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Abstract. We address the problem of hierarchical segmentation of se-
quential grouped data, such as a collection of textual documents, and
propose a non-parametric Bayesian approach for this problem. Existing
Bayesian non-parametric models such as the sticky HDP-HMM are suit-
able only for single-layer segmentation. We propose the Layered Dirichlet
Process (LaDP), where each layer has a countable set of Dirichlet Pro-
cesses, draws from which define a distribution over the countable set
of Dirichlet Processes at the next layer. Each data item gets assigned
to a distribution (index) from each layer of the hierarchy, leading to
hierarchical segmentation of the sequence. The complexity of inference
depends upon the exchangeability assumptions for the measures at dif-
ferent layers. We propose a new notion of exchangeability called Block
Exchangeability, which lies between Markov Exchangeability (used in
HDP-HMM) and Complete Group Exchangeability (used for HDP), and
allows for faster inference than Markov Exchangeability. Using experi-
ments on a news transcript dataset and a product review dataset, we
show that LaDP generalizes better than existing non-parametric models
for sequence data, and by simultaneously segmenting at multiple levels,
outperforms existing models in terms of single-layer segmentation. We
also show empirically that using Block Exchangeability greatly speeds
up inference and allows trading off accuracy for execution time.

1 Introduction

We address the problem of hierarchical segmentation of sequential grouped data.
For example, consider transcripts of news broadcast on television or radio. Here,
each transcript represents a group of data points, which are the words in this
case. The words in each transcript or group form a sequence that needs to be
segmented. The segmentation needs to be at two layers — news categories, such
as politics, sports, etc, and individual stories within a category. There are ben-
efits to segmenting transcripts simultaneously, instead of individually. Stories
are typically shared across transcripts, and transition patterns between stories
(more important stories often come earlier) and categories (e.g. sports very rarely
comes before other categories) may also be shared across transcripts. Also, there
are benefits to simultaneous segmentation into stories and categories. Inferring
a story strongly suggests a category, while inferring a category increases the
posterior probability for certain stories. Finally, while the number of categories
may often be known or guessed, this is not true for the number of stories. In this



paper, we propose a Bayesian approach for this problem, which is both hierar-
chical and non-parametric. For the news example, each story can be modeled
as a distribution over words, while each category is a distribution over stories.
The same stories and categories are shared between all news transcripts. Being
non-parametric, the model does not require the number of stories to be specified.

The Dirichlet Process[1] is a measure over measures and is useful as a prior
in non-parametric Bayesian mixture models, where the number of mixture com-
ponents is not specified a-priori, and allowed to grow with number of data
items. The Hierarchical Dirichlet Process(HDP)[5] hierarchically extends DP for
grouped data, such as words partitioned into documents, so that mixture com-
ponents are shared between groups. The DP is a completely exchangeable model
(probability of the data is invariant to permutations in the sequence), while the
HDP is completely exchangeable within each group (group exchangeable). So
these are not suitable as statistical models for segmentation. HDP variants such
as the HDP-HMM [5] and sticky HDP-HMM [6], which satisfy Markov exchange-
ability, are more suitable for segmentation. However, they perform segmentation
at a single layer and not several layers simultaneously as we need.

We propose the Layered Dirichlet Process, where each layer has a countable
set of DP-distributed measures over integers. The integers at each layer serve as
indices for the measures at the next layer. Each data item filters down this lay-
ered structure, where a measure at each layer assigns it to a measure at the next
layer. Such assignments to each data item in the sequence results in a hierarchi-
cal segmentation of the sequence. The assignment of a measure to each data item
at each layer depends on the exchangeability assumption at that layer. For Com-
plete Group Exchangeability, it depends only on the assignment at the previous
layer. For other partial Group Exchangeabilities, it additionally depends on the
assignments of other data items at that layer. We perform inference for LaDP
using collapsed Gibbs sampling. Since the assignments are coupled across lay-
ers, inference is naturally complex. We propose a new notion of exchangeability
called Block Exchangeability. We show that this relaxes Complete Exchangeabil-
ity to capture sequential patterns, but is stricter than Markov Exchangeability
with significantly lower inference complexity.

Using experiments on multiple real datasets, we show that by modeling
grouping at multiple layers simultaneously, LaDP is able to generalize better
that state-of-the-art non-parametric models. We also show that simultaneous
segmentation at multiple layers improves segmentation accuracy over single layer
segmentation. Additionally, using Block Exchangeability leads to significantly
faster inference compared to Markov Exchangeability, while incurring negligible
increase in segmentation error and perplexity in some cases, and actually im-
proving performance in some others. Interestingly, the model has the attractive
feature of trading off efficiency for accuracy through tuning a parameter.

2 Background and Related Work

In this section we briefly review some existing nonparametric models used as
priors for infinite mixture models, and existing notions of exchangeability.

DP Mizture Model and Complete Exchangeability: A random measure G on © is
said to be distributed according to a Dirichlet Process (DP) [1] (G ~ DP(«, H))



with base distribution H and concentration parameter « if, for every finite parti-
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The stick-breaking representation shows the discreteness of draws from a DP:
A~ kil A~ ~
O ~ H; Br = B [[(1— B); Bi ~ Beta(l,a); G2 Bids,
i=1 k

We write 8y ~ GEM («). Given n independent draws {6;}"_; from G as above,
the predictlve distribution of the next draw, on integrating out G, is given by
P(Oni1]01...0,) < X1 npds, + aH, where {¢,}5 | be the K unique values
taken by {6; }1:1 with corresponding counts {ny }%_,, which shows the clustering
nature of the DP. Using the DP as a prior results in an ‘infinite mixture model’
for data {w;}?_; with the following generative process:
G~ DP(o, H); 0; % G; w; C F(6;),i=1...n
where F is a measure defined over ©. This is called the DP mixture model [1].

