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Introduction to graphs and networks



Graphs: a simple model

• entities – set of vertices

• pairwise relations among vertices
– set of edges

• can add directions, weights,. . .

• graphs can be used to model many real
datasets
• people who are friends
• computers that are interconnected
• web pages that point to each other
• proteins that interact
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Graph theory

• graph theory started in the 18th
century, with Leonhard Euler
• the problem of Königsberg bridges
• since then, graphs have been studied

extensively
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Analysis of graph datasets in the past

• graphs datasets have been studied in the past
e.g., networks of highways, social networks
• usually these datasets were small
• visual inspection can reveal a lot of information
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Analysis of graph datasets now

• more and larger networks appear
• products of technological advancement

• e.g., internet, web

• result of our ability to collect more, better-quality, and
more complex data
• e.g., gene regulatory networks

• networks of thousands, millions, or billions of nodes
• impossible to visualize
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The internet map
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Types of networks

• social networks

• knowledge and information networks

• technology networks

• biological networks
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Social networks

• links denote a social interaction
• networks of acquaintances
• collaboration networks

• actor networks
• co-authorship networks
• director networks

• phone-call networks
• e-mail networks
• IM networks
• sexual networks
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Knowledge and information networks

• nodes store information, links
associate information
• citation network (directed

acyclic)
• the web (directed)
• peer-to-peer networks
• word networks
• networks of trust
• software graphs
• bluetooth networks
• home page/blog networks
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Technological networks

• networks built for distribution of a commodity
• the internet, power grids, telephone networks
• airline networks, transportation networks
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US power grid
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Biological networks

• biological systems represented as networks
• protein-protein interaction networks
• gene regulation networks
• gene co-expression networks
• metabolic pathways
• the food web
• neural networks
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Photo-sharing site
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What is the underlying graph?

• nodes: photos, tags, users, groups, albums, sets,
collections, geo, query, . . .

• edges: upload, belong, tag, create, join, contact, friend,
family, comment, fave, search, click, . . .

• also many interesting induced graphs
• tag graph: based on photos
• tag graph: based on users
• user graph: based on favorites
• user graph: based on groups

• which graph to pick — not an easy choice
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Recurring theme

• social media, user-generated content

• user interaction is composed by many atomic actions
• post, comment, like, mark, join, comment, fave,

thumps-up, . . .
• generates all kind of interesting graphs to mine
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Network science

• the world is full with networks

• what do we do with them?
• understand their topology and measure their properties
• study their evolution and dynamics
• create realistic models
• create algorithms that make use of the network structure
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Outline

• introduction and graphs and networks

• random graphs as models of real-world networks

• properties of real-world networks

• Erdős-Rényi graphs

• models of real-world networks

• applications of random graphs

• algorithm design for large-scale networks

• graph partitioning and community detection

• dense subgraphs
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Properties of real-world networks



Properties of real-world networks

diverse collections of graphs arising from different phenomena

are there typical patterns?

• static networks

1 heavy tails
2 clustering coefficients
3 communities
4 small diameters

• time-evolving networks

1 densification
2 shrinking diameters

• web graph

1 bow-tie structure
2 bipartite cliques

Frieze, Gionis, Tsourakakis Algorithmic Techniques for Modeling and Mining Large Graphs 20 / 277



Heavy tails
What do the proteins in our bodies, the Internet, a
cool collection of atoms and sexual networks have in
common? One man thinks he has the answer and it
is going to transform the way we view the world.

Scientist 2002

Albert-László Barabási
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Degree distribution

• Ck = number of vertices with degree k

• problem : find the probability distribution that fits best
the observed data
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Power-law degree distribution

• Ck = number of vertices with degree k , then

Ck = ck−γ

with γ > 1, or

ln Ck = ln c − γ ln k

• plotting ln Ck versus ln k gives a straight line with
slope −γ

• heavy-tail distribution : there is a non-negligible fraction
of nodes that has very high degree (hubs)

• scale free : average is not informative
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Power-law degree distribution

power-laws in a wide variety of networks ([Newman, 2003])
sheer contrast with Erdős-Rényi random graphs
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Power-law degree distribution

do the degrees follow a power-law distribution?

three problems with the initial studies

• graphs generated with traceroute sampling, which
produces power-law distributions, even for regular graphs
[Lakhina et al., 2003].

• methodological flaws in determining the exponent
see [Clauset et al., 2009] for a proper methodology

• other distributions could potentially fit the data better
but were not considered, e.g., lognormal.

disclaimer: we will be referring to these distributions as
heavy-tailed, avoiding a specific characterization
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Power-law degree distribution

• frequently, we hear about “scale-free networks”
correct term is networks with scale-free degree
distribution

all networks above have the same degree sequence but
structurally are very different (source [Li et al., 2005])
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Maximum degree

• for random graphs, the maximum degree is highly
concentrated around the average degree z

• for power-law graphs

dmax ≈ n1/(α−1)

• hand-waving argument: solve n Pr[X ≥ d ] = Θ(1)
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Heavy tails, eigenvalues

log-log plot of eigenvalues of the Internet graph in
decreasing order

again a power law emerges [Faloutsos et al., 1999]
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Heavy tails, triangles

• triangle distribution in flickr

• figure shows the count of nodes with k triangles vs. k in
log-log scale

• again, heavy tails emerge [Tsourakakis, 2008]
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Clustering coefficients

• a proposed measure to capture local clustering is the
graph transitivity

T (G ) =
3× number of triangles in the network

number of connected triples of vertices

• captures “transitivity of clustering”

• if u is connected to v and
v is connected to w , it is also likely that
u is connected to w
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Clustering coefficients

• alternative definition

• local clustering coefficient

Ci =
Number of triangles connected to vertex i

Number of triples centered at vertex i

• global clustering coefficient

C (G ) =
1

n

∑
i

Ci
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Community structure
loose definition of community: a set of vertices densely
connected to each other and sparsely connected to the rest of
the graph

artificial communities:
http://projects.skewed.de/graph-tool/
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Community structure

[Leskovec et al., 2009]

• study community structure in an extensive collection of
real-world networks

• authors introduce the network community profile plot

• it characterizes the best possible community over a range
of scales
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Community structure

dolphins network and its NCP
(source [Leskovec et al., 2009])
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Community structure

• do large-scale real-world networks have this nice artifical
structure? NO!

NCP of a DBLP graph (source [Leskovec et al., 2009])
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Community structure

important findings of [Leskovec et al., 2009]

1. up to a certain size k (k ∼ 100 vertices) there exist good
cuts

- as the size increases so does the quality of the community

2. at the size k we observe the best possible community

- such communities are typically connected to the
remainder with a single edge

3. above the size k the community quality decreases

- this is because they blend in and gradually disappear
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Small-world phenomena

small worlds : graphs with short paths

• Stanley Milgram (1933-1984)
“The man who shocked the world”

• obedience to authority (1963)

• small-World experiment (1967)

• we live in a small-world

• for criticism on the small-world experiment, see “Could It
Be a Big World After All? What the Milgram Papers in
the Yale Archives Reveal About the Original Small World
Study” by Judith Kleinfeld
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Small-world experiments

• letters were handed out to people in Nebraska to be sent
to a target in Boston

• people were instructed to pass on the letters to someone
they knew on first-name basis

• the letters that reached the destination (64 / 296)
followed paths of length around 6

• Six degrees of separation : (play of John Guare)

• also:
• the Kevin Bacon game
• the Erdős number

• small-World project:
http://smallworld.columbia.edu/index.html
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Small diameter

proposed measures

• diameter : largest shortest-path over all pairs.

• effective diameter : upper bound of the shortest path of
90% of the pairs of vertices.

• average shortest path : average of the shortest paths over
all pairs of vertices.

• characteristic path length : median of the shortest paths
over all pairs of vertices.

• hop-plots : plot of |Nh(u)|, the number of neighbors of u
at distance at most h, as a function of h
[Faloutsos et al., 1999].
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Other properties

• assortativity

• distribution of size of connected components

• distribution of motifs

• ...
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Time-evolving networks

J. Leskovec J. Kleinberg C. Faloutsos

[Leskovec et al., 2005b]

• densification power law:

|Et | ∝ |Vt |α 1 ≤ α ≤ 2

• shrinking diameters: diameter is shrinking over time.
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Web graph

• the Web graph is a particularly important real-world
network

Few events in the history of computing have
wrought as profound an influence on society as
the advent and growth of the World Wide Web

[Kleinberg et al., 1999a]

• vertices correspond to static web pages

• directed edge (i , j) models a link from page i to page j

• will discuss two structural properties of the web graph:

1. the bow-tie structure [Broder et al., 2000]
2. abundance of bipartite cliques

[Kleinberg et al., 1999a, Kumar et al., 2000]
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Web is a bow-tie

(source [Broder et al., 2000])
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Bipartite subgraphs

• websites that are part of the same community frequently
do not reference one another

(competitive reasons, disagreements, ignorance)
[Kumar et al., 1999].

