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Abstract. The area under the precision-recall curve (AUCPR) is a sin-
gle number summary of the information in the precision-recall (PR)
curve. Similar to the receiver operating characteristic curve, the PR curve
has its own unique properties that make estimating its enclosed area
challenging. Besides a point estimate of the area, an interval estimate is
often required to express magnitude and uncertainty. In this paper we
perform a computational analysis of common AUCPR estimators and
their confidence intervals. We find both satisfactory estimates and in-
valid procedures and we recommend two simple intervals that are robust
to a variety of assumptions.

1 Introduction

Precision-recall (PR) curves, like the closely-related receiver operating character-
istic (ROC) curves, are an evaluation tool for binary classification that allows the
visualization of performance at a range of thresholds. PR curves are increasingly
used in the machine learning community, particularly for imbalanced data sets
where one class is observed more frequently than the other class. On these im-
balanced or skewed data sets, PR curves are a useful alternative to ROC curves
that can highlight performance differences that are lost in ROC curves [1]. Be-
sides visual inspection of a PR curve, algorithm assessment often uses the area
under a PR curve (AUCPR) as a general measure of performance irrespective
of any particular threshold or operating point (e.g., [2,3,4,5]).

Machine learning researchers build a PR curve by first plotting precision-
recall pairs, or points, that are obtained using different thresholds on a proba-
bilistic or other continuous-output classifier, in the same way an ROC curve is
built by plotting true/false positive rate pairs obtained using different thresh-
olds. Davis and Goadrich [6] showed that for any fixed data set, and hence fixed
numbers of actual positive and negative examples, points can be translated be-
tween the two spaces. After plotting the points in PR space, we next seek to
construct a curve and compute the AUCPR and to construct 95% (or other)
confidence intervals (CIs) around the curve and the AUCPR.

However, the best method to construct the curve and calculate area is not
readily apparent. The PR points from a small data set are shown in Fig. 1. Ques-
tions immediately arise about what to do with multiple points with the same



x-value (recall), whether linear interpolation is appropriate, whether the maxi-
mum precision for each recall are representative, if convex hulls should be used
as in ROC curves, and so on. There are at least four distinct methods (with sev-
eral variations) that have been used in machine learning, statistics, and related
areas to compute AUCPR, and four methods that have been used to construct
CIs. The contribution of this paper is to discuss and analyze eight estimators
and four CIs empirically. We provide evidence in favor of computing AUCPR
using the lower trapezoid, average precision, or interpolated median estimators
and using binomial or logit CIs rather than other methods that include the more
widely-used (in machine learning) ten-fold cross-validation. The differences in
results using these approaches are most striking when data are highly skewed,
which is exactly the case when PR curves are most preferred over ROC curves.
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Fig. 1. Empirical PR points obtained from
a small data set with 10 positive examples
and 20 negative examples.

Section 2 contains a review of PR
curves, Section 3 describes the esti-
mators and CIs we evaluate, and Sec-
tion 4 presents case studies of the es-
timators and CIs in action.

2 Area Under the
Precision-Recall Curve

Consider a binary classification task
where models produce continuous
outputs, denoted Z, for each example.
Diverse applications are subsumed by
this setup, e.g., a medical test to iden-
tify diseased and disease-free patients,
a document ranker to distinguish rele-
vant and non-relevant documents to a
query, and generally any binary clas-
sification task. The two categories are
often naturally labelled as positive
(e.g., diseased, relevant) or negative (e.g., disease-free, non-relevant). Following
the literature on ROC curves [7,8], we denote the output values for the negative
examples by X and the output values for the positive examples by Y (Z is a
mixture of X and Y ). These populations are assumed to be independent when
the class is known. Larger output values are associated with positive examples,
so for a given threshold c, an example is predicted positive if its value is greater
than c. We represent the category (or class) with the indicator variable D where
D = 1 corresponds to positive examples and D = 0 to negative examples. An
important aspect of a task or data set is the class skew π = P (D = 1). Skew is
also known as prevalence or a prior class distribution.