This can alternatively be represented using the stick-breaking construction and
integer latent variables z; as follows:

B~GEM(a); Oy ~H, k=1...00z; ~f; w; ~F(0,,), i=1...n

An important notion for hierarchical Bayesian modeling is that of exchange-
ability [11,2]. Given any assignment {Z,Zs,...,Z,} to a sequence of random
variables {z,} € S, where S is a space of sequences, exchangeability (under
joint distribution P on S) defines which permutations {Zr(1y, Zx(2),- - -, Zr(n)}
of the assignment have the same probability ( under P). In general, any notion
of exchangeability F is defined using a statistic, which we call Exchangeabil-
ity Statistic Sg(z). A model, defining a joint distribution P, is said to satisfy
exchangeability E if Sp(z1) = Sg(22) implies P(z1) = P(22), for all 21,22 € S.

Given any specific sequence 2z € S, define Sc(2) = {n;}¥_, as the vector
of counts of unique values occurring in it, where n; is the count of the i-th
unique value. Using S¢(z) as the exchangeability statistic leads to the definition
of Complete Exchangeability, under which all permutations are equiprobable.

De Finetti’s Theorem [3] shows that if an infinite sequence of random vari-
ables z is infinitely exchangeable (meaning that every finite subset is completely
exchangeable) under a joint distribution P(z), then the Jomt dlstrlbutlon can be
equivalently represented as a Bayesian hierarchy: P(z) = [, P(0)[], P( zl|9)d9 It
can be shown that the a sequence drawn from a DP mlxture model using a sim-
ilar hierarchical generation process, satisfies Complete Exchangeability.

HDP Mizture Model and Group Ezxchangeability: Now consider grouped data
of the form {w;,g;}",, where g; € {1,G} indicates the group to which w;
belongs. The Hierarchical Dirichlet Process (HDP) [5] allows sharing of mixture
components {¢x} across groups using two levels of DP distributions:

¢p~H, k=1...00; ~GEM(v), mj ~DP(a,8), j=1...G
Zi~ g Wy~ Flgy,), i=1...n (1)

This generative procedure for the data is called the HDP mixture model. We
have modified the representation to make the group variable explicit, which we

,aH(O))).



can build upon for our work. Note that the HDP can also be represented directly
using measures instead of indices.

The HDP mixture model can be shown to satisfy a notion of partial exchange-
ability called Group Exchangeability. For grouped data of the form {z;, g},
define Sq(z,9) = {{n;r}f,}5o,, where nj, = Y7 6(zi,k)6(gs, ). Using
Sc(z,g) as the exchangeability statistic defines Group Exchangeability (GE).
For Group Exchangeable models, all intra-group permutations are equiprobable,
but probability changes with exchange of values across groups.

Other Group Exchangeable Nonparametric Models For grouped data {w;, g;}7 4,
the Nested Dirichlet Process (NDP) L?] proposes the following generative model
with two layers of latent variables (2%, 21) for each data item:

bpy~H, k,l=1...00;8; ~GEM(B), k=1...00; %> ~ GEM(a);

Zg Nﬂz, g= 1...G;zi1 Nﬂzlg_;wi ~¢Z§i7z%, i=1...n
Unlike the HDP, only some groups share mixture components. Additionally,
unlike the HDP they also share distributions over these components.
MLC-HDP [9] models data of the form {w;, g}, g7, g5 }™ ;, which is grouped
at 3 different levels, and proposes the following generative process:

¢~ H, k=1...00;% ~GEM(*), 82 ~ GEM(y?), B' ~ GEM(y');
73 ~ DP(a?,8%), n2 ~ DP(a?, %), n} ~ DP(a!,BY), k,l=1...00;
23~ mVa; 22, ~ 7r33VaVb; 2l ~ 7r;2 VavbVe; w; ~ d)zlg , o t=1...n
a ab 95,95 :9;
Here the mixture components can be shared by all groups, and two groups can
have identical distributions over these components with non-zero probability.

Segmentation, HDP-HMM and Markov Exchangeability: Now we come to the
segmentation problem for a sequence {wj;,z;} where the the variables w; are
observed while z; € {1,2...} are latent, and a joint distribution P(w,z) =
P(z)P(w|z). Given any assignment to the {z;} variables, segments are defined
as maximal sub-sequences (s, e) such that z, = z; = z; for s <i <e. Since {z;}
variables are random, a natural definition for the segmentation problem is to
first perform inference to find the optimal assignment to {z;} according to the
posterior distribution P(z|w), and then identifying segments for this assignment.
Instances of this problem include segmentation according to topics for textual
documents and according to speaker in conversational audio. Naturally, distin-
guishing between different permutations is critical for segmentation of grouped
(un-grouped) data, and GE (CE) assumptions for p(z) are not appropriate, since
all permutations are equiprobable. Therefore, HDP (DP) mixture models are not
suitable for such segmentation tasks. These call for more discerning models that
satisfy other notions of exchangeability that distinguish between different seg-
mentations of {w;, z;} represented by different assignments to {z;}.

To model (ungrouped) data {w;} with such properties, the HDP-HMM [6]
considers the mixture components z; as states of an HMM with infinite state-
space. This is done by identifying the groups as well as the mixture components
in the HDP with the HMM states. Now m; ~ DP(a, f3) is considered as transition

distribution for the j** state, and is used to generate the next state:

wj ~DP(a,B), j=1...00;2; ~7, ;3 wy~F(0,,), i=1...n (2)



A special case of this is the Sticky HDP-HMM (sHDP-HMM) [6], which increases

e ol B+k6;
the probability of self-transition as m; ~ DP(a+r, “ 7>

continuity of mixture components which occur naturally in speech (where a
mixture component represents a speaker) and text (where a mixture component
represents a topic). Though originally developed for single sequences, the HDP-
HMM and sHDP-HMM models can also be extended for grouped data.