• similar websites are co-cited

• therefore, web communities are characterized by
dense directed bipartite subgraphs

(source [Kleinberg et al., 1999a])

Frieze, Gionis, Tsourakakis Algorithmic Techniques for Modeling and Mining Large Graphs 44 / 277



Erdős-Rényi graphs



Random graphs

• a random graph is a set of graphs together with a
probability distribution on that set

• example

1 2

3

1

2

32

3

1

Probability 1
3

Probability 1
3

Probability 1
3

a random graph on {1, 2, 3} with 2 edges with the
uniform distribution
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Random graphs

• Erdős-Rényi (or Gilbert-Erdős-Rényi ) random graph
model

Paul Erdős Alfréd Rényi
1913 – 1996 1921 – 1970
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Random graphs

• the G (n, p) model:

• n : the number of vertices

• 0 ≤ p ≤ 1 : probability

• for each pair (u, v), independently generate the edge
(u, v) with probability p

• G (n, p) a family of graphs, in which a graph with m

edges appears with probability pm(1− p)(n
2)−m

• the G (n,m) model: related, but not identical
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Properties of random graphs

• a property P holds almost surely/with high probability
(whp → 1− o(1)) if

lim
n→∞

Pr[G has P] = 1

• which properties hold as p increases?

• threshold phenomena : many properties appear suddenly

• there exist a probability pc such that

for p < pc the property does not hold a.s.

for p > pc the property holds a.s.
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The giant component

• let z = np be the average degree

• if z < 1 the largest component has size O(log n) a.s.

• if z > 1 the largest component has size Θ(n) a.s.;
the second largest component has size O(log n) a.s.

• if z = ω(log n) the graph is connected a.s.
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Phase transition

• if z = 1 there is a phase transition

• the largest component has size O(n2/3)

• the sizes of the components follow a power-law
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Phase transition — proof sketch

Michael Krivelevich Benny Sudakov

the phase transition in random graphs — a simple proof

The Erdős-Rényi paper, which launched the modern
theory of random graphs, has had enormous
influence on the development of the field and is
generally considered to be a single most important
paper in Probabilistic Combinatorics, if not in all of
Combinatorics
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Phase transition — proof sketch
[Krivelevich and Sudakov, 2013] give a simple proof for the
transition based on running depth first search (DFS) on G

• S : vertices whose exploration is complete

• T : unvisited vertices

• U = V − (S ∪ T ) : vertices in stack

observation:

• the set U always spans a path

- when a vertex u is added in U , it happens because u is a
neighbor of the last vertex v in U ; thus, u augments the
path spanned by U , of which v is the last vertex

• epoch is the period of time between two consecutive
emptyings of U

- each epoch corresponds to a connected component
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Phase transition — proof sketch

Lemma

Let ε > 0 be a small enough constant and let N =
(
n
2

)
Consider the sequence X̄ = (Xi)

N
i=1 of i.i.d. Bernoulli random

variables with parameter p

1 let p = 1−ε
n

and k = 7
ε2

ln n

then whp there is no interval of length kn in [N], in
which at least k of the random variables Xi take value 1

2 let p = 1+ε
n

and N0 = εn2

2

then whp
∣∣∣∑N0

i=1 Xi − ε(1+ε)n
2

∣∣∣ ≤ n2/3

Frieze, Gionis, Tsourakakis Algorithmic Techniques for Modeling and Mining Large Graphs 54 / 277



Phase transition — useful tools

Lemma (Union bound)

For any events A1, . . . ,An, Pr [A1 ∪ . . .An] ≤
∑n

i=1Pr [Ai ]

Lemma (Chebyshev’s inequality)

Let X be a random variable with finite expectation E [X ] and
finite non-zero variance Var [X ]. Then for any t > 0,

Pr [|X − E [X ] | ≥ t] ≤ Var [X ]

t2

Lemma (Chernoff bound, upper tail)

Let 0 ≤ ε ≤ 1. Then,

Pr [Bin(n, p) ≥ (1 + ε)np] ≤ e−
ε2

3
np
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Phase transition — proof sketch
Proof.
• fix interval I of length kn in [N], N =

(
n
2

)
then

∑
i∈I Xi ∼ Bin(kn, p)

1. apply Chernoff bound to the upper tail of B(kn, p).
2. apply union bound on all (N − k + 1) possible intervals

of length kn
- upper bound the probability of the existence of a

violating interval

(N − k + 1)Pr [B(kn, p) ≥ k] < n2 · e−
ε2

3
(1−ε)k = o(1)

• sum
∑N0

i=1 Xi distributed binomially (params N0 and p)

- expectation: N0p = εn2p
2

= ε(1+ε)n
2

- standard deviation of order n

- applying Chebyshev’s inequality gives the estimate
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Phase transition — proof sketch
Proof.
CASE I: p = 1−ε

n

• assume to the contrary that G contains a connected
component C with more than k = 7

ε2
ln n vertices

• consider the moment inside this epoch when the
algorithm has found the (k + 1)-st vertex of C and is
about to move it to U

• denote ∆S = S ∩ C at that moment then |∆S ∪ U | = k ,
and thus the algorithm got exactly k positive answers to
its queries to random variables Xi during the epoch, with
each positive answer being responsible for revealing a new
vertex of C , after the first vertex of C was put into U in
the beginning of the epoch.
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Phase transition — proof sketch

Proof.
• at that moment during the epoch only pairs of edges

touching ∆S ∪ U have been queried, and the number of
such pairs is therefore at most

(
k
2

)
+ k(n − k) < kn

- it thus follows that the sequence X̄ contains an interval of
length at most kn with at least k 1’s inside — a
contradiction to Property 1 of Lemma 1

CASE II: p = 1+ε
n

• same type of argument:

assume the result does not hold and reach a contradiction
by examining carefully the number of queries
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Degree distribution

• degree distribution : binomial

Ck =

(
n − 1

k

)
pk(1− p)n−1−k

• the limit distribution of the normalized binomial
distribution Bin(n, p) is the normal distribution provided
that np(1− p)→ +∞ as n→ +∞.

• if p = λ
n

the limit distribution of Bin(n, p) is the Poisson
distribution.
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Degree distribution

Bin(10000, 0.5) and Gaussian(0,1)
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Degree distribution

Bin(1000, 0.003) and Poisson(3)
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Degree distribution

Theorem

Let p = log n
n
· ω(n) with ω(n)→ +∞ arbitrarily slowly.

Fix x ∈ G and ε > 0. Then in G (n, p) whp for all vertices x

deg(x) ∼ (n − 1)p

Theorem ([McKay and Wormald, 1997])

Let Xk be the number of vertices of degree k in G (n, p) when
p = c

n
, with c > 0 constant. Then whp for k = 0, 1, . . .

cke−c

k!
≤ Xk

n
≤ (1 + ε)

cke−c

k!
, as n→ +∞
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Random graphs and real datasets

• a beautiful and elegant theory studied exhaustively

• have been used as idealized generative models

• unfortunately, they don’t always capture reality. . .
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Models of real-world networks



Models

1 classic
• grown versus static random graphs (CHKNS)
• growth with preferential attachment
• structure + randomness → small-world networks

2 more models
• Copying model
• Cooper-Frieze model
• Kronecker graphs
• Chung-Lu model
• Forest-fire model
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CHKNS model

Callaway, Hopcroft, Kleinberg, Newman and Strogatz
[Callaway et al., 2001]

• simple growth model for a random graph without
preferential attachment

• main thesis: grown graphs, however randomly they are
constructed, are fundamentally different from their static
random-graph counterparts

CHKNS model

• start with 0 vertices at time 0.

