics Pg Investigated projects
µ Mean direction of vMF |Pg| Numb. of Pg

κ Concentration parameter of vMF Zgp Topic assignment of project p∈Pg

V Dimension of unit vector F Fgp L2-normalized TF-IDF unit vector
CPg Participants (of the investigated of project p∈Pg

projects at snapshot t) plate S C + a dummy plate, C=∀CPg

|CPg | Numb. of CPg |S| |C| + 1
θc Topic proportions for participant c Rs Projects on plate s, Rs∈ {∀Pg,∀Pc}
Pc Projects of participant c before t |Rs| Numb. of Rs

|Pc| Numb. of Pc θs Topic proportions for s, s∈S
Zcp Topic assignment of project p∈Pc Zsr Topic assignment of project r∈Rs

Fcp L2-normalized TF-IDF unit vector of Fsr L2-normalized TF-IDF unit vector
project p∈Pc of project r∈Rs

G Dummy plate

Algorithm 1 Generative process of the proposed model

for s=1 to |S|, s ∈ S do
Choose topic proportions θs ∼ Dir(α)

for r=1 to |Rs|, r ∈ Rs do
Choose a topic µk, {1..K} 3 Zsr ∼ Multinomial(θs)
Compute L2-normalized TF-IDF unit vector ||Fsr||2 ∼ vMF(µk, κ)

3.2 Learning and Inference Process

The joint distribution for a plate s is given as follows:

p(θ, Z, F|α, κ, µ) = p(θ|α)

|Rs|∏
r=1

p(Zr|θ)p(Fr|Zr, µ, κ) (2)

We introduce variational parameters γ and φ in the following variational distri-
bution q for the inference step in (3).

q(θ, Z|γ, φ) = q(θ|γ)

|Rs|∏
r=1

q(Zr|φr) (3)

Application of Jensen’s inequality for a plate s [2] results in:

log p(F|α, µ, κ) = L(γ, φ;α, µ, κ) +KL(q(θ, Z|γ, φ)||p(θ, Z|F, α, µ, κ)) (4)

where KL represents the Kullback-Leibler divergence notation. By using the
factorization of p and q, we then expand the lower bound L(γ,φ;α,µ,κ) in (5):



L(γ, φ;α, µ, κ) = Eq[log p(θ|α)] + Eq[log p(Z|θ)] + Eq[log p(F|Z, µ, κ)]

− Eq[log q(θ)]− Eq[log q(Z)] (5)

The derivation from (4) to (5) is similar with the derivation from (13) to (14)
in ([2] p.1019) except for the third terms on the right hand side of (5) (high-
lighted), which now includes the vMF distribution. Due to the space constraint,
interested readers should refer to [2] for the expansion details of the first, second,
fourth, and fifth terms on the right hand side of (5).

The variational parameter γk is calculated by maximizing (5) w.r.t. varia-
tional parameter γk. Using the same approach, the variational parameter φ is
computed by maximizing (5) w.r.t. variational parameter φrk and introducing
Lagrange multiplier,

∑K
k=1 φrk = 1. Both of these two steps result in (6).

γ∗k = αk +

|Rs|∑
r=1

φrk

φ∗rk ∝ exp((Ψ(γk)− Ψ(

K∑
k=1

γk)) + log p(Fr|µk, κ)) (6)

where Ψ is the digamma function (the first derivative of the log Gamma func-
tion). To compute µ, we need to calculate:

µ∗ = arg max
µk

|S|∑
s=1

|Rs|∑
r=1

K∑
k=1

φsrk log p(Fsr|µk, κ) (7)

Equation (7) is the same as fitting von Mises-Fisher distributions in a mixture
of von Mises-Fisher distributions [7], where φsrk is the mixture proportions. The
complete process for variational EM algorithm in the learning and inference
process includes the following iterative steps:

E-step: Compute the optimized values of γ and φ for each plate s using (6).
M-step: Maximize the lower bound w.r.t. to the model parameters α and µ

described in the standard LDA model [2] and (7) respectively.

3.3 Scoring the Expertise to Project’s Topic

The learning and inference process (Sect. 3.2) assigns a topic to each project on
Rs. Recall from Section 3.1 that we keep a record about the subscripts in MOPP
but use the simplified MOPP for the learning and inference process. After the
learning and inference process, we need to reverse map the learnt latent values
back to the plate that they originally belong to. This process is crucial because
our goal is to retrieve the topic proportions of each participant (θc) and the topic
assignment of the investigated project (Zgp). The topic proportions in θc based



on the investigated project’s topic will become the score of each participant in
that project. An end-to-end pseudo-code that summarizes the steps to score each
participant’s expertise to projects and mine the outlier participants is shown in
Algorithm 2.