Consider the following statistic: Sys(z) = ({nij}f;km:l, s), where n;; is the
number of transitions from the i-th unique value to the j-th unique value in
the sequence z, and z; = s. Using Sy, as the exchangeability statistic leads to
the definition of Markov Exchangeability [2]. Intuitively, this means that two
different sequences are equiprobable under the joint distribution, if they begin
with the same value and preserve the transition counts between unique val-
ues. Representation theorems, similar to De Finetti’s theorem, exist for Markov
Exchangeability as well [2]. It can be shown that the HDP-HMM and sticky
HDP-HMM mixture models satisfy Markov Exchangeability.

), to enforce sequential

3 Hierarchical Segmentation and LaDP

We now discuss hierarchical segmentation of grouped data and propose Bayesian
nonparametric models for it, using existing notions of partial exchangeability.

Hierarchical Segmentation Consider grouped data of the form {w;,g;}, where
gi € {1...G} indicates the group to which each data point w; belongs. The
data {w; : g; = g} in each of the G groups forms a sequence. In the news
transcript example, each group corresponds to one transcript, and the words in
each transcript form a sequence. We call such data sequential grouped data.
Our task is to segment the sequential data in each of the groups at multiple
layers. We define an L-layer segmentation of the data as follows. Instead of a
single latent variable z; as before, we associate L latent variables {zﬁ}le, each

taking integer values, with the i'" data point. We call z! the group for the i*?
data point at layer . We will assume that the grouped structure of the input data
provides the grouping at the highest layer, i.e. ziLJr1 = g;. Given any assignment
to these n sets of group variables, the hierarchical segmentation at any layer [
(1 <1< L) is defined using {{z!' }>;}7_,, which are all the group variables at
layer [ or higher. Two data points at position ¢ and j (i < j) belong to the same
hierarchical segment at layer [ if the group variables of intermediate data points k

are identical at layers [ and above: zﬁl = zg = z}l, Ve 1 i<k<j I<l<L+1.
This may also be defined recursively. Two words belong to the same segment at
layer [ if they belong to the same segment at layer [ 4+ 1, and all intermediate

group variables Zé have the same value at layer [. In the case of news transcripts,

the group variables z{‘“ at the highest layer indicate which transcript the *"
data point (word) belongs to, which is provided as input. Imagine the next layers
to correspond to categories (layer 2) and stories (layer 1). Then, two words would
belong to the same category segment (layer 2), if they are in the same transcript
and share the same category label with all intermediate words. Similarly, two
words belong to the same story segment (layer 1) if they belong to the same
category segment and have the same story labels as all intermediate words. We

want the L-layer hierarchical segmentation at layer 1.



Completely Exchangeable Layered Dirichlet Process We define a joint probability
distribution over the n sets of group variables {{z!}%_,}7 ; and the n data points
{w;}_, using a hierarchical Bayesian approach. For each layer [, 1 <1 < L, we
have a countable set of measures {m,}>2, defined over positive integers. The

group variables {z!}" , at layer [ serve as indexes for these measures. Using
this countable property, the atoms of all of these measures at layer [, which are
integers, correspond one-to-one with the measures at the next layer [ — 1. This
gives us a hierarchy of measures, in the sense that each 7Té forms a measure

l—l o0
over the measures {7Tg/ =1

F(¢) is a measure over the space W of the observations {w;}. For discrete text
data, we assume these to be multinomial distributions over the vocabulary.
Next we need to define the measures {Wf] g—1 and the exchangeability prop-
erties at each layer I. In LaDP, we define each of these distributions to be DP-
distributed. We begin with the simplest case, which assumes complete exchange-

ability at every layer. The generative process looks as follows:

at the next layer. Finally, at the lowest layer, each

¢kNH, k=1...0
,BéNGEM('yl); ngwDP(al,ﬂé), g=1...00,1=2...L
zﬁwﬂiHl,l:L...l, wiNF(gbZ}),i:l...n (3)

In each layer, a countable set of measures is first constructed by drawing from a
DP with a distribution over integers as a base distribution. These measures as a
result also have support over integers, which serve as indexes to the measures at
the next lower layer, which also form a countable set. Once we have this hierarchy

of measures, the group variable z! for each data point at each layer [ is sampled
from the measure indexed by the group z.™! assigned at the previous (higher)
layer. The measures at the lowest layer (layer 1) are sampled from a suitable base
distribution H. H could be Dirichlet when each 9; is a multinomial parameter.
It is easy to verify that the above process satisfies Complete Exchangeability

(CE). As such, we call this model the CE-LaDP.

Layered Dirichlet Process for Segmentation Since CE models are not useful for
segmentation, we try to incorporate Markov Exchangeability within LaDP. The
key to incorporating ME is to break the iid assumption for the group variables,
within a layer as in the HDP-HMM, and additionally across layers, and generate
zj conditioned on some of the previously sampled groups {zﬁl 11 < j, I <l1}. The
HDP-HMM identifies groups with states and makes the Markovian independence
assumption that P(z;|z<;) = P(2|zi—1). Accordingly, it defines transition dis-
tribution g over next states for each group / state g. In our case, we make the
following independence assumption: P(z}2>!,2L,) = P(z}[z, zé(i’l)), where

<i
Pl= s >0y, 2L =B i <), and p(iyl) = {5 ¢ 2=t <

1, zfjl #+ zﬁ“, j < k < i} is the previous position with the same group value
at layer [ + 1. This means that the group for data point 7 at layer [ depends on
its group at the layer [ + 1 (like in CE-LaDP), and also on the group at layer [
of the last data point having the same group as i at layer [ + 1. Subsequently,
to simplify expressions, we overload the notation p(i,1) to refer to the group

value zll) (i,1) 33 well. We accordingly define transition distribution ﬂ'é) g over next



groups for each group g at layer [, and form the generative process for layer [:
l 1 l 1 gl r_
By~ GEM ("), 74 4 ~ DP(a',8,), 9,9’ =1...00,
=1L..