• at time t, a new vertex is created

• with probability δ add a random edge by choosing two
existing vertices uniformly at random
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CHKNS model

let dk(t) be the number of vertices of degree k at time t

then

E [d0(t + 1)] = E [d0(t)] + 1− δ2E [d0(t)]

t

E [dk(t + 1)] = E [dk(t)] + δ
(2E [dk−1(t)]

t
− 2E [dk(t)]

t

)
it turns out that

E [dk(t)]

t
=

1

2δ + 1

( 2δ

2δ + 1

)k
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CHKNS model

size of giant component for a CHKNS random graph and a
static random graph with the same degree distribution

• why are grown and static random graphs so different?
• intuition:

- positive correlation between the degrees of connected
vertices in the grown graph

- older vertices tend to have higher degree, and to link with
other high degree vertices, merely by virtue of their age
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Preferential attachment

R. Albert L. Barabási B. Bollobás O. Riordan

growth model:

• at time n, vertex n is added to the graph

• one edge is attached to the new vertex

• the other vertex is selected at random with probability
proportional to its degree

• obtain a sequence of graphs {G (n)
1 }.
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Preferential attachment — generalization

The case of G
(n)
m where instead of a single edge we add m

edges reduces to G
(n)
1 by creating a G

(nm)
1 and then collapsing

vertices km, km − 1, . . . , (k − 1)m + 1 to create vertex k .
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Preferential attachment

at time t, vertices 1 to 1
d2 have degrees greater than d (Source

[Hopcroft and Kannan, 2012])

heuristic analysis
• degi(t) the expected degree of the i -th vertex at time t

• the probability an edge is connected to i is degi (t)
2t

• therefore
∂degi(t)

∂t
=

degi(t)

2t

• the solution is degi(t) =
√

t
i
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Preferential attachment

∫ d

0

Pr [degree = d ]∂d = Pr [degree ≤ d ] = 1− 1

d2

by using the fact that di(t) < d if i > t
d2 and by taking the

derivative

Pr [degree = d ] =
∂

∂d

(
1− 1

d2

)
=

2

d3

power law distribution!

these results can be proved rigorously using the linearized
chord diagrams (LCD) model and also prove strong
concentration around the expectation using martingales
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Generalized preferential attachment

log-linear plot of the exponents of all the networks reported as
having power-law (source [Dorogovtsev and Mendes, 2002])

many real-world networks have a power-law slope 2 < α < 3
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Generalized preferential attachment

how can we tune the power-law slope?

• [Buckley and Osthus, 2004] analyze a modified
preferential attachment process where α > 0 is a fitness
parameter

• when t vertex comes in, it chooses i according to

Pr [t chooses i ] =

{
degt−1(i)+α−1

(α+1)t−1 , if 1 ≤ i ≤ t − 1
α

(α+1)t−1 , if i = t
.

• α = 1 gives the Barabási-Albert/Bollobás-Riordan

G
(n)
1 model

• the power-law slope is 2 + α.
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Generalized preferential attachment

• clustering coefficient of G
(n)
m is (m−1) log2 n

8n
in expectation

• therefore tends to 0 [Bollobás and Riordan, 2003].

• can also be fixed by generalizing the model
[Holme and Kim, 2002, Ostroumova et al., 2012].

• triangle formation: if an edge between v and u was added
in the previous preferential attachment step, then add one
more edge from v to a randomly chosen neighbor of u.

Holme-Kim Model

• perform a preferential attachment step
• the perform with probability βt another preferential attach-
ment step or a triangle formation step with probability 1− βt
diameter for PA and GPA is log n

log log n
and log n respectively
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Random Apollonian networks
are there power-law planar graphs?

snapshots of a random Apollonian network (RAN) at:
(a) t = 1 (b) t = 2 (c) t = 3 (d) t = 100

• at time t + 1 we choose a face F uniformly at random
among the faces of Gt

• let (i , j , k) be the vertices of F

• we add a new vertex inside F and we connect it to i , j , k
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Random Apollonian networks

Preferential attachment mechanism

what each vertex “sees” (boundary and the rest respectively)
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Random Apollonian networks

Theorem ([Frieze and Tsourakakis, 2013])

Let Zk(t) denote the number of vertices of degree k at time t,
k ≥ 3. For any t ≥ 1 and any k ≥ 3 there exists a constant bk

depending on k such that

|E [Zk(t)]− bkt| ≤ K , where K = 3.6.

Furthermore, for t sufficiently large and any λ > 0

Pr [|Zk(t)− E [Zk(t)] | ≥ λ] ≤ e−
λ2

72t

Corollary

The diameter d(Gt) of Gt satisfies asymptotically whp

Pr [d(Gt) > 7.1 log t]→ 0
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Random Apollonian networks

key idea: establish a bijection with random ternary trees
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Random Apollonian networks
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Random Apollonian networks
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Random Apollonian networks
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Small-world models

Duncan Watts Steven Strogatz

construct a network with

• small diameter

• positive density of triangles
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Small-world models

why should we want to construct a network with

• small diameter,

• positive density of triangles?

L(G ) =
∑

pairsu,v

d(u, v)(
n
2

) ,C (G ) =
1

n

∑
i

Ci .

Graph ∼ |V | 2|E |/|V | Lactual Lrandom Cactual Crandom

Film actors 225K 61 3.65 2.99 0.79 0.00027
Power grid 5K 2.67 18.7 12.4 0.08 0.005
C. elegans 0.3K 14 2.65 2.25 0.28 0.05
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Small-world models

model

• let G be the r -th power of the cycle on n vertices

- notice that diam(G ) = n
2r

and C (G ) = 3(r−1)
2(2r−1)

• let G (p) be the graph obtained from G by deleting
independently each edge with probability and then adding
the same number of edges back at random
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Small-world models

Watts-Strogatz on 1 000 vertices with rewiring
probability p = 0.05
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Small-world models

rewiring probability, p

even for a small value of p, L(G (p)) drops to O(log n),
which C (G (p)) ≈ 3

4
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Small-world models

0.005 0.010 0.050 0.100 0.500 1.000

10

20
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40

0.005 0.010 0.050 0.100 0.500 1.000

0.1

0.2

0.3

0.4

0.5

0.6

average distance clustering coefficient

Watts-Strogatz graph on 4 000 vertices, starting from a
10-regular graph

• intuition: if you add a little bit of randomness to a
structured graph, you get the small world effect

• related work: see [Bollobás and Chung, 1988]
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Navigation in a small world

Jon Kleinberg

how to find short paths using only local information?

• we will use a simple directed model [Kleinberg, 2000].

• a local algorithm
• can remember the source, the destination and its current

location
• can query the graph to find the long-distance edge at

the current location.
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Navigation in a small world

d(u, v): shortest path distance using only original grid edges

directed graph model, parameter r :

• each vertex is connected to its four adjacent vertices

• for each vertex v we add an extra link (v , u) where u is
chosen with probability proportional to d(v , u)−r

notice: compared to the Watts-Strogatz model the long range
edges are added in a biased way

(source [Kleinberg, 2000])
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Navigation in a small world
• r = 0: random edges, independent of distance

• as r increases the length of the long distance edges
decreases in expectation

results

1. r < 2: the end points of the long distance edges tend to
be uniformly distributed over the vertices of the grid

- is unlikely on a short path to encounter a long distance
edge whose end point is close to the destination

- no local algorithm can find them

2. r = 2: there are short paths

- a short path can be found be the simple algorithm that
always selects the edge that takes closest to the
destination

2. r > 2: there are no short paths, with high probability

Frieze, Gionis, Tsourakakis Algorithmic Techniques for Modeling and Mining Large Graphs 91 / 277



Copying model

[Kumar et al., 2000] analyze the copying model of
[Kleinberg et al., 1999b].

• α ∈ (0, 1): copy factor

• d constant out degree.

evolving copying model, time t + 1

• create a new vertex t + 1
• choose a prototype vertex u ∈ Vt uniformly at random

• the i -th out-link of t + 1 is chosen as follows:

with probability α we select x ∈ Vt−1 uniformly at random, and

with the remaining probability it copies the i -th out-lin of u
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Copying model

in-degrees follow power-law distribution [Kumar et al., 2000]

Theorem

for r > 0 the limit Pr = limt→+∞
Nt(r)
t

exists and satisfies

Pr = Θ(r−
2−α
1−α ).

explains the large number of bipartite cliques in the web graph

static models with power-law degree distributions do not
account for this phenomenon!
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Cooper-Frieze model

Colin Cooper Alan Frieze

Cooper and Frieze [Cooper and Frieze, 2003] introduce a
general model

1 many parameters

2 generalizes preferential attachment, generalized
preferential attachment and copying models

3 whose attachment rule is a mixture of preferential and
uniform
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Cooper-Frieze model

findings

1. we can obtain densification and shrinking diameters

- add edges among existing vertices

2. power law in expectation and strong concentration under
mild assumptions.