Several techniques exist to assess the performance of binary classification
across a range of thresholds. While ROC analysis is the most common, we are
interested in the related PR curves. A PR curve may be defined as the set of



points:

PR(·) = {(Recall(c), P rec(c)),−∞ < c <∞}

where Recall(c) = P (Y > c) and Prec(c) = P (D = 1|Z > c). Recall is equiva-
lent to true positive rate or sensitivity (the y-axis in ROC curves), while precision
is the same as positive predictive value. Since larger output values are assumed
to be associated with positive examples, as c decreases, Recall(c) increases to
one and Prec(c) decreases to π. As c increases, Prec(c) reaches one as Recall(c)
approaches zero under the condition that “the first document retrieved is rele-
vant” [9]. In other words, whether the example with the largest output value is
positive or negative greatly changes the PR curve (approaching (0, 1) if positive
and (0, 0) if negative). Similarly, estimates of precision for recall near 0 tend to
have high variance, and this is a major difficulty in constructing PR curves.

It is often desirable to summarize the PR curve with a single scalar value.
One summary is the area under the PR curve (AUCPR), which we will denote
θ. Following the work of Bamber [7] on ROC curves, AUCPR is an average of
the precision weighted by the probability of a given threshold.

θ =

∫ ∞
−∞

Prec(c)dP (Y ≤ c) (1)

=

∫ ∞
−∞

P (D = 1|Z > c)dP (Y ≤ c). (2)

By Bayes’ rule and using that Z is a mixture of X and Y ,

P (D = 1|Z > c) =
πP (Y > c)

πP (Y > c) + (1− π)P (X > c)

and we note that 0 ≤ θ ≤ 1 since Prec(c) and P (Y ≤ c) are bounded on the unit
square. Therefore, θ might be viewed as a probability. If we consider Eq. (2) as an
importance-sampled Monte Carlo integral, we may interpret θ as the fraction of
positive examples among those examples whose output values exceed a randomly
selected c ∼ Y threshold.

3 AUCPR Estimators

In this section we summarize point estimators for θ and then introduce CI meth-
ods.

3.1 Point Estimators

Let X1, . . . , Xm and Y1, . . . , Yn represent observed output values from negative
and positive examples, respectively. The skew π is assumed to be given or is set
to n/(n+m). An empirical estimate of the PR curve, P̂R(·), can be derived by



the empirical estimates of each coordinate:

R̂ecall(c) = n−1
n∑
i=1

I(Yi > c)

P̂ rec(c) =
πR̂ecall(c)

πR̂ecall(c) + (1− π)m−1
∑m
j=1 I(Xj > c)

where I(A) is the indicator function for event A.

We review a number of possible estimators for θ.

Trapezoidal Estimators For fixed R̂ecall(t), the estimated precision may not

be constant (so P̂R(·) is often not one-to-one). This corresponds to cases where
an observed Y(i) < Xj < Y(i+1) for some i and j where Y(i) denotes the ith order
statistic (ith largest value among the Yi’s). As the threshold is increased from Y(i)

to Xj , recall remains constant while precision decreases. Let ri = R̂ecall(Y(n−i)),
so that r1 ≤ r2 ≤ · · · ≤ rn, and pmaxi be the largest sample precision value
corresponding to ri. Likewise, let pmini be the smallest sample precision value
corresponding to ri. This leads immediately to a few choices for estimators based
on the empirical curve using trapezoidal estimation [10].

θ̂LT =

n−1∑
i=1

pmini + pmaxi+1

2
(ri+1 − ri) (3)

θ̂UT =

n−1∑
i=1

pmaxi + pmaxi+1

2
(ri+1 − ri) (4)

corresponding to a lower trapezoid (Eq. (3)) and upper trapezoid (Eq. (4)) ap-
proximation. Note the upper trapezoid method uses an overly optimistic linear
interpolation [6]; we include it for comparison as it is one of the first methods
a non-expert is likely to use due to its similarity to estimating area under the
ROC curve.