Zi T l 1, i=1...n
i

(i)’
For the first datapoint in any group in layer (I + 1), p(i,1) is undefined, and

is sampled from 5i 1+1- 1t can be shown that this generative process satisfies

Zi
ME within each grouﬁ at layer [. When this process is used at all layers, we call
the model ME-LaDP. As in sticky HDP-HMM, we add may extra probability

Lol l
s a B,+K0 . .
x! for self-transitions: Wé g~ DP(a! + & %), where ! is a continuity

parameter. This is done to encourage the same mixture component for adjacent
data points. This captures the temporally smooth nature of most real-world
data, and also encourages segmentations (based on group index assignments).

We have stated that CE-LaDP uses CE at all layers, while ME-LaDP uses ME
at all layers. It is possible to use layer specific exchangeability assumptions, as
demanded by particular applications. Indeed, we use such mixed exchangeability
models in our experiments.

g=1..e=

Fig. 1. Graphical model of LaDP focussed on one datapoint i in two adjacent layers

Incorporation of Domain Knowledge The {ﬁé} variables at each layer [ in Eqns.
3 and 4 are group-specific distributions over indexes (and measures) at the next
layer [ — 1. These are useful for incorporating domain knowledge like distribution
over categories for specific news transcripts. For example, we can indicate that
the j** transcript is dominated by category index k by setting distribution ﬁjL
over category indexes at the appropriate layer (L = 2) to Y oo, dx(c).

In some cases, one may also wish to bias the ¢-distributions using domain
knowledge. One option is to directly specify these ¢y. For weaker supervision,
we may introduce an additional layer [ = 0:

ﬁg ~ GEM(y°); 7r2 ~ DP(a07ﬁ2), g=1...0

z) ~ 7o w; =V, i=1...n (4)
Now, on specifying some of the {68} distributions, the corresponding distribu-
tions {r)} will be similar to these, depending on the concentration parameter



o, and the words will be drawn from these {7} distributions. Observe that we
use complete (group) exchangeability at layer [ = 0.

Connection with existing models Observe the connection of CE-LaDP (Equa-
tion 3) with the HDP mixture model in Eqn. 1. Recall that the group at the
highest layer ziLJrl is the input group label g;. Then, for L = 1 this is exactly the
HDP mixture model. However, by separating the group index in the HDP gener-
ative model, and identifying the z; variable as the random group variable leading
the the next layer, CE-LaDP naturally extends the HDP generative process to
generate layered grouping. A similar connection holds between ME-LaDP with
L =1 and HDP-HMM. Recently, MLC-HDP [9] extends HDP to 3 layers, with
each datapoint w; having input group indices g7, g7, g7. When the group-indices
2 are observed (rather than sampled from 73, as in [9]) and equal to the indices
gi for LaDP, and when the input group indices g7 =i, g7 = 1 and g} = 1 for all
datapoints w;, we get back CE-LaDP with L = 2. Thus the LaDP framework
can generalize existing models to any number of layers, as required. Also, while
these existing methods only use a single exchangeability property (CE or ME),
LaDP has the attractive property that different layers can have different ex-
changeability properties. To the best of our knowledge, LaDP is the first model
with this ability. In the next section, we discuss another exchangeability prop-
erty, and show how it can be used in any layer of LaDP. Moreover, LaDP allows
us to incorporate domain knowledge in any of the layers. Among existing mod-
els, only the recently-proposed DP-MRM [10] is equipped to incorporate such
domain knowledge, though only for a single layer.

4 Block-Exchangeability and BE-LaDP

The models that we have introduced for segmentation satisfy ME. However, as
we analyze later, there is a significant price to be paid in terms of complexity of
inference as we move from CE and GE to ME. This is particularly severe for us,
since we need to segment simultaneously at multiple layers. In this section, we
explore an alternative notion of exchangeability, called Block Exchangeability
(BE), that allows segmentation, but is less expensive than ME for inference.

Block Ezxzchangeability Consider the following statistic for a sequence z (with
k unique values in it): Sg(z) = ({nii, ni—i}¥_,e), where n;; is the number
of transitions from the ¢-th unique value of z to itself, n; _; is the number of
transitions from the i-th unique value to all other values and e is the value at
the last position. Using Sg(z) as the exchangeability statistic definition of Block
Exchangeability of a sequence z with distribution P(z), or a model that defines
P(z). First we observe some properties of a block exchangeable model.

Theorem 1 If a model defining a joint distribution P is Completely Exchange-
able then it is necessarily Block Exchangeable, but not the converse.

Theorem 2 If a model defining a joint distribution P is Block Exchangeable
then it is necessarily Markov Fxchangeable, but not the converse.