3. novel techniques for concentration

martingales + Laplace
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Kronecker graphs

reminder: Kronecker product

A = [aij ] an m × n matrix

B = [bij ] a p × q matrix

then, A⊗ B is the mp × nq matrix a11B .. a1nB
.. .. ..

am1B .. amnB


[Leskovec et al., 2010] propose a model based on the
Kronecker product, generalizing RMAT
[Chakrabarti et al., 2004].

Frieze, Gionis, Tsourakakis Algorithmic Techniques for Modeling and Mining Large Graphs 96 / 277



Kronecker graphs

source [Leskovec et al., 2010]
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Kronecker graphs

source [Leskovec et al., 2010]
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Kronecker graphs
a stochastic Kronecker graph is defined by two parameters

• an integer k

• the seed/initiator matrix θ(
a b
b c

)
• we obtain a graph with n = 2k vertices by taking

repeatedly Kronecker products

• let Ak,θ = θ ⊗ . . .⊗ θ︸ ︷︷ ︸
l times

be the resulting matrix

• adjacency matrix Āk,θ obtained by a randomized rounding

• typically 2× 2 seed matrices are used;

however, one can use other seed matrices
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Kronecker graphs

in practice we never need to compute A, but we can actually
do a sampling based on the hierarchical properties of
Kronecker products.
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Kronecker graphs

consider G (V ,E ) such that |V | = n = 2k .

• Erdős-Rényi (
0.5 0.5
0.5 0.5

)
• hierarchical community structure(

0.9 0.1
0.1 0.9

)
• More known structures obtained by other seed matrices.
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Kronecker graphs

• power-law degree distributions [Leskovec et al., 2010]

• power-law eigenvalue distribution [Leskovec et al., 2010]

• small diameter [Leskovec et al., 2010]

• densification power law [Leskovec et al., 2010]

• shrinking diameter [Leskovec et al., 2010]

• triangles [Tsourakakis, 2008]

• connectivity [Mahdian and Xu, 2007]

• giant components [Mahdian and Xu, 2007]

• diameter [Mahdian and Xu, 2007]

• searchability [Mahdian and Xu, 2007]
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Kronecker graphs

how do we find a seed matrix θ such that AG ≈ θ ⊗ . . .⊗ θ︸ ︷︷ ︸
k times

?

• maximum-likelihood estimation: argmaxθPr [G |θ]

- hard since exact computation requires O(n!n2) time, but

- Metropolis sampling and approximations allow O(m) time
good approximations [Leskovec and Faloutsos, 2007]

• moment based estimation: express the expected number
of certain subgraphs (e.g., edges, triangles, triples) as a
function of a, b, c and solve a system of equations
[Gleich and Owen, 2012]
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Chung-Lu model

Fan Chung Graham Linyuan Lu

• model is specified by w = (w1, . . . ,wn) representing
expected degree sequence

• certices i , j are connected with probability

pij =
wiwj∑n
k=1 wk

= ρwiwj .

• to have a proper probability distribution w 2
max ≤ ρ

• can obtain an Erdős-Rényi random graph by setting

w = (pn, . . . , pn)
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Chung-Lu model
how to set the weights to get power law exponent β?

• the probability of having degree k in power law

Pr [deg(v) = k] =
k−β

ζ(β)

• hence, for β > 1

Pr [deg(v) ≥ k] =
+∞∑
l≥k

k−β

ζ(β)
=

1

ζ(β)(β − 1)kβ−1

• assuming weights are decreasing and setting
wi = k , i/n = Pr [deg(v) ≥ k]

wi =
( i

ζ(β)(β − 1)i

)− 1
β−1
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Chung-Lu model
rigorous results on:
• degree sequence
• giant component
• average distance and the diameter
• eigenvalues of the adjacency and the Laplacian matrix
• ...

Complex graphs and networks, AMS
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Kronecker vs. Chung-Lu

“the SKG model is close enough to its associated CL
model that most users of SKG could just as well use
the CL model for generating graphs.”

[Pinar et al., 2011]

Comparison of the graph properties of SKG and an equivalent
CL.
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Forest-fire model

J. Leskovec J. Kleinberg C. Faloutsos

[Leskovec et al., 2007] propose the forest fire model that is
able to re-produce at a qualitative scale most of the
established properties of real-world networks
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Forest-fire model
basic version of the model

1. p : forward burning probability

2. r : backward burning ratio

• initially, we have a single vertex

• at time t a new vertex v arrives to Gt

• node v picks an ambassador/seed node u uniformly at
random link to u

• two numbers x , y are sampled from two geometric
distributions with parameters p

1−p and rp
1−rp respectively

- then, v chooses x out-links and y in-links of u which are
incident to unvisited vertices

- let u1, . . . , ux+y be these chosen endpoints
• mark u1, . . . , ux+y as visited and apply the previous step

recursively to each of them
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Forest-fire model
the forest-fire model is able to explain

• heavy tailed in-degrees and out-degrees
• densification power law
• shrinking diameter
• ...
• deep cuts at small size scales and the absence of deep

cuts at large size scales

reminder

NCP of a DBLP graph (source [Leskovec et al., 2009]).
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Applications of random graphs



Influence of search engines on preferential

attachment

Junghoo Cho

search-engine bias project

• in early days, search engines merely observed and
exploited the web graph for ranking

• nowadays, they are unquestionably influencing the
evolution of the web graph

• how?
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Influence of search engines on preferential

attachment

• “virtuous circle of limelight”

a search engine ranks a page highly

→ web page owners find this page more often and link to it

→ raises its popularity

and so on...

• main finding

[Cho and Roy, 2004] estimate that the time taken for a
page to reach prominence can be delayed by a factor of
over 60 if a search engine diverts clicks to popular pages

• random graphs used to obtain insights into this
phenomenon [Chakrabarti et al., 2005]
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Influence of search engines on preferential

attachment
Chakrabarti, Frieze and Vera [Chakrabarti et al., 2005]
introduce a model with three parameters:

• p: a probability

• N : maximum number of celebrity nodes listed by the
search engine

• m: edge parameter

notation:

• sequence of graphs {Gt}+∞t=1 . Gt will have t vertices and
mt edges.

• Dt(U) =
∑

x∈U degt(x)

• St the set of at most N vertices with largest degrees in Gt .

• dk(t) denotes the number of vertices of degree k at time
t. in the set Vt − St .
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Influence of search engines on preferential

attachment
• time step 1: the process is initialized with graph G1 which

consists of an isolated vertex x1 and m loops

• time step t > 1: we add a vertex xt to Gt−1
- we then add m random edges (xt , yi), i = 1, . . . ,m

incident with xt , where yi are nodes in Gt−1
- for each i :

• with probability p we choose yi ∈ St−1
• with probability 1− p we choose yi ∈ Vt−1

in both case yi is selected by preferential attachment, i.e.,

Pr [yi = x ] =
degt−1(x)∑
u∈U degt−1(u)

where U = St−1 or U = Vt−1
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Influence of search engines on preferential

attachment

Theorem
Let m ≥ max{15, 2

1−p} and 0 < p < 1

• Let St = {s1, . . . sN} in decreasing order of degree.

Then E [degt(si)] ∼ αi t for every i ≤ N for some
constant αi > 0

• There is an absolute constant A1 such that for every
k ≥ m

E [dk(t)] =
A1n

k
1+

2
1−p

+ second order terms
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Influence of search engines on preferential

attachment

the theorem and its proof verify our intuition

• the celebrity lit gets fixed quickly

• each celebrity page captures a constant fraction of all
edges ever generated in the graph

• the non-celebrity vertices obey a power law which is
steeper

Frieze, Gionis, Tsourakakis Algorithmic Techniques for Modeling and Mining Large Graphs 117 / 277



Robustness and vulnerability

• intuitively, a complex network is robust if it keeps its basic
functionality under the failure of some of its components.