Algorithm 2 Mining outlier participants algorithm

Input: 1) Investigated projects’ L2-normalized unit vectors, 2) Each participant from
the investigated projects with their L2-normalized unit vectors, 3) O: number of
outlier participants

Output: topO : List of Top-O [<outlier participants, his project, his score>] outlier
participants

Steps:

1: Let lPart ← ∅, topO ← ∅

2: Translate MOPP to simplified MOPP (Sect. 3.1)
3: Do the learning and inference process (Sect. 3.2)
4: Reverse map the learnt latent values to the respective projects. (Sect. 3.3)

5: for every investigated project p ∈ Pg

6: Get its topic assignment Zgp

7: for every participant c ∈ CPg

8: Get the topic proportions θc
9: Get his score, partScore ← θc[Zgp]
10: lPart ← <c, p, partScore>
11: Sort lPart in an ascending order based on partScore values
12: topO ← take the participants in the first Top-O lowest scores in lPart
13: Output topO

We translate MOPP to simplified MOPP (Line 2) following our description
in Sect. 3.1. Line 3 refers to the learning and inference process, which is summa-
rized in the E-step and M-step (Sect. 3.2). Line 4: after we learn the model, we
translate back the simplified MOPP to MOPP. Lines 5–10: for every project p in
Pg, we infer its topic assignment (Zgp) and score each participant based on his
topic proportion in Zgp. Lines 11–13: we label topO lowest scores participants as
outlier participants.

4 Experiments

In this section we present our experiments to evaluate the performance of our
proposed model. The proposed model is implemented in Matlab and we conduct
the experiments on a machine with Intelr Core(TM) Duo CPU T6400 @2.00
GHz, 1.75 GB of RAM.

4.1 Baseline Methods

For our baseline methods, we use a cosine similarity test and a latent topic model
Latent Dirichlet Allocation (LDA). We specifically measure the cosine similarity
between the TF-IDF vectors of each participant and his/her current project.
We form the TF-IDF vector of each participant from the words of all his/her



previous projects, while the TF-IDF vector for a project is extracted from the
words in the title. The cosine similarity is defined as follows:

cos(vec1, vec2) =
vec1 · vec2
|vec1||vec2|

(8)

The original LDA model (Sect. 2.1) is not suitable to be used directly for our
purpose. We introduce the modified LDA for our purpose in Fig. 4. Following
the translation for the simplified MOPP in Sect. 3.1, we keep a record of the
subscripts. We perform the reverse mapping after the learning and inference
process. The remaining steps are the same as step 5-13 in Algorithm 2. We set
η = 0.1 and α = 50/K, where K is the number of topics [15]. Because LDA
returns topic mixture for each project and each participant, we use (9) to score
the participants. We sort the scores in an ascending order to list the outlier
participants, where tp is the topic mixture of project p and si,p is the topic
mixture of a participant i in project p.

< tp · si,p > (9) 

 Investigated projects 

   

 Words 

   

 
Words from the 

previous projects 

 Participants of the investigated projects η β 

K 

α 

Fig. 4. The modified LDA for mining outlier participants

4.2 Semi Synthetic and Synthetic Data sets

Our experiments are divided into two parts: using semi-synthetic and synthetic
data sets. For the semi-synthetic data set, we use data from the Arxiv HEP-TH
(high energy physics theory) network3. This data set was originally released as a
part of 2003 KDD Cup. We analyze the publications in year 2003 and extract the
authors. We then take a number of authors from DBLP4 and their publications.
These DBLP authors will act as the outlier participants. For all publications
extracted from HEP-TH and DBLP, we use words from the title. We then inject
the authors from DBLP to the HEP-TH randomly. We have 1,212 HEP-TH
authors in 554 projects. We vary the number of outlier participants and the
results are the average values over ten trials. To evaluate the performance of our
proposed model and the baseline methods, we use precision, recall and the F1
score. We show the results in Fig. 5.