BE-DP Mixture Model Consider grouped data of the form {w;, z;, g; }1_;, where
gi € {1...G} indicates the group corresponding to the i*" data point, and
zi € {1...00} is the (latent) index of the mixture component corresponding
to w;. We now define a DP-based non-parametric mixture model for sequential
grouped data that satisfies Block Exchangeability, as follows:

¢p~H, k=1...00; 1y~ DP(a,Bg), g=1...G
qgk ~ Beta(1,k); gk = qgemg + (1 — qg)dk, g=1...G, k=1...00
2 ~ g, pi); Wi~ F(dz,), i=1...n (5)

The first two lines describe the BE-DP prior, and the last line shows data gen-
eration using the mixture indices z;. p(4) is the assignment to the datapoint just
before i in group g;. For the first datapoint in any group, 2! is sampled from Ty,

Theorem 3 The BE-DP prior distribution as well as the corresponding mizture
model satisfy Block Exchangeability.

The proofs of the theorems are available in our supplementary material [13].

We now provide an alternative representation of the BE-DP equivalent to
that in Eqn. 5, but which provides a justification for its nomenclature by cap-
ture the structure of equi-probable permutations of any sequence. Consider the
sequence {w;, 2, ¢i, i }7—1, where the variables w;, z; and g; are as before, and
we have added a binary variable ¢; € {0,1} for each data point. We change the
generative process in Eqn. 5 to include the ¢; variables as follows.

ci ~ Ber(qg, piy); 2z =p(i), if ¢; =0, z; ~mg,, else, i=1...n (6)

Clearly, this version is equivalent to the generative process in Eqn. 5, in the
sense that the marginal P(w, z, g) obtained by summing out ¢ from P(w,z,c,g)
is identical to that obtained from Eqn. 5. But this version has the advantage that
the introduction of the auxiliary variables makes inference more tractable, as we
will see the inference process in Section 5.

Separately, introduction of the the ¢ variables provides some new insights
into block-exchangeability. Observe that as long as ¢; remains 0, z; retains the
value p(i) of the previous mixture index in its group g;. Where ¢; takes value 1,
z; takes a new random value based on a group-specific distribution over mixtures
Ty, that does not depend on the current mixture component z;. Thus ¢; acts
as a change-point indicator variable. The distribution of ¢;, and therefore the
continuity of the the current mixture component, depends on the group and also
the mixture component. Thus mixture components are characterized by how
long they persist, but not by what follows them in the sequence. We use the
term block to refer to a sub-sequence {s,s+1,...,s+ 1} such that p(i + 1,1) =
i,Vi € [s,s+m—1], ¢, =1 and ¢\, = 0Vk € [1,m]. Note that this implies
zb =2l = ... =2l .. For a block exchangeable sequence, permutations
of blocks as a whole does not change probability of the sequence. Consider two
different assignments x and y to {¢;, z; }7_;. We say that a block of x corresponds
to another block of y if they are of same length, and have the same value of {z;}
for the data points within them. Then, if there exists a bijection between the
blocks of z and those of y, then they should have same probability.



BE-LaDP We now show that BE can be incorporated into any layer [ of the
LaDP instead of CE or ME. Consider the generative process in Eqn. 3 or in
Eqn. 4. We modify the only random variables for layer [ as follows:

Bl ~GEM('), nl ~ DP(a!,Bl), g=1...00

qéyg, ~ Beta(1, k); Wé)g/ = qlg?g,ﬂé +(1- qlg)g/)ég/, g, =1...00
2b~ Wim,p(i,z) i=1...n (7)

Note that x again plays the role of a continuity parameter as for the ME-LaDP.
When BE is used in every layer of LaDPas in Eqn. 7 we call the model BE-LaDP.

5 Inference using LaDP

The inference problem in LaDP is to find posterior distributions over the group
variables {z!} at all layers [ for each data point, given observations {w;}. As
for models such as HDP, HDP-HMM and sHDP-HMM, exactly computing this
posterior distribution is not tractable, and we resort to Gibbs Sampling for
approximate inference like the other models. We can perform collapsed Gibbs
Sampling only using the group variables after integrating out all the parameter
variables such as 7% and 5. When the () variable takes the same value across
groups in any layer [, the distribution of the variables at that layer is identical
to the HDP. The predictive distribution of the z! in that case is given by the
CRF equations as for the HDP [5]. However, in cases where some of the Bg»
distributions are specified through domain knowledge, we integrate out only the
7r§ distributions. The predictive distributions for such cases are discussed next.
The dependencies of the different variables is partially shown in Figure 1.

Predictive Distributions: For the different LaDP models, we first derive
the predictive distributions for 2!, the i*" group variable in the I** layer, given
the assignments to all group variables in the layers above (denoted z<!), and the
first ¢ — 1 group variables in layer | (denoted zl<2), after integrating out the Wé’ &
distributions from which they are drawn.

If the I*" layer uses CE (Eq. 3), the predictive distribution is given by

p(zf = a|2l<i» Zl+1) x nlel ia T alﬂiul (a)
i [ i

where né’k,a =|{i: 2z = a2 =ji€[l,k— 1]} This is the number of data
points before position k in group j of layer [ + 1 were assigned to group a in
layer 1. If the [*" layer uses ME (Eq. 4), the predictive distribution becomes

l ) L R0, a) + Bl (a)

p(z = alzly,

l
XN 141 . X
2T ,p(4,0),

where né’k’b’a = |{i : 2t = a,p(i,l) = b,z = ji € [1,k —1]}|. This is the
number of times successive data points before position k in group j of layer [+ 1
were assigned to groups b and a respectively in layer [. For BE at layer [, we
consider joint predictive distribution of 2! and the change-point indicator ¢! at
the {*". The conditional probabilities are as follows:

P(Ci = 077%[‘ = p(i7l)|cl<iazl<ia 27 o alzg+1 + R

16,0,0(3,1)

P(c; = 1,2 = klel;, 2L, 2 o (alzﬁﬂ,i,l,p(i,l) + 1)(”i§+1,i,1,k + “Bii“(k»



where ajkcp i : ¢k = ¢, p(i,1) = p, 27 = ji € [1,k — 1]}| is the number
of times data points before position k£ in group j of layer [ + 1 were assigned
to group p in layer [, and the adjacent change-point value in group j is ¢; and
j kea = {7: d=ec, zl =a,z™ = j,i € [1,k —1]}| is the number of times data
points before position k in group j of layer [ + 1 were assigned to group a in
layer [, and the change-point value at the same position is c.