• distinguish between random failure and intentional attacks

• related to percolation

percolation
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Robustness and vulnerability

R. Albert H. Jeong L. Barabási

[Albert et al., 2000] provide simulations indicating that scale
free networks are robust to random failures

10 second sound bite science

The Internet is robust yet fragile. 95% of the links
can be removed and the graph will stay connected.
However, targeted removal of 2.3% of the hubs
would disconnect the Internet.
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Robustness and vulnerability

n = 10 000 vertices m = 20 000 links

• diameter of an Erdős-Rényi and a scale-free network as a
function of the fraction f of vertices deleted

• the power-law distribution implies that under random
sampling, vertices with small degree are selected selected with
much higher probability
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Robustness and vulnerability
• the cluster size

distribution for various
values of f for an
Erdős-Rényi graph and
a scale-free network
under random and
malicious failures
(source
[Albert et al., 2000])

• Intuition: scale-free
graphs are
inhomogeneous which
implies both better
performance under
random failures and
reduced attack
survivability
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Robustness and vulnerability

Bélla Bollobás Oliver Riordan

[Bollobás and Riordan, 2004] studied the robustness and
vulnerability of a scale-free graph, using specifically the
Barabási-Albert model
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Robustness and vulnerability

• when vertices of G
(n)
m are deleted independently with

probability 1− p, there is always a giant component!

- no critical p

• however the size of the giant component depends on p

Theorem
Let m ≥ 2, 0 < p < 1 be fixed and let Gp be obtained from

G
(n)
m by deleting vertices independently with probability 1− p

Then as n→ +∞ whp the largest component of Gp has order
((c(p,m) + o(1))n

Furthermore, as p → 0 with m fixed, c(p,m) = exp
(

1
O(p)

)
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Robustness and vulnerability

• when G
(n)
m is deliberately attacked, finding the “best”

attack is hard

• Bollobás and Riordan consider the natural attack of
deleting the earliest vertices up to some cutoff cn

Theorem

Let Gc be obtained by G
(n)
m by deleting all vertices with index

less than cn, where 0 < c < 1 is a constant.

Let cm = m−1
m+1

.

If c < cm then whp Gc has a component with Θ(n) vertices.

If c > cm then whp Gc has no such component.
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More applications

• study of interdependent networks [Brummitt et al., 2012]

a random three- and four-regular graph connected by Bernoulli
distributed coupling with interconnectivity parameter p = 0.1

Frieze, Gionis, Tsourakakis Algorithmic Techniques for Modeling and Mining Large Graphs 125 / 277



More applications

Itai Ashlagi Alvin Roth

compatibility graph : each vertex is a donor-patient pair and
each edge between two vertices denotes compatibility for
kidney exchange.

• model kidney exchange with many patient-donor pairs as
a random compatibility graph
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More applications

Motivation

• we wish to messages in a cellular network G , between any
two vertices in a pipeline

• we require that each link on the route between the
vertices (namely, each edge on the path) is assigned a
distinct channel (e.g., a distinct frequency)

an edge colored graph G is rainbow edge connected if any two
vertices are connected by a path whose edges have distinct
colors

goal: Find the minimum number of colors needed to rainbow
color the edges of G

[Frieze and Tsourakakis, 2012] study rainbow connectivity in
sparse random graphs
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More applications
• [Cooper and Frieze, 2004] studied the performance of

crawlers in random evolving scale-free graphs

• [Valiant, 2005] uses random graphs to model
memorization and association functionalities of the brain

• simulations (epidemics, performance of algorithms etc.)

• graph anonymization [Leskovec et al., 2005a]

• allow to argue about the structure of real-world networks

for instance, given a random graph with a fixed degree
distribution, what do we expect for the spectrum,
subgraphs etc?

• give rise to objectives by using them as null models
(modularity)

• and many more ..
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Conclusions (random graphs)

• just scratched the tip of the iceberg
• random geometric graphs [Penrose, 2003]

• hyperbolic geometry [Gugelmann et al., 2012]
• line of sight networks [Frieze et al., 2009]

• protean graphs [ Luczak and Pra lat, 2006]
• geometric preferential attachment [Flaxman et al., 2006]
• affiliation networks [Lattanzi and Sivakumar, 2009]
• many other interesting stochastic models ..
• optimization based models for topology

• Doyle et al. [Doyle and Carlson, 2000, Li et al., 2005]
• heuristically optimized trade-offs [Fabrikant et al., 2002]

• a different line of research, networks as biproduct of
strategy selection [Dutta and Jackson, 2003],
[Fabrikant et al., 2003], [Borgs et al., 2011]
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Conclusions (random graphs)

• there is no single model that matches all established
existing properties
• the forest-fire model appears to match most, but we do

not understand well this model

• many types of networks (social networks, information
networks, technological networks), develop specialized
models
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Outline

• introduction and graphs and networks

• random graphs as models of real-world networks

• properties of real-world networks

• Erdős-Rényi graphs

• models of real-world networks

• applications of random graphs

• algorithm design for large-scale networks

• graph partitioning and community detection

• dense subgraphs
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Graph partitioning and community detection



Graph partitioning and community detection

• knowledge discovery
• partition the web into sets of related pages (web graph)
• find groups of scientists who collaborate with each other

(co-authorship graph)
• find groups of related queries submitted in a search

engine (query graph)

• performance
• partition the nodes of a large social network into

different machines so that, to a large extent, friends are
in the same machine (social networks)
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Graph partitioning — high-level problem definition

• graph G = (V ,E ,w)

• edge (u, v) denotes affinity between u and v

• weight of edge w(u, v) can be used to quantify the
degree of affinity

• we want to partition the vertices in clusters so that:
• vertices within clusters are well connected, and
• vertices across clusters are sparsely connected

• typical graph-partitioning problems are NP-hard
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Graph partitioning

(Zachary’s karate-club network, figure from [Newman and Girvan, 2004])
Frieze, Gionis, Tsourakakis Algorithmic Techniques for Modeling and Mining Large Graphs 135 / 277



Objective functions: (1) min cut
• the minimum number of edges cut by a two-component

partitioning
• cut:

E (S ,T ) = {(u, v) ∈ E | u ∈ S and v ∈ T}

• min cut:
c(G ) = min

S⊆V
|E (S ,V \ S)|

V−S

S
S

V−S
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Objective functions: (2) graph expansion

• normalize the cut by the size of the smallest component

• ratio cut:

α(G , S) =
|E (S ,V \ S)|

min{|S |, |V \ S |}
• graph expansion:

α(G ) = min
S

|E (S ,V \ S)|
min{|S |, |V \ S |}

V−S

S
S

V−S
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Objective functions: (3) conductance

• normalize by volume

vol(S) =
∑
i∈S

di , for S ⊆ V (so, vol(V ) = 2m)

• set conductance:

φ(G , S) =
|E (S ,V \ S)|

min{vol(S), vol(V \ S)}

• graph conductance:

φ(G ) = min
S⊆V

|E (S ,V \ S)|
min{vol(S), vol(V \ S)}
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Background: linear algebra and eigenvalues

• consider a real n × n matrix A

• (λ,u) an eigenvalue–eigenvector pair if Au = λu

• a symmetric real matrix has real eigenvalues

• the set of eigenvalues of a matrix is called the spectrum
of the matrix

σ(A) = {λ1, . . . , λn}

index them so that λ1 ≤ . . . ≤ λn

• A is positive semi-definite if xTA x ≥ 0 for all x ∈ Rn

• a symmetric positive semi-definite real matrix has non
negative eigenvalues
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Background: linear algebra and eigenvalues
• for a symmetric matrix, the eigenvectors that corespond

to different eigenvalues are orthogonal
(λi 6= λj implies uT

i uj = 0)
• the range of A is the linear space spanned by the columns

of A

range(A) = {x ∈ Rn | A y = x, for some y ∈ Rn}

• for a real and symmetric matrix A, the range of A is
spanned by the eigenvectors with non-zero eigenvalues

• for a real and symmetric matrix A, with eigenvalues
λ1 ≤ . . . ≤ λn and corresponding eigenvectors u1, . . . ,un

A =
n∑

i=1

λi ui u
T
i
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Background: min–max characterization of

eigenvalues
• for a real and symmetric matrix A with eigenvalues
λ1 ≤ . . . ≤ λn

λn = max
vT v=1

vTA v

λ1 = min
vT v=1

vTA v

λ2 = min
vT v=1
vTu1=0

vTA v

and in general

λk = min
vT v=1

vTui=0,i=1...k−1

vTA v
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Spectral analysis of graphs

• G = (V ,E ) an undirected graph

• A the adjacency matrix of G :

• define the Laplacian matrix of A as

L = D − A or Lij =


di if i = j
−1 if (i , j) ∈ E , i 6= j
0 if (i , j) 6∈ E , i 6= j

• where D = diag(d1, . . . , dn), a diagonal matrix

• L is symmetric positive semi-definite

• The smallest eigenvalue of L is λ1 = 0, with eigenvector
u1 = (1, 1, . . . , 1)T
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Spectral analysis of graphs