Interpolation Estimators As suggested by Davis and Goadrich [6] and Goad-
rich et al. [1], we use PR space interpolation as the basis for several estimators.
These methods use the non-linear interpolation between known points in PR
space derived from a linear interpolation in ROC space.

Davis and Goadrich [6] and Goadrich et al. [1] examine the interpolation
in terms of the number of true positives and false positives corresponding to
each PR point. Here we perform the same interpolation, but use the recall and
precision of the PR points directly, which leads to the surprising observation
that the interpolation (from the same PR points) does not depend on π.



Theorem 1. For two points in PR space (r1, p1) and (r2, p2) (assume WLOG
r1 < r2), the interpolation for recall r′ with r1 ≤ r′ ≤ r2 is

p′ =
r′

ar′ + b
(5)

where

a = 1 +
(1− p2)r2
p2(r2 − r1)

− (1− p1)r1
p1(r2 − r1)

b =
(1− p1)r1

p1
− (1− p2)r1r2

p2(r2 − r1)
+

(1− p1)r21
p1(r2 − r1)

Proof. First, we convert the points to ROC space. Let s1, s2 be the false posi-
tive rates for the points (r1, p1) and (r2, p2), respectively. By definition of false
positive rate,

si =
(1− pi)πri
pi(1− π)

. (6)

A linear interpolation in ROC space for r1 ≤ r′ ≤ r2 has a false positive rate of

s′ = s1 +
r′ − r1
r2 − r1

(s2 − s1). (7)

Then convert back to PR space using

p′ =
πr′

πr′ + (1− π)s′
. (8)

Substituting Eq. (7) into Eq. (8) and using Eq. (6) for s1 and s2, we have

p′ = πr′
[
πr′ +

π(1− p1)r1
p1

+
π(r′ − r1)

r2 − r1

(
(1− p2)r2

p2
− (1− p1)r1

p1

)]−1
= r′

[
r′
(

1 +
(1− p2)r2
p2(r2 − r1)

− (1− p1)r1
p1(r2 − r1)

)
+

(1− p1)r1
p1

− (1− p2)r1r2
p2(r2 − r1)

+
(1− p1)r21
p1(r2 − r1)

]−1
ut

Thus, despite PR space being sensitive to π and the translation to and from
ROC space depending on π, the interpolation in PR space does not depend on π.
One explanation is that each particular PR space point inherently contains the
information about π, primarily in the precision value, and no extra knowledge
of π is required to perform the interpolation.

The area under the interpolated PR curve between these two points can be
calculated analytically using the definite integral: 1∫ r2

r1

r′

ar′ + b
dr′ =

ar′ − b log(ar′ + b)

a2

∣∣∣∣r′=r2
r′=r1

=
ar2 − b log(ar2 + b)− ar1 + b log(ar1 + b)

a2

1 Formula corrected from originally published version.



where a and b are defined as in Theorem 1.
With the definite integral to calculate the area between two PR points, the

question is: which points should be used. The achievable PR curve of Davis
of Goadrich [6] uses only those points (translated into PR space) that are on
the ROC convex hull. We also use three methods of summarizing from multiple
PR points at the same recall to a single PR point to interpolate through. The
summaries we use are the max, mean, and median of all pi for a particular ri.
So we have four estimators using interpolation: convex, max, mean, and median.

Average precision Avoiding the empirical curve altogether, a plug-in estimate
of θ, known in information retrieval as average precision [11], is:

θ̂A =
1

n

n∑
i=1

P̂ rec(Yi) (9)

which replaces the distribution function P (Y ≤ c) in Eq. (2) with its empirical
cumulative distribution function.

Binormal Estimator Conversely, a fully parametric estimator may be con-
structed by assuming that Xj ∼ N (µx, σ

2
x) and Yj ∼ N (µy, σ

2
y). In this binormal

model [12], the MLE of θ is

θ̂B =

∫ 1

0

πt

πt+ (1− π)Φ
(
µ̂y−µ̂x

σx
+

σ̂y

σ̂x
Φ−1(t)

) dt (10)

where µ̂x, σ̂x, µ̂y, σ̂y are sample means and variances of X and Y and Φ(t) is the
standard normal cumulative distribution function.