Inference using Gibbs Sampling: We sample each of the zﬁ variables
conditioned on all the others sequentially in each iteration until convergence. In
each iteration we traverse all group variables for one data point before moving to
the next data point, and for a specific data point we traverse layers top down. The
conditional distribution is given by p(z l|zﬂ, =12 o p(2l]2,, 2 ) p(21 1 2.
The second term can be computed using the chain rule and the predictivel dis-
tributions described above: p(z!~1|2!) = p(24 |24t TT1L, p(2H2L,, 21F1). At layer
[ =1 this is the likelihood of the data, conditioned on the table assignments of
layer 1. The form of the first term depends on the exchangeability.

If layer [ uses CE the i*" variable can be swapped with the last to get

(e =alzly, ) sen! i+ a8l (a)

1,2,

where n/! =|{j #1i: 2l =a,z"" = j}|. Swapping is possible by CE property.

—1i,75,a
If layer | uses ME Wlth stlcky transitions, we make use of the conditional
distribution for the sHDP-HMM [6] to get:

=alzl,, ) = (alﬁé(a) + s(p(i,1),a) + k6(p(i,1),a)) x

p(at =

o' Bi(c(i, 1)) + s(a, e(i, 1) + Kd(c(i, 1), a) + 3(c(i, 1), a)d(p(i, ),

a)

ol +s(a,.) + &+ (c(i,l),a)

where j = dé“, s(a,b) = |{i: 2t = a,c(i,1) = b}, p(i,1) is as defined before Eqn.
4, and ¢(i,1) is defined analogously with i + 1 < j < n instead of 1 < j <i—1.

To define the conditionals for BE, we extend the p(i,1) and ¢(¢,1) notations,
which were defined for the z! variables to have equivalent definitions for the
ck variables. So, we will use p(i,1) and ¢*(i,l) for the earlier definitions, and
p°(i,1) and ¢°(4,1) for equivalent definitions using c} instead of 2!. Then the joint
conditional p(c!, zt|ct ;, 2t ,, 2/*1) has the following cases (Conditioning variables
omitted for notatlonal brevity). For ¢¢(i,1) = 0)

)= 1 if p*(i,1) # *(i,1)
Do (B +ny(=p*(i,1),0)) i p*(i,1) = ¢*(i,1)

l
Z(: (ni°(=p"(5,1). 1)+ B85 (p7 (5,)))
i - 1725 =p (Zvl)|) X . £ (ni(—1)+5) L

x(1+ny“(=p*(i,1), 1))

pleb = 0,28 = (0, )].) “*ﬁq‘(”%@

(1+ &+ ny(—p=(i,1), %))
(n7°(=b,1) + ajB5(0) (14 n5°(=b,1))
(n§(—1) +aj) (1+&+n3°(=b,.)




where n§(—1) means number of times the c. = 1 where i # t, n(li’c(u, k) is the
L= y and ¢l = k, for all i satisfying 27! = j, n3(u, k) is
the number of times p*(i,l) = u and ¢! = k, for all 7 satisfying z/™' = j. The
equations can be modified for the first and last data points of each group.

Complexity of inference: ME vs. BE: Consider the conditional distri-
butions at any layer [. For ME, for each data point, we need to sample from a k
dimensional multinomial, where & is the current number of unique group values
at layer [. This leads to a complexity of O(nk). In case of BE, the variable c!
determines whether the i*" data point continues with the value of p(i,1). When
cl =1, we need to sample a new value of z! from a k-dimensional multinomial.
Hence, the complexity of each iteration of inference in BE is O(n + bk), where
b is the number of data-points with ¢/ = 1. This can be significantly less than
O(nk), particularly for high values of k. The value of b depends on « in Eqn. 7.

Discussions We have a large number of variables to infer, and each of them
is dependent on some of the others. The order in which we select the variables for
Gibbs sampling may play a role in the rate of convergence, and avoidance of local
minima. Intuitively, and based on experience, we feel that when we sample one
variable we should follow it with its neighbors in the graphical model. Hence we
sample all the {z!}£ | variables corresponding to the datapoint i, before moving
to another datapoint. Another alternative is to sample all the {z!} | variables
in a particular layer [ before moving to another layer.

Often inference algorithms for nonparametric models have an associated Chi-
nese restaurant analogy. For LaDP also we can consider an analogy: the Layered
Chinese Restaurant Process. Consider L restaurants arranged in sequence, each
with infinite number of entrances and exits. Each exit from one restaurant leads
to exactly one entrance into the next. Each restaurant has infinitely many ta-
bles, each close to exactly one exit. Each customer enters the first restaurant
through a pre-assigned entrance, and occupies a table depending on the table
assignments of those customers who entered before him through the same en-
trance. Later, all the customers sitting at a table leave the restaurant through
the closest exit, and enter the next restaurant. Clearly a restaurant corresponds
to a layer, an entrance corresponds to a group, and a table corresponds to an
unique value of the 2! variables.