• consider the second smallest eigenvector λ2 of L

λ2 = min
||x||=1
xTu1=0

xTL x = min∑
xi=0

∑
(i ,j)∈E (xi − xj)

2∑
i x2

i

• the corresponding eigenvector u2 is called Fielder vector

• ordering according to the values of u2 will group similar
(connected) vertices together

• one-dimensional embedding that preserves the graph
structure

• physical interpretation: minimize elastic potential energy
if graph is materialized with springs at its edges
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Spectral analysis of graphs

λ2 = min
||x||=1
xTu1=0

xTL x = min∑
xi=0

∑
(i ,j)∈E (xi − xj)

2∑
i x2

i

• ordering according to the values of u2 will group similar
(connected) vertices together

• one-dimensional embedding that preserves the graph
structure

Tuesday, July 23, 13
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Random walks

• consider random walk on the graph G by following edges

• from vertex i move to vertex j with prob. 1/di if (i , j) ∈ E

• p(t)
i probability of being at vertex i at time t

• process is described by equation p(t+1) = p(t)P ,

where P = D−1 A is row-stochastic

• process converges to stationary distribution π = π P
(under certain irreducibility conditions)

• for undirected and connected graphs

πi =
di

2m
(stationary distribution ∼ degree)
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Random walks — useful concepts
• hitting time H(i , j): expected number of steps before

visiting vertex j , starting from i
• commute time κ(i , j): expected number of steps before

visiting j and i again, starting at i

κ(i , j) = H(i , j) + H(j , i)

• cover time R : expected number of steps to reach every
node

• mixing time τ(ε): a measure of how fast the random walk
approaches its stationary distribution

τ(ε) = min{t | d(t) ≤ ε}
where

d(t) = max
i
||pt(i , ·)− π|| = max

i

{∑
j

|pt(i , j)− πj |

}
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Random walks — spectral analysis
• instead of L = D − A consider normalized Laplacian

L′ = I − D−1/2A D−1/2

L′ u = λu

(I − D−1/2A D−1/2)u = λu

(D − A)u = λD u

D u = Au + λD u

(1− λ)u = D−1Au

µu = P u

• (λ,u) is an eigenvalue–eigenvector pair for L′ if and only
if (1− λ,u) is an eigenvalue–eigenvector pair for P

• the eigenvector with smallest eigenvalue for L′ is the
eigenvector with largest eigenvalue for P
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Random walks — spectral analysis

• stochastic matrix P , describing the random walk

• eigenvalues: −1 < µn ≤ . . . ≤ µ2 < µ1 = 1

• spectral gap: γ∗ = 1− µ2

• relaxation time: τ∗ = 1
γ∗

• theorem: for an aperiodic, irreducible, and reversible
random walk, and any ε

(τ∗ − 1) log

(
1

2ε

)
≤ τ(ε) ≤ τ∗ log

(
1

2ε
√
πmin

)
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Random walks — spectral analysis

• intuition: fast mixing related to graph being an expander

• large mixing time ⇒ bottlenecks ⇒ clusters

• large spectral gap ⇒ no clusters
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Spectral analysis and clustering measures

• clustered structure of G captured by
min cut c(G )
expansion α(G )
conductance φ(G )

• no surprise those clustering measures are related to
spectral gap
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Cheeger inequality
• eigenvalues of the stochastic matrix P , describing the

random walk: −1 < µn ≤ . . . ≤ µ2 < µ1 = 1

• eigenvalues of normalized Laplacian:
0 = λ1 < λ2 ≤ . . . ≤ λn

• spectral gap: γ∗ = 1− µ2 = λ2

• Cheeger inequality:

φ(G )2

2
≤ γ∗ = λ2 ≤ 2φ(G )

• [reminder] graph conductance:

φ(G ) = min
S⊆V

|E (S ,V \ S)|
min{vol(S), vol(V \ S)}
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Spectral analysis of graphs

• consider the second smallest eigenvector λ2 of L

λ2 = min
||x||=1
xTu1=0

xTL x = min∑
xi=0

∑
(i ,j)∈E (xi − xj)

2∑
i x2

i

• ordering according to the values of u2 will group similar
(connected) vertices together

• one-dimensional embedding that preserves the graph
structure

• λ2 corresponds to spectral gap

• the smaller λ2 the better the clusters
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Interesting special case

• the smaller λ2 the better the clusters

• theorem: let L be the Laplacian of a graph G = (V ,E ).
λ2 > 0 if and only if G is connected

proof: if G disconnected then

L =

(
L1 0
0 L2

)
consider also

λ2 = min
||x||=1
xTu1=0

xTL x = min∑
xi=0

∑
(i ,j)∈E (xi − xj)

2∑
i x2

i

�
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Inside the proof of Cheeger’s inequality

• 0 = λ1 < λ2 ≤ . . . ≤ λn (normalized Laplacian)

• Cheeger inequality

φ(G )2

2
≤ γ∗ = λ2 ≤ 2φ(G )

[λ2 ≤ 2φ(G )]

• 2φ(G ) can be written as an expression over xi ∈ {0, 1}
indicating whether i ∈ S

• λ2 can be written as the fractional relaxation of the
previous expression
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Inside the proof of Cheeger’s inequality

• 0 = λ1 < λ2 ≤ . . . ≤ λn (normalized Laplacian)

• Cheeger inequality

φ(G )2

2
≤ γ∗ = λ2 ≤ 2φ(G )

[φ(G ) ≤
√

2λ2]

• constructive

• order graph vertices according to the eigenvector of λ2

• form S by spliting vertices around their median

• show for that partitioning φ(S) ≤
√

2λ2

Frieze, Gionis, Tsourakakis Algorithmic Techniques for Modeling and Mining Large Graphs 155 / 277



Basic spectral-partition algorithm

1 form normalized Laplacian L′ = I − D−1/2A D−1/2

2 compute the eigenvector u2 that corresponds to λ2

3 order vertices according their coefficient value on u2

4 consider only sweeping cuts: splits that respect the order

5 take the sweeping cut S that minimizes φ(S)

theorem the basic spectral-partition algorithm finds a cut S such
that φ(S) ≤ 2

√
φ(G )

proof by Cheeger inequality φ(S) ≤
√

2 · λ2 ≤
√

2 · 2 · φ(G )
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Spectral partitioning rules

1 conductance: find the partition that minimizes φ(G )

2 bisection: split in two equal parts

3 sign: separate positive and negative values

4 gap: separate according to the largest gap

Tuesday, July 23, 13
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Other common spectral-partitioning algorithms

1 utilize more eigenvectors than just the Fielder vector

use k eigenvectors

2 different versions of the Laplacian matrix
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Using k eigenvectors

• ideal scenario: the graph consists of k disconnected
components (perfect clusters)

• then: eigenvalue 0 of the Laplacian has multplicity k
the eigenspace of eigenvalue 0 is spanned by indicator
vectors of the graph components
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Using k eigenvectors

1
1
1
1

1
1
1

1
1

1
1
1

Tuesday, July 30, 13
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Using k eigenvectors

1
1
1
1

1
1
1

1
1

1
1
1

Tuesday, July 30, 13
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Using k eigenvectors

1
1
1
1
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1
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Using k eigenvectors

• robustness under perturbations: if the graph has less
well-separated components the previous structure holds
approximately

• clustering of Euclidean points can be used to separate the
components
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Using k eigenvectors

Tuesday, July 30, 13
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Laplacian matrices

• unormalized Laplacian: L = D − A

Lij =


di if i = j
−1 if (i , j) ∈ E , i 6= j
0 if (i , j) 6∈ E , i 6= j

• normalized symmetric Laplacian: L′ = I − D−1/2A D−1/2

• normalized “random-walk” Laplacian: Lrw = I − D−1A
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All Laplacian matrices are related

• unormalized Laplacian: λ2 = min ||x||=1
xTu1=0

∑
(i ,j)∈E (xi − xj)

2

• normalized Laplacian:

λ2 = min
||x||=1
xTu1=0

∑
(i ,j)∈E

(
xi√
di

− xj√
dj

)2

• (λ,u) is an eigenvalue/vector of Lrw if and only if
(λ,D1/2 u) is an eigenvalue/vector of L’