3.2 Confidence Interval Estimation

Having discussed AUCPR estimators, we now turn our attention to computing
confidence intervals (CIs) for these estimators. Our goal is to determine a simple,
accurate interval estimate that is logistically easy to implement. We will compare
two computationally intensive methods against two simple statistical intervals.

Bootstrap Procedure A common approach is to use a bootstrap procedure to
estimate the variation in the data and to either extend a symmetric, normal-
based interval about the point estimate or to take the empirical quantiles from
resampled data as interval bounds [13]. Because the relationship between the
number of positive examples n and negative examples m is crucial for estimating
PR points and hence curves, we recommend using stratified bootstrap so π is
preserved exactly in all replicates. In our simulations we chose to use empirical
quantiles for the interval bounds and perform 1000 bootstrap replicates.



Cross-Validation Procedure Similarly, a cross-validation approach is a wholly
data driven method for simultaneously producing the train/test splits required
for unbiased estimation of future performance and producing variance estimates.
In k-fold cross-validation, the available data are partitioned into k folds. k − 1
folds are used for training while the remaining fold is used for testing. By per-
forming evaluation on the results of each fold separately, k estimates of perfor-
mance are obtained. A normal approximation of the interval can be constructed
using the mean and variance of the k estimates. For more details and discussion
of k-fold cross-validation, see Dietterich [14]. For our case studies we use the
standard k = 10.

Binomial Interval Recalling that 0 ≤ θ ≤ 1, we may interpret θ̂ as a prob-
ability associated with some binomial(1, θ) variable. If so, a CI for θ can be
constructed through the standard normal approximation:

θ̂ ± Φ1−α/2

√
θ̂(1− θ̂)

n

We use n for the sample size as opposed to n+m because n specifies the (max-

imum) number of unique recall values in P̂R(·). The binomial method can be

applied to any θ̂ estimate once it is derived. A weakness of this estimate is that
it may produce bounds outside of [0, 1], even though 0 ≤ θ ≤ 1.

Logit Interval To obtain an interval which is guaranteed to produce endpoints

in [0, 1], we may use the logistic transformation η̂ = log θ̂
(1−θ̂)

where τ̂ = s.e.(η̂) =

(nθ̂(1− θ̂))−1/2 by the delta method [15].
On the logistic scale, an interval for η is η̂±Φ1−a/2τ̂ . This can be converted

pointwise to produce an asymmetric logit interval bounded in [0, 1]:[
eη̂−Φ(1−α/2)τ̂

1 + eη̂−Φ(1−α/2)τ̂
,

eη̂+Φ(1−α/2)τ̂

1 + eη̂+Φ(1−α/2)τ̂

]
.

4 Case Studies

We use simulated data to evaluate the merits of the candidate point and interval
estimates discussed in Section 3 with the goal of selecting a subset of desirable
procedures. 2 The ideal point estimate would be unbiased, robust to various
distributional assumptions on X and Y , and have good convergence as n + m
increases. A CI should have appropriate coverage, and smaller widths of the
interval are preferred over larger widths.

2 R code for the estimators and simulations may be found at http://pages.cs.wisc.
edu/~boyd/projects/2013ecml_aucprestimation/

http://pages.cs.wisc.edu/~boyd/projects/2013ecml_aucprestimation/
http://pages.cs.wisc.edu/~boyd/projects/2013ecml_aucprestimation/
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Fig. 2. Probability density functions for X (negative) and Y (positive) output values
for binormal (X ∼ N(0, 1), Y ∼ N(1, 1)), bibeta (X ∼ B(2, 5), Y ∼ B(5, 2)), and offset
uniform (X ∼ U(0, 1), Y ∼ U(0.5, 1.5)) case studies.

We consider three scenarios for generating output values X and Y . Our
intention is to cover representative but not exhaustive cases whose conclusions
will be relevant generally. The densities for these scenarios are plotted in Fig. 2.
The true PR curves (calculated using the cumulative distribution functions of
X and Y ) for π = 0.1 are shown in Fig. 3. Fig. 3 also contains sample empirical
PR curves that result from drawing data from X and Y . These are the curves
the estimators work from, attempting to recover the area under the true curve
as accurately as possible.