number of times z

6 Experiments

In this section, we empirically evaluate our proposed models on two datasets
for the tasks of document modeling and segmentation. We first check if learn-
ing multiple layers of grouping leads to better fit on held-out data, and also if
the resultant simultaneous segmentation at multiple layers is better than single
layer segmentation performed by models such as the sticky HDP-HMM. We also
compare the performance using the proposed notion of BE and that using ME
in terms of generalization ability, segmentation quality and execution time.
Datasets: Our first dataset is a set of semi-synthetic News transcripts.
We crawled archived pages from 5 news websites (Yahoo! News, The Hindu,
The Times of India, Deccan Herald, The Telegraph) for a 30 day period (1-
30 April, 2012), where news articles for each day were arranged in sequence
like news transcripts. We selected stories from 5 categories — politics, national
affairs, international affairs, business and sports, to create one transcript for



each day for each news source. This produced a dataset of 150(30 x 5) virtual
news transcripts, consisting of 2600 individual news articles, spread over the
5 categories. From these, 60 transcripts were used for training and the rest
for testing. After eliminating stop-words and rare words, we had a vocabulary
of size 7204, with a total of 0.4 million tokens in the complete dataset. Our
second dataset is on customer-generated laptop Reviews from Amazon.com.
Here each document is a single review, consisting of parts discussing different
product facets, like appearance, weight, screen size, image clarity, connectivity
etc. The vocabulary size was 7147 and there were 1.5 million tokens in the entire
dataset. We used 11510 documents for training, and 1000 for testing. In 100 of
the test documents, we annotated the facet segments manually for use as gold
standard segmentation for evaluation. !

Weak Supervision: Our models can accept weak supervision through the
group-specific ﬁé base distributions at any layer /. In the news dataset we had
gold-standard on the category labels. In the topmost layer L of any LaDP model
the groups correspond to news documents, each belonging to one of the 5 cate-
gories. For some of the models (as discussed later) the training documents were
provided supervision by setting ﬂjL to a d-distribution peaked at the label of
the category. We do not have such unique labels for stories. Separately, we ran
HDP in advance on the entire set of news articles (considering each article as a
document) and manually selected 136 meaningful topics, which we used as ﬁg
(for g =1...136), which serve as base distributions for the stories. (Eqn. 4).

Evaluated Models: We evaluate models with different number of layers,
different exchangeability properties at each layer, and with and without super-
vision at specific layers. We choose a naming convention that clearly identifies
these choices. For example, the name M E[-BE-CE;-LaDP indicates that the
model has 2 layers, with ME used at layer 2, BE at layer 1 and CE at layer 0
for words. The s subscripts indicate that supervision is used at layers 2 and 0.
The r superscript indicates that the number of mixture components is restricted
at layer 2, instead of an infinite mixture. All of our models use complete ex-
changeability at the layer of words, but we still include it in the name of the
model, since we have the option of using supervision at that layer. In our ex-
periments, we use 2 and 1 layer models (ie.e with L = 2 and L = 1). Note that
CE-CE-LaDP is the same as HDP [5], ME-CE-LaDP as sHDP-HMM [6], and
CE-CE-CE-LaDP as MLC-HDP [9].

Performance Measures: We aim to evaluate generalization ability and
segmentation of the models. To evaluate generalization ability we measure per-

plezity(PP) [11] on test data: emp(—%), where Wy are the words, and

N, the number of words in the d* test document. A lower value of perplex-
ity indicates better performance. For evaluating segmentation, we use the Py
measure [12], which is the probability that two tokens, k positions apart in the
same document, are reported to be in different segments despite being in same
gold-standard segment, or the other way round. Since different models perform
well for different ranges of k, we report the average over three different values
of k (short, medium and long), which we denote as S2 for layer 2 and S1 for
layer 1. The performance of the proposed models involving ME or BE depends
critically on the parameter x (Eqns. 4 and 7). We tune these parameters for all
models using a validation set of 5 transcripts to optimize performance.

The data is available at http://clweb.csa.iisc.ernet.in/adway/ladp/data.tar.gz



Experiments on News: For the news dataset, we have gold standard seg-
mentation at the level of categories as well as at the level of stories. We evaluate
five versions of 2-layered LaDP (L = 2), considering layer 2 as categories and
layer 1 as stories. The first four use combinations of BE and ME for layers 2 and
1, with the number of components restricted to 5 at I = 2. We test a version
that uses CE at both layers, (MLC-HDP [9] model restricted at layer 2). For
models with L = 1, we consider [ = 1 to correspond to stories, leading to the
models ME-CE-LaDP (sHDP-HMM) and BE-CE-LaDP, which can be evaluated
for story segmentation (S1) and perplexity (PP). These models do not have a
layer corresponding to categories. Alternatively, we could consider [ = 1 to cor-
respond to categories, with no layer for stories, leading to M E"-C' E-LaDP and
BE"-CE-LaDP, and evaluate for category segmentation (52). For S2 we use k
values of 700(long), 200(medium), and 50(short), while for S1 we use 160(long),
50(medium) and 20(short), based on the typical lengths of category and story
segments in the gold-standard. The results are shown in Table 1. We separately
evaluate all these models with weak supervision at layers | = 2 and | = 0 as
discussed. The results are shown in Table 2.