• (λ,u) is an eigenvalue/vector of Lrw if and only if
(λ,u) solve the generalized eigen-problem Lu = λD u
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Algorithm 1: unormalized spectral clustering

input graph adjacency matrix A, number k

1. form diagonal matrix D

2. form unormalized Laplacian L = D − A

3. compute the first k eigenvectors u1, . . . , uk of L

4. form matrix U ∈ Rn×k with columns u1, . . . , uk

5. consider the i -th row of U as point yi ∈ Rk , i = 1, . . . , n,

6. cluster the points {yi}i=1,...,n into clusters C1, . . . ,Ck

e.g., with k-means clustering

output clusters A1, . . . ,Ak with Ai = {j | yj ∈ Ci}
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Algorithm 2: normalized spectral clustering

[Shi and Malik, 2000]

input graph adjacency matrix A, number k

1. form diagonal matrix D

2. form unormalized Laplacian L = D − A

3. compute the first k eigenvectors u1, . . . , uk of the
generalized eigen-problem Lu = λD u (eigvctrs of Lrw)

4. form matrix U ∈ Rn×k with columns u1, . . . , uk

5. consider the i -th row of U as point yi ∈ Rk , i = 1, . . . , n,

6. cluster the points {yi}i=1,...,n into clusters C1, . . . ,Ck

e.g., with k-means clustering

output clusters A1, . . . ,Ak with Ai = {j | yj ∈ Ci}

Frieze, Gionis, Tsourakakis Algorithmic Techniques for Modeling and Mining Large Graphs 168 / 277



Algorithm 3: normalized spectral clustering

[Ng et al., 2001]

input graph adjacency matrix A, number k

1. form diagonal matrix D

2. form normalized Laplacian L′ = I − D−1/2A D−1/2

3. compute the first k eigenvectors u1, . . . , uk of L′

4. form matrix U ∈ Rn×k with columns u1, . . . , uk

5. normalize U so that rows have norm 1

6. consider the i -th row of U as point yi ∈ Rk , i = 1, . . . , n,

7. cluster the points {yi}i=1,...,n into clusters C1, . . . ,Ck

e.g., with k-means clustering

output clusters A1, . . . ,Ak with Ai = {j | yj ∈ Ci}
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intuition of the spectral algorithms

Tuesday, July 30, 13
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Notes on the three spectral algorithms

• quite similar except for using the three different
Laplacians

• can be used to cluster any type of data, not just graphs
form all-pairs similarity matrix and use as adjacency
matrix

• computation of the first eigenvectors of sparse matrices
can be done efficiently using the Lanczos method
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Zachary’s karate-club network
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Zachary’s karate-club network
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Zachary’s karate-club network

Thursday, August 1, 13

unormalized normalized normalized
Laplacian symmetric random walk

Laplacian Laplacian
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Which Laplacian to use?

[von Luxburg, 2007]

• when graph vertices have about the same degree all
Laplacians are about the same

• for skewed degree distributions normalized Laplacians
tend to perform better, and Lrw is preferable

• normalized Laplacians are associated with conductance,
which is preferable than ratio cut

(conductance involves vol(S) rather than |S | and
captures better community structure)
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Modularity

• cut ratio, graph expension, conductance useful to extract
one component

• not clear how to extend to measure quality of graph
partitions

• related question: what is the optimal number of
partitions?

• modularity measure has been used to answer those
questions

• [Newman and Girvan, 2004]

• originally developed to find the optimal number of
partitions in hierarchical graph partitioning
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Modularity
• intuition: compare actual subgraph density with

expected subgraph density, if vertices were attached
regardless of community structure

Q =
1

2m

∑
ij

(Aij − Pij)δ(Ci ,Cj)

=
1

2m

∑
ij

(Aij −
didj

2m
)δ(Ci ,Cj)

=
∑
c

[
mc

2m
−
(

dc

2m

)2
]

Pij = 2mpipj = 2m(di/2m)(dj/2m) = (didj/2m)
mc : edges within cluster c
dc : total degree of cluster c
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Values of modularity

• 0 random structure; 1 strong community structure;
[0.3..0.7]; typical good structure; can be negative, too

• Q measure is not monotone with k
4
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FIG. 1: The modularity Q over the course of the algorithm
(the x axis shows the number of joins). Its maximum value is
Q = 0.745, where the partition consists of 1684 communities.

in practical situations it is usually unnecessary to main-
tain the separate max-heaps for each row. These heaps
are used to find the largest element in a row quickly, but
their maintenance takes a moderate amount of effort and
this effort is wasted if the largest element in a row does
not change when two rows are amalgamated, which turns
out often to be the case. Thus we find that the following
simpler implementation works quite well in realistic sit-
uations: if the largest element of the kth row was ∆Qki

or ∆Qkj and is now reduced by Eq. (10b) or (10c), we
simply scan the kth row to find the new largest element.
Although the worst-case running time of this approach
has an additional factor of n, the average-case running
time is often better than that of the more sophisticated
algorithm. It should be noted that the hierarchies gen-
erated by these two versions of our algorithm will differ
slightly as a result of the differences in how ties are bro-
ken for the maximum element in a row. However, we find
that in practice these differences do not cause significant
deviations in the modularity, the community size distri-
bution, or the composition of the largest communities.

III. AMAZON.COM PURCHASING NETWORK

The output of the algorithm described above is pre-
cisely the same as that of the slower hierarchical algo-
rithm of [32]. The much improved speed of our algorithm
however makes possible studies of very large networks for
which previous methods were too slow to produce useful
results. Here we give one example, the analysis of a co-
purchasing or “recommender” network from the online
vendor Amazon.com. Amazon sells a variety of products,
particularly books and music, and as part of their web
sales operation they list for each item A the ten other
items most frequently purchased by buyers of A. This

FIG. 2: A visualization of the community structure at max-
imum modularity. Note that the some major communities
have a large number of “satellite” communities connected only
to them (top, lower left, lower right). Also, some pairs of ma-
jor communities have sets of smaller communities that act
as “bridges” between them (e.g., between the lower left and
lower right, near the center).

information can be represented as a directed network in
which vertices represent items and there is a edge from
item A to another item B if B was frequently purchased
by buyers of A. In our study we have ignored the directed
nature of the network (as is common in community struc-
ture calculations), assuming any link between two items,
regardless of direction, to be an indication of their simi-
larity. The network we study consists of items listed on
the Amazon web site in August 2003. We concentrate on
the largest component of the network, which has 409 687
items and 2 464 630 edges.

The dendrogram for this calculation is of course too
big to draw, but Fig. 1 illustrates the modularity over the
course of the algorithm as vertices are joined into larger
and larger groups. The maximum value is Q = 0.745,
which is high as calculations of this type go [21, 32]
and indicates strong community structure in the network.
The maximum occurs when there are 1684 communities
with a mean size of 243 items each. Fig. 2 gives a visual-
ization of the community structure, including the major
communities, smaller “satellite” communities connected
to them, and “bridge” communities that connect two ma-
jor communities with each other.

Looking at the largest communities in the network, we
find that they tend to consist of items (books, music) in
similar genres or on similar topics. In Table I, we give in-
formal descriptions of the ten largest communities, which
account for about 87% of the entire network. The remain-
der is generally divided into small, densely connected
communities that represent highly specific co-purchasing
habits, e.g., major works of science fiction (162 items),
music by John Cougar Mellencamp (17 items), and books

4

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
x 105

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

xth join

m
od

ul
ar

ity
, Q

FIG. 1: The modularity Q over the course of the algorithm
(the x axis shows the number of joins). Its maximum value is
Q = 0.745, where the partition consists of 1684 communities.

in practical situations it is usually unnecessary to main-
tain the separate max-heaps for each row. These heaps
are used to find the largest element in a row quickly, but
their maintenance takes a moderate amount of effort and
this effort is wasted if the largest element in a row does
not change when two rows are amalgamated, which turns
out often to be the case. Thus we find that the following
simpler implementation works quite well in realistic sit-
uations: if the largest element of the kth row was ∆Qki

or ∆Qkj and is now reduced by Eq. (10b) or (10c), we
simply scan the kth row to find the new largest element.
Although the worst-case running time of this approach
has an additional factor of n, the average-case running
time is often better than that of the more sophisticated
algorithm. It should be noted that the hierarchies gen-
erated by these two versions of our algorithm will differ
slightly as a result of the differences in how ties are bro-
ken for the maximum element in a row. However, we find
that in practice these differences do not cause significant
deviations in the modularity, the community size distri-
bution, or the composition of the largest communities.