3 http://snap.stanford.edu/data/cit-HepTh.html
4 www.informatik.uni-trier.de/ ley/db/



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

80 100 150

R
e

c
a

ll

Number of Outliers Injected

Recall for Top-5 Lowest Scores

MOPP

LDA

Cos-Sim

0

0.2

0.4

0.6

0.8

1

80 100 150

F
1

 S
c
o

re

Number of Outliers Injected

F1 Score for Top-5 Lowest Scores

MOPP

LDA

Cos-Sim

0

0.2

0.4

0.6

0.8

1

80 100 150

R
e

c
a

ll

Number of Outliers Injected

Recall for Top-10 Lowest Scores

MOPP

LDA

Cos-Sim

0

0.2

0.4

0.6

0.8

1

80 100 150
F

1
 S

c
o

re

Number of Outliers Injected

F1 Score for Top-10 Lowest Scores

MOPP

LDA

Cos-Sim

0

0.2

0.4

0.6

0.8

1

80 100 150

R
e

c
a

ll

Number of Outliers Injected

Recall for Top-15 Lowest Scores

MOPP

LDA

Cos-Sim

0

0.2

0.4

0.6

0.8

1

1.2

80 100 150

F
1

 S
c
o

re

Number of Outliers Injected

F1 Score for Top-15 Lowest Scores

MOPP

LDA

Cos-Sim

Fig. 5. Recall and F1 score for the first Top-5, 10 and 15 lowest scores in MOPP, LDA,
and cosine similarity (Cos-Sim)

Figure 5 shows that LDA gives the lowest performance in detecting outlier
participants (both the recall and F1 score are very low), while cosine similarity
seems to be slightly better than MOPP. This is intuitive because the nature of
the data set itself (HEP-TH and DBLP) is almost well-separated (the words in
computer science are less likely to appear in the physics publications)5.

We use the Normalized Mutual Information (NMI) measure to compare the
performance of LDA and MOPP in reconstructing the underlying label distribu-
tion in the data set. NMI [17] is used to evaluate the clustering result [18, 19].
NMI is defined as follows:

NMI(X,Y ) =
I(X,Y )√
H(X)H(Y )

(10)

where X represents cluster assignments, Y represents true labels on the data set,
I and H represent mutual information and marginal entropy. Table 3 presents
the result and shows that MOPP gives a better cluster quality than LDA does.

Table 3. NMI score: MOPP vs. LDA. The best values are highlighted, where NMI
score close to 0 represents bad clustering quality and NMI = 1 for perfect clustering
quality

NMI

LDA

MOPP

Number of Outliers Injected

80 100 150

0.308

0.803

0.404

0.811

0.626

0.815

5 In our initial experiments, we also included a classical outlier detection method Local
Outlier Factor (LOF) [16]. Unfortunately LOF fails to detect outlier participants in
any settings so we do not include the result here.



In the second part of the experiment, we form a small synthetic data set
that represents a scenario illustrated in Fig. 6(a). This scenario is often observed
in the real word that the extracted words from the participants may not ap-
pear in the investigated projects’ extracted words. For example in Fig. 6(a) the
word W1 and W2 appear in the investigated project 2, but do not appear in the
previous projects of participant P4. Because cosine similarity compares directly
between TF-IDF vector of a participant and an investigated project, obviously
P1 and P4 in Fig. 6(a) will be marked as outlier participants in project 1 and 2
respectively. However if we analyze in the topic space, the true outlier partici-
pant should be P1, because P4’s words are likely to share same topic with the
investigated project 2 (through words in P5 and P6). We generate the synthetic
data set by first generating words with random occurrence for the investigated
projects. We then generate words for the participants with also random occur-
rence6. We generate three types of participant: “normal”, “spurious-outlier”,
and “true-outlier” participants. P2, P3, P5 and P6 are examples of the normal
participants, P4 is an example of the spurious-outlier participant, and P1 is an
example of the true-outlier participant. We randomly assign all the participants
to the investigated projects and inject the true-outlier participants.

The table in Fig. 6(b) shows that MOPP outperforms both cosine similarity
and LDA7 in this scenario. As we can observe MOPP returns all the true-outlier
participants and all true-outlier participants have the lowest score. The cosine
similarity returns all the true-outlier participants together with the spurious-
outlier participants (low precision and high recall score). On the other hand,
LDA correctly returns the true-outlier participants (high precision score), but
misses many true outliers (low recall score).

W1 W2 Wdim

Investigated Project 1

P
1

P

P

2

3

W1 W2 Wdim

Investigated Project 2

P
4

P

P
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6

Wn Wn

(a)
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F1 Score

0.7
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1.0
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1.0

1.0

1.0
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0.09

(b)

Fig. 6. (a) Scenario used in the synthetic experiment: dim is the dimensionality of
vocabulary, W represents word, P represents participant, shaded box of Wn represents
a certain number of appearances of word Wn and unshaded box of Wn means word Wn

does not appear (b) Precision, recall and F1 score of MOPP, cosine similarity (Cos-Sim)
and LDA

6 To fit the scenario, we generate words with occurrence > 0
7 For MOPP and cosine similarity, we consider results from the lowest returned score,

while for LDA we take the results from the Top-5 lowest returned scores.