For unbounded continuous outputs, the binormal scenario assumes that X ∼
N (0, 1) and Y ∼ N (µ, 1) where µ > 0. The distance between the two normal
distributions, µ, controls the discriminative ability of the assumed model. For
test values bounded on [0, 1] (such as probability outputs), we replace the normal
distribution with a beta distribution. So the bibeta scenario has X ∼ B(a, b) and
Y ∼ B(b, a) where 0 < a < b. The larger the ratio between a and b, the better
able to distinguish between positive and negative examples. Finally, we model
an extreme scenario where the support of X and Y is not the same. This offset
uniform scenario is given by X ∼ U(0, 1) and Y ∼ U(γ, 1 + γ) for γ ≥ 0: that
is X lies uniformly on (0, 1) while Y is bounded on (γ, γ + 1). If γ = 0 there is
no ability to discriminate, while γ > 1 leads to perfect classification of positive
and negative examples with a threshold of c = 1. All results in this paper use
µ = 1, a = 2, b = 5, and γ = 0.5. These were chosen as representative examples
of the distributions that produce reasonable PR curves.

This paper exclusively uses simulated data drawn from specific, known dis-
tributions because this allows calculation of the true PR curve (shown in Fig. 3)
and the true AUCPR. Thus, we have a target value to compare the estimates
against and are able to evaluate the bias of an estimator and the coverage of a
CI. This would be difficult to impossible if we used a model’s predictions on real
data because the true PR curve and AUCPR are unknown.
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Fig. 3. True PR curves (calculated from the theoretical density functions) and sampled
empirical PR curves, both at π = 0.1. Sampled PR curves use n + m = 500. The
sampled PR curves were generated by connecting PR points corresponding to adjacent
thresholds values.

4.1 Bias and Robustness in Point Estimates

For each scenario, we evaluate eight estimators: the non-parametric average pre-
cision, the parametric binormal, two trapezoidal estimates, and four interpolated
estimates. Fig. 4 shows the bias ratio versus n + m where π = 0.1 over 10,000
simulations, and Fig. 5 shows the bias ratio versus π where n+m = 1000. The
bias ratio is the mean estimated AUCPR divided by the true AUCPR, so an un-
biased estimator has a bias ratio of 1.0. Good point estimates of AUCPR should
be unbiased as n+m and π increase. That is, an estimator should have an ex-
pected value equal to the true AUCPR (calculated by numerically integrating
Eq. 2).

As n+m grows large, most estimators converge to the true AUCPR in every
case. However, the binormal estimator shows the effect of model misspecification.
When the data are truly binormal, it shows excellent performance but when the
data are bibeta or offset uniform, the binormal estimator converges to the wrong
value. Interestingly, the bias due to misspecification that we observe for the
binormal estimate is lessened as the data become more balanced (π increases).

The interpolated convex estimate consistently overestimates AUCPR and ap-
pears far from the true value even at n+m = 10000. The poor performance of
the interpolated convex estimator seems surprising given how it uses the popu-
lar convex hull ROC curve and then converts to PR space. Because the other
interpolated estimators perform adequately, the problem may lie in evaluating
the convex hull in ROC space. The convex hull chooses those particular points
that give the best performance on the test set. Analogous to using the test set
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Fig. 4. Ratio of estimated AUCPR to true AUCPR (bias ratio) versus total number
of examples (n+m). π = 0.1 for all cases.

during training, the convex hull procedure may be overly optimistic and lead to
the observed overestimation of AUCPR.

It is important to note that since π = 0.1 in Fig. 4, data are sparse at
n+m = 100: there are n = 10 values of Y to evaluate the estimate. In these sit-
uations there is no clear winner across all three scenarios and estimators tend to
overestimate AUCPR when n is small with a few exceptions. Among related esti-
mators, lower trapezoid appears more accurate than the upper trapezoid method
and the mean or median interpolation outperform the convex and max interpo-
lation. Consequently, we will only consider the average precision, interpolated
median, and lower trapezoid estimators since they are unbiased in the limit, less
biased for small sample sizes, and robust to model misspecification.