Model PP | S2| S1 Model PP | S2 | S1
CE-CE 5245 - [0.60 CE-CFE; 5309 - [0.60
CE"—CFE |5969(0.69| - CE" - CEs [6248|0.69| -
ME-CE 3751 - |0.59 ME-CE; 2763| - ]0.59
ME" —CE |7204|0.33| - ME; —CEs |7204|0.45| -
BE-CE 3371 - ]0.61 BE-CE, 2173| - |0.59
BE"—CE |3975]0.69| - BE] — CEs [2830(0.44| -
CE"-CE-CFE |3656|0.68|0.61 CE;-CE-CE; |3632]0.68|0.61
ME"-ME-CFE|3326|0.45|0.53 ME;-ME-CFE,|2546(0.33|0.42
ME"-BE-CFE |3856(0.68|0.61 ME;-BE-CE;|2830|0.46|0.49
BE"-ME-CFE |4475|0.49|0.42 BEI-ME-CE;|3000|0.49|0.42
BE"-BE-CFE |3713|0.45|0.37 BE!-BE-CE; |3184|0.28|0.44
Table 1. Perplexity and Segmentation Error for Table 2. Perplexity and Segmentation Error for
News without supervision News with supervision

From the Tables 1 and 2, we first observe that supervision significantly
improves performance of the models in terms of PP, and also often in terms of
S2 or S1. Also, low perplexity and high segmentation errors for CE"-CE-CE
and CEI-CE-CE, confirm that capturing the sequential nature of the data is
essential. More importantly, we can see that, in general, joint segmentation at two
layers improves performance over independent segmentation at each layer. Only
MET-CE in the unsupervised case for category segmentation performs better
than two-layer models. Two-layer models are also better in general in terms of
perplexity. Only BE-C'E, in the supervised case achieves better perplexity than
two-layer models. Secondly, comparing BE and ME models, we see that the best
perplexity is achieved by BE-C'E,, while BE™-BE-CFE has the best S1 among
unsupervised models. Among supervised models, BE!-BE-CE, has the best 52,
while BET-M E-CE; (jointly) has the best S1. This improved performance using
BE can be attributed to the fact that its Exchangeability Statistic Sp is simpler
than that of ME (S)), and so it has to learn fewer parameters.



Model |[PP| S2 [ SI
CE-CE [703] - |0.49
ME-CE [399| - |0.46
BE-CE [258| - |04 Review Nows
CE-CE-CE |1786(0.50 | 0.50 Modsl TTT ST IPPIITT 51T PP
ME-ME-CE|1549/0.49|0.38
ME [530.46]399] 4 [0.59 2763
ME-BE-CE|1136/0.41|0.44
BE4 |5.8[0.43(245(1.0[0.59| 2173
BE-ME-CE [1058|0.46 | 0.43
BE3 |5.2(0.40258|0.7|0.56| 2996
BE-BE-CE | 477 |0.43|0.46
BE2 (3.1]0.39]431(0.2|0.32| 8650
ME-CE-CE| 742 |0.37|0.50
BE1 |0.6[0.48|614/0.1|0.39|13839
BE-CE-CE |184/0.41]0.50 T B . -
CE-ME-CE [1913|0.48 |0.48 able 4. BE-ALL companson resuits.
CE-BE-CE |1787]0.49 | 0.42

Table 3. Perplexity and Segmentation Error for
Reviews

Experiments on Reviews: Recall that documents in this data only require a
single layer of segmentation. However, it is still meaningful to use 2-layer models,
and then use either the first or the second layer segmentation. The corresponding
measures of segmentation error are S1 and S2. We also evaluate single-layer
models, with S1 being the segmentation error. For both S1 and S2, we consider
k values 4 (short), 8 (medium) and 16 (long), again based on the typical lengths
of segments (by facet) in the gold-standard. Since we did not have product facet
labels for this dataset, we did not provide any supervision.As before, we used CE
at layer 0 (words). Since segmentation is needed at only one layer in this case,
we considered all combinations of M E, BE and CFE at layers 2 and 1, leading
to 3 1-layer models, and 9 2-layer models.

The results are shown in Table 3. We note that the baselines models HDP
(CE-CE), sHDP-HMM (ME-CE) and MLC-HDP (CE-CE-CE) are outperformed
on all measures. More interestingly, though the data has segment information
only at one layer, the best performance in terms of both PP and S1 is obtained
by 2-layer models. Finally, BE performs well in terms of PP. Though BE does
not outperform ME in terms of segmentation accuracy for this experiment, its
usefulness becomes apparent in our next experiment.

Execution Time: Finally, we evaluate the effect of the continuity parame-
ter k (Eqn. 7) on the execution time and accuracy of Block Exchangeability.
We compare the single-layer models BE-CE-LaDP and ME-CE-LaDP (sHMM-
HDP) on News and Reviews in terms of time per-iteration inference during (I7T)
(measured in seconds), segmentation error S1 and perplexity PP using different
values of k. We consider 4 representative parameter settings for BE, denoted by
BE1, BE2, BE3 and BE4 with k values of 100000, 5000, 1000, 10 for news and
4000, 1500, 500, 300 for reviews.The results are shown in Table 4. To begin with,
BE4 matches ME in segmentation and does better on perplexity while taking
significantly less time (53 secs vs 5.8 secs for Reviews, 4 secs vs 1 sec for News).
On decreasing k, inference time reduces further with gradual degradation of
perplexity, while average segmentation error decreases much below that of ME
(for BE2) and then increases again. This happens because segmentation error
for short k decreases monotonically with increase in block length i.e, decrease in
k, while that for long k increases monotonically. This demonstrates that using



block exchangeability it is possible to trade off inference time for segmentation
and modeling accuracy, unlike any existing exchangeability notion.

7 Conclusion

In this paper, we have addressed the problem of hierarchical segmentation of a
collection of sequences, and proposed a nonparametric Bayesian model called the
Layered Dirichlet Process, where data points filter down a layered structure of
Dirichlet Processes, and get assigned to a group at every layer, depending on the
exchangeability properties at that layer, leading to a hierarchical segmentation.
We propose a new notion of exchangeability, that allows for more efficient infer-
ence compared to Markov exchangeability while enabling segmentation unlike
complete exchangeability. We have demonstrated experimentally that using the
proposed models joint segmentation at multiple layers is better than indepen-
dent single-layer segmentation, and we are aditionally able to trade off execution
time for modeling and segmentation accuarcy unlike any existing model.
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