Running time: MOPP vs. LDA. In this section we compare the running time
of LDA and MOPP w.r.t. the dimension of data. We form synthetic data sets
with various dimensions: 100, 500, 1,000, 1,500, 2,000, 2,500, 3,000, 3,500, 4,000,
4,500, and 5,000. We then run LDA and MOPP with various number (5, 10, 15
and 20) of topics/clusters. Figure 7 presents the results of the running time for
1,000 iterations of the respective model. It is clear that MOPP scales linearly
as the dimensionality of the data set increases. As the number of topics and
dimension keep increasing, MOPP can run under 500 seconds for 1,000 iterations
or less than half second per iteration.
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Fig. 7. Running time: MOPP vs. LDA for synthetic data set with various dimensions

4.3 Real Data set

Experimental Settings. We use a subset of DBLP to evaluate the performance
of MOPP. In a bibliographic setting, a publication represents a project and an
author represents a participant in our proposed model8.

We take projects from year 2005 to 2011 of four conferences that represent
four main research fields, i.e. VLDB (databases), SIGKDD (data mining), SIGIR
(information retrieval), and NIPS (machine learning). We analyze the title of
each project. We remove words which are too common or too rare9 from our
analysis. We have 141,999 projects in total.

We only consider projects which have at least two participants who have more
than nine previous10 projects. We assume that a participant who has at least
ten previous projects in his/her profile has already “matured” his/her research
direction. We refer these filtered projects as the investigated projects.

8 Henceforth we use the term a project for a publication and a participant for an
author.

9 We determine words that appear less than 100 times are too rare and more than
100,000 times are too often.

10 This includes projects before year 2005 as well.



At the end of process, we have 792 investigated projects, 1,424 participants
and the dimensionality of data (size of vocabulary) is 2,108. In average, each
participant has 28.71 previous projects before he/she joins in the investigated
project. The number of topics K that we use is five, i.e. four main research topics
and one for the other), κ for MOPP = 2,500, and α for MOPP is initialized to 1
to represent a non-informative prior [20, 21].

Convergence Rate. We now show our empirical verification that the varia-
tional EM of MOPP is able to converge. The convergence rate of α and varia-
tional EM for DBLP data set are shown in Fig. 8(a) and Fig. 8(b) respectively.
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Fig. 8. DBLP: Rate of convergence of (a) α value (b) variational EM

Experimental Results. From MOPP and the baseline methods, we aim to
mine those participants who have the lowest scores. We examine these three cases
for our analysis and present the results in the following paragraphs (Fig. 9, 10
and 11):

Case 1: Participant who has the lowest score from the cosine similarity only
Case 2: Participant who has the lowest score from LDA only
Case 3: Participant who has the lowest θc from MOPP only

Case 1. The cosine similarity measures the correlation between two vectors.
We focus on the participants who have cosine similarity with the investigated
project equal to 0. Figure 9 shows the extracted words from an investigated
project and previous projects of a participant (ID 16544 )11. The cosine similar-
ity of this participant’s TF-IDF vector and the investigated project’s TF-IDF
vector is zero. This participant is marked as an outlier participant by cosine
similarity. However, we can observe that the words from his previous projects
(multiprocessor, microprocessor, chip, pipeline, architecture) have a strong rela-
tion with the the word from the investigated project (i.e. multicore). The score
from LDA is 0.23 and from MOPP is 0.047. Both of these scores are not the
lowest scores in the respective models.
11 We use an anonymous ID for a participant



Words extracted from the investigated project: map-reduce, machine, learning, multicore

Venue of this investigated project: NIPS – 2006 

Participant ID: 16544

Words extracted from participant's previous projects and the frequency:

multiprocessor (6), caching (4), microprocessor (4), application (3), design (3), java (3), programs
(3), system (3), transaction (3), chip (2), clustering (2), coherent (2), consistent (2), data (2), dynamic
(2), implemented (2), optimal (2), parallel (2), pipeline (2), spaces (2), speculative (2), address (1), 

alternate (1), analysis (1), approach (1), architecture (1), associated (1), bandwidth (1), benefits (1), 

circuits (1), clock (1), concurrent (1), considerations (1), correct (1), efficient (1), embedded (1), 

environment (1), evaluation (1), exploitation (1), explorer (1), extraction (1), filtering (1), framework
(1), hardware-software (1), high-performance (1), impact (1), increasing (1), investigation (1), 

language (1), memory (1), on-chip (1), performance (1), polymorphic (1), porting (1), primary (1), 

profiles (1), prototype (1), real-time (1), shared-memory (1), sharing (1), specification (1), support
(1), synchronizing (1), testing (1), threading (1), timed (1), verifiably (1), verification (1)