4.2 Confidence Interval Evaluation

We use a two-step approach to evaluate confidence intervals (CIs) based on
Chapter 7 of Shao [16]. In practice, interval estimates must come with a confi-
dence guarantee: if we say an interval is an (1 − α)% CI, we should be assured
that it covers the true value in at least (1 − α)% of datasets [16,17,18]. It may
be surprising to non-statisticians that an interval with slightly low coverage is
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Fig. 5. Ratio of estimated AUCPR to true AUCPR (bias ratio) versus π. In all cases
n+m = 1000.

ruled inadmissible, but this would invalidate the guarantee. Additionally, target-
ing an exact (1 − α)% interval is often impractical for technical reasons, hence
the at least (1−α)%. When an interval provides at least (1−α)% coverage, it is
considered a valid interval and this is the first criteria a potential interval must
satisfy.

After identifying valid methods for CIs, the second step is that we prefer the
narrowest (or optimal) intervals among the valid methods. The trivial [−∞,+∞]
interval is a valid 95% CI because it always has at least 95% coverage (indeed,
it has 100% coverage), but it conveys no useful information about the estimate.
Thus we seek methods that produce the narrowest, valid intervals.

CI Coverage The first step in CI evaluation is to identify valid CIs with cov-
erage at least (1 − α)%. In Fig. 6, we show results over 10,000 simulations for
the coverage of the four CI methods described in 3.2. These are 95% CIs, so the
target coverage of 0.95 is denoted by the thick black line. As mentioned at the
end of Section 4.1, we only consider the average precision, interpolated median,
and lower trapezoid estimators for our CI evaluation.

A strong pattern emerges from Fig. 6 where the bootstrap and cross-validation
intervals tend to have coverage below 0.95, though asymptotically approaching
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Fig. 6. Coverage for selected estimators and 95% CIs calculated using the four interval
methods. Results for selected n + m are shown for π = 0.1. To be valid 95% CIs, the
coverage should be at least 0.95. Note that the coverage for a few of the cross-validation
intervals is below 0.75. These points are represented as half-points along the bottom
border.

0.95. Since the coverage is below 0.95, this makes the computational intervals
technically invalid. The two formula-based intervals are consistently above the
requisite 0.95 level. So binomial and logit produce valid confidence intervals.

Given the widespread use of cross-validation within machine learning, it is
troubling that the CIs produced from that method fail to maintain the confidence
guarantee. This is not an argument against cross-validation in general, only a
caution against using it for AUCPR inference. Similarly, bootstrap is considered
a rigorous (though computationally intensive) fall-back for non-parametrically
evaluating variance, yet Fig. 6 shows it is only successful assymptotically as
data size increases (and the data size needs to be fairly large before it nears 95%
coverage).

CI Width To better understand why bootstrap and cross-validation are fail-
ing, an initial question is: are the intervals too narrow? Since we have simulated
10,000 data sets and obtained AUCPR estimates on each using the various esti-
mators, we have an empirical distribution from which we can calculate an ideal
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Fig. 7. Mean normalized width ratio versus coverage for binomial, logit, cross-
validation, and bootstrap methods. Normalized width is the ratio of the CI width to
the empirically ideal width. Width ratios below 1 suggest the intervals are overopti-
mistic. Results shown for n + m ∈ 200, 500, 1000, 5000, 10000 and π = 0.1. Note that
the coverage for some of the cross-validation intervals is below 0.75. These points are
represented as half-points along the bottom border.

empirical width for the CIs. When creating a CI, only 1 data set is available,
thus this empirical width is not available, but we can use it as a baseline to com-
pare the mean width obtained by the various interval estimators. Fig. 7 shows
coverage versus the ratio of mean width to empirically ideal width. As expected
there is a positive correlation between coverage and the width of the intervals:
wider intervals tend to provide higher coverage. For cross-validation, the widths
tend to be slightly smaller than the logit and binomial intervals but still larger
than the empirically ideal width. Coverage is frequently much lower though,
suggesting the width of the interval is not the reason for the poor performance
of cross-validation. However, interval width may be part of the issue with boot-
strap. The bootstrap widths are either right at the empirically ideal width or even
smaller.