Fig. 9. Case 1: participant with the lowest score from cosine similarity only (Cos-Sim
score: 0). Highlight the weakness of cosine similarity at the word level.

Case 2. In case 2, we present a participant (ID 10261 ) which LDA marks
as an outlier participant (Figure 10). However, as we can see here too that
the words from his previous projects (internet, network, malicious, online) are
related to the extracted words in the investigated project (spammer, online,
social, networks). The scores from LDA, cosine-similarity and MOPP are 0.095,
0.097, and 0.167 respectively.

Words extracted from the investigated project:

detecting, spammers, content, 

promoters, online, video, social, 
networks

Venue of this investigated project: SIGIR – 2009 

Participant ID: 10261

Words extracted from participant's previous projects and the frequency:

analyzing (3), characterization (3), content (3), interactions (3), internet (3), management

(3), media (3), network (3), stream (3), adaptive (1), analysis (1), architecture (1), auctions
(1), behavior (1), clients (1), comparative (1), distributed (1), dynamic (1), education (1), 

energy (1), graphs (1), incentives (1), live (1), malicious (1), methodology (1), mobile (1), 

online (1), p2p (1), peer (1), perspectives (1), placement (1), protocols (1), quality (1), 

resource (1), search (1), security (1), self-adaptive (1), server (1), service-oriented (1), 

sharing (1), summary (1), system (1), theoretical (1), tradeoffs (1), traffic (1), understanding
(1), user (1), video (1), wide-area (1), workload (1)

Fig. 10. Case 2: participant with the lowest score from LDA only (LDA score: 0.095).

Case 3. The last case that we consider is when MOPP gives the lowest
score. Figure 11 presents the results for participant ID 116471. From the words
extracted from this participant’s previous projects, it seems that this participant
focus more on web graph analysis. However, the words from the investigated
project suggest that this project presents method in text analysis algorithms.
This participant has a score 0.197 from LDA and 0.0828 from cosine similarity.



Words in title of the investigated publication: variable, latent, semantic, indexing

Venue of this investigated publication: KDD – 2005 

Participant ID: 116471

Words extracted from participant's previous projects and the frequency:

web (6), analysis (3), graphs (3), models (3), algorithm (2), caching (2), information (2), 

prefetchers (2), random (2), semantic (2), system (2), abstraction (1), algebraic (1), 

annotating (1), application (1), automated (1), based (1), bootstrap (1), bounded (1), clock

(1), comparison (1), computing (1), connection (1), discovery (1), extending (1), extraction

(1), fast (1), hypertext (1), interval (1), knowledge (1), large-scale (1), linear (1), markov (1), 

measuring (1), method (1), metrics (1), minimality (1), mining (1), online (1), parallel (1), 

probabilistic (1), recommendation (1), retrieval (1), scheduler (1), segmentation (1), 

skewed (1), sub-graph (1), targeted (1), tasks (1), teaching (1), transition (1), tree (1), 
understanding (1), walk (1), zero (1)

Fig. 11. Case 3: participant with the lowest score from MOPP only (MOPP score: 0).

5 Conclusion

In this paper, we introduce the Mining Outlier Participants from Projects
(MOPP) model, to address the problem of scoring and ranking participant’s
expertise to their projects. Each participant is scored based on their project
working history to the project’s topic. Participants who have the lowest scores
are marked as outlier participants, which means that these participants have dif-
ferent topic interests compare to the projects that they are working on. MOPP
incorporates the structure and nature of hierarchical generative model and di-
rectional distribution, the von Mises-Fisher distribution. Experiments on semi-
synthetic and synthetic data sets show that MOPP outperforms baseline meth-
ods. We also present the result from real data set extracted from DBLP. The
proposed model consistently gives more meaningful and semantically correct re-
sults from the bibliographic network DBLP. For future work, we would like to
extend the model to non-parametric model and compare its performance to other
non-parametric topic models. We also plan to implement MOPP in different do-
mains.
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