CI Location Another possible cause for poor coverage is that the intervals are
for the wrong target value (i.e., the intervals are biased). To investigate this,
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Fig. 8. Mean location of the intervals produced by the binomial, bootstrap, and cross-
validation methods (logit is identical to binomial). As in Fig. 4, the y-axis is the bias
ratio, the ratio of the location (essentially a point estimate based on the interval) to
the true AUCPR. Cross-validation is considerably more biased than the other methods
and bootstrap is slightly more biased than binomial.

we analyze the mean location of the intervals. We use the original estimate on
the full data set as the location for the binomial and logit intervals since both
are constructed around that estimate, the mid-point of the interval from cross-
validation, and the median of the bootstrap replicates since we use the quantiles
to calculate the interval. The ratio of the mean location to the true value (similar
to Fig. 4) is presented in Fig. 8. The location of the cross-validation intervals
is much farther from the true estimate than either the bootstrap or binomial
locations, with bootstrap being a bit worse than binomial. This targeting of the
wrong value for small n + m is the primary explanation for the low coverages
seen in Fig. 6.

Comments on Bootstrap and Cross-validation Intervals The increased
bias in the intervals produced by bootstrap and cross-validation occurs because
these methods use many smaller data sets to produce a variance estimate. K-fold
cross-validation reduces the effective data sets by a factor of k while bootstrap
is less extreme but still reduces the effective data sets by a factor of 1.5. Since



the estimators become more biased with smaller data sets (demonstrated in
Fig. 4), the point estimates used to construct the bootstrap and cross-validation
intervals are more biased, leading to the misplaced intervals and less than (1−
α)% coverage.

Additionally, the bootstrap has no small sample theoretical justification and
it is acknowledged it tends to break down for very small sample sizes [19]. When
estimating AUCPR with skewed data, the critical number for this is the number
of positive examples n, not the size of the data set n + m. Even when the
data set itself seems reasonably large with n + m = 200, at π = 0.1 there
are only n = 20 positive examples. With just 20 samples, it is difficult to get
representative samples during the bootstrap. This also contributes to the lower
than expected 95% coverage and is a possible explanation for the bootstrap widths
being even smaller than the empirically ideal widths seen in Fig. 7.

We emphasize that both the binomial and logit intervals are valid and do not
require the additional computation of cross-validation and bootstrap. For large
sample sizes bootstrap approaches (1 − α)% coverage, but it approaches from
below, so care should be taken. Cross-validation is even more problematic, with
proper coverage not obtained even at n + m = 10, 000 for some of our case
studies.

5 Conclusion

Our computational study has determined that simple estimators can achieve
nearly ideal width intervals while maintaining valid coverage for AUCPR esti-
mation. A key point is that these simple estimates are easily evaluated and do
not require resampling or add to computational workload. Conversely, compu-
tationally expensive, empirical procedures (bootstrap and cross-validation) yield
interval estimates that do not provide adequate coverage for small sample sizes
and only asymptotically approach (1− α)% coverage.

We have also tested a variety of point estimates for AUCPR and determined
that the parametric binormal estimate is extremely poor when the true gener-
ating distribution is not normal. Practically, data may be re-scaled (e.g., the
Box-Cox transformation) to make this assumption fit better, but, with easily
accessible nonparametric estimates that we have shown to be robust, this seems
unnecessary.

The scenarios we studied are by no means exhaustive, but they are represen-
tative, and the conclusions can be further tested in specific cases if necessary.
In summary, our investigation concludes that the lower trapezoid, average preci-
sion, and interpolated median point estimates are the most robust estimators and
recommends the binomial and logit methods for constructing interval estimates.
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