III. AMAZON.COM PURCHASING NETWORK

The output of the algorithm described above is pre-
cisely the same as that of the slower hierarchical algo-
rithm of [32]. The much improved speed of our algorithm
however makes possible studies of very large networks for
which previous methods were too slow to produce useful
results. Here we give one example, the analysis of a co-
purchasing or “recommender” network from the online
vendor Amazon.com. Amazon sells a variety of products,
particularly books and music, and as part of their web
sales operation they list for each item A the ten other
items most frequently purchased by buyers of A. This

FIG. 2: A visualization of the community structure at max-
imum modularity. Note that the some major communities
have a large number of “satellite” communities connected only
to them (top, lower left, lower right). Also, some pairs of ma-
jor communities have sets of smaller communities that act
as “bridges” between them (e.g., between the lower left and
lower right, near the center).

information can be represented as a directed network in
which vertices represent items and there is a edge from
item A to another item B if B was frequently purchased
by buyers of A. In our study we have ignored the directed
nature of the network (as is common in community struc-
ture calculations), assuming any link between two items,
regardless of direction, to be an indication of their simi-
larity. The network we study consists of items listed on
the Amazon web site in August 2003. We concentrate on
the largest component of the network, which has 409 687
items and 2 464 630 edges.

The dendrogram for this calculation is of course too
big to draw, but Fig. 1 illustrates the modularity over the
course of the algorithm as vertices are joined into larger
and larger groups. The maximum value is Q = 0.745,
which is high as calculations of this type go [21, 32]
and indicates strong community structure in the network.
The maximum occurs when there are 1684 communities
with a mean size of 243 items each. Fig. 2 gives a visual-
ization of the community structure, including the major
communities, smaller “satellite” communities connected
to them, and “bridge” communities that connect two ma-
jor communities with each other.

Looking at the largest communities in the network, we
find that they tend to consist of items (books, music) in
similar genres or on similar topics. In Table I, we give in-
formal descriptions of the ten largest communities, which
account for about 87% of the entire network. The remain-
der is generally divided into small, densely connected
communities that represent highly specific co-purchasing
habits, e.g., major works of science fiction (162 items),
music by John Cougar Mellencamp (17 items), and books

(figures from [Clauset et al., 2004])
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Optimizing modularity

• problem: find the partitioning that optimizes modularity

• NP-hard problem [Brandes et al., 2006]

• top-down approaches [Newman and Girvan, 2004]

• spectral approaches [Smyth and White, 2005]

• mathematical-programming [Agarwal and Kempe, 2008]
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Top-down algorithms for optimizing modularity

[Newman and Girvan, 2004]

• a set of algorithms based on removing edges from the
graph, one at a time

• the graph gets progressively disconnected, creating a
hierarchy of communities

3

22 14 4 13 8 3 10 23 19 16 15 21 9 31 33 29 25 26 32 24 27 30 34 281 6 17 7 5 11 12 20 2 18

FIG. 2: Dendrogram of the communities found by our algo-
rithm in the “karate club” network of Zachary [5, 17]. The
shapes of the vertices represent the two groups into which the
club split as the result of an internal dispute.

not to continue using it—it appears to give the best
results. For systems too large to make use of this ap-
proach, however, our new algorithm gives useful com-
munity structure information with comparatively little
effort.

We have applied our algorithm to a variety of real-
world networks also. We have looked, for example, at
the “karate club” network studied in [5], which represents
friendships between 34 members of a club at a US univer-
sity, as recorded over a two-year period by Zachary [17].
During the course of the study, the club split into two
groups as a result of a dispute within the organization,
and the members of one group left to start their own
club. In Fig. 2 we show the dendrogram derived by feed-
ing the friendship network into our algorithm. The peak
modularity is Q = 0.381 and corresponds to a split into
two groups of 17, as shown in the figure. The shapes of
the vertices represent the alignments of the club mem-
bers following the split and, as we can see, the division
found by the algorithm corresponds almost perfectly to
these alignments; only one vertex, number 10, is classified
wrongly. The GN algorithm performs similarly on this
task, but not better—it also finds the split but classifies
one vertex wrongly (although a different one, vertex 3).
In other tests, we find that our algorithm also success-
fully detects the main two-way division of the dolphin
social network of Lusseau [6, 18], and the division be-
tween black and white musicians in the jazz network of
Gleiser and Danon [11].

As a demonstration of how our algorithm can some-
times miss some of the structure in a network, we take
another example from Ref. 5, a network representing
the schedule of games between American college foot-
ball teams in a single season. Because the teams are di-
vided into groups or “conferences,” with intra-conference
games being more frequent than inter-conference games,
we have a reasonable idea ahead of time about what com-
munities our algorithm should find. The dendrogram
generated by the algorithm is shown in Fig. 3, and has
an optimal modularity of Q = 0.546, which is a little shy

of the value 0.601 for the best split reported in [5]. As
the dendrogram reveals, the algorithm finds six commu-
nities. Some of them correspond to single conferences,
but most correspond to two or more. The GN algorithm,
by contrast, finds all eleven conferences, as well as accu-
rately identifying independent teams that belong to no
conference. Nonetheless, it is clear that the new algo-
rithm is quite capable of picking out useful community
structure from the network, and of course it is much the
faster algorithm. On the author’s personal computer the
algorithm ran to completion in an unmeasureably small
time—less than a hundredth of a second. The algorithm
of Girvan and Newman took a little over a second.

A time difference of this magnitude will not present
a big problem in most practical situations, but perfor-
mance rapidly becomes an issue when we look at larger
networks; we expect the ratio of running times to in-
crease with the number of vertices. Thus, for example,
in applying our algorithm to the 1275-node network of
jazz musician collaborations mentioned above, we found
that it runs to completion in about one second of CPU
time. The GN algorithm by contrast takes more than
three hours to reach very similar results.

As an example of an analysis made possible by the
speed of the new algorithm, we have looked at a network
of collaborations between physicists as documented by
papers posted on the widely-used Physics E-print Archive
at arxiv.org. The network is an updated version of the
one described in Ref. 13, in which scientists are consid-
ered connected if they have coauthored one or more pa-
pers posted on the archive. We analyze only the largest
component of the network, which contains n = 56 276 sci-
entists in all branches of physics covered by the archive.
Since two vertices that are unconnected by any path are
never put in the same community by our algorithm, the
small fraction of vertices that are not part of the largest
component can safely be assumed to be in separate com-
munities in the sense of our algorithm. Our algorithm
takes 42 minutes to find the full community structure.
Our best estimates indicate that the GN algorithm would
take somewhere between three and five years to complete
its version of the same calculation.

The analysis reveals that the network in question con-
sists of about 600 communities, with a high peak modu-
larity of Q = 0.713, indicating strong community struc-
ture in the physics world. Four of the communities found
are large, containing between them 77% of all the ver-
tices, while the others are small—see Fig. 4, left panel.
The four large communities correspond closely to subject
subareas: one to astrophysics, one to high-energy physics,
and two to condensed matter physics. Thus there ap-
pears to be a strong correlation between the structure
found by our algorithm and the community divisions per-
ceived by human observers. It is precisely correlation
of this kind that makes community structure analysis a
useful tool in understanding the behavior of networked
systems.

We can repeat the analysis with any of the subcom-

(figure from [Newman, 2004])
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Top-down algorithms

• select edge to remove based on “betweenness”

three definitions

• shortest-path betweenness: number of shortest paths that
the edge belongs to

• random-walk betweenness: expected number of paths for
a random walk from u to v

• current-flow betweenness: resistance derived from
considering the graph as an electric circuit
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Top-down algorithms

general scheme

TopDown
1. Compute betweenness value of all edges
2. Remove the edge with the highest betweenness
3. Recompute betweenness value of all remaining edges
4. Repeat until no edges left
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Shortest-path betweenness

• how to compute shortest-path betweenness?

• BFS from each vertex

• leads to O(mn) for all edge betweenness

• OK if there are single paths to all vertices

s

42

1 1 2

1

1/2

1/2

1/2

1/2

s
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Shortest-path betweenness

s

overall time of TopDown is O(m2n)
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Shortest-path betweenness

1

1
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s

overall time of TopDown is O(m2n)
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Shortest-path betweenness
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overall time of TopDown is O(m2n)
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Random-walk betweenness

• stochastic matrix of random walk is P = D−1 A

• s is the vector with 1 at position s and 0 elsewhere

• probability distribution over vertices at time n is sPn

• expected number of visits at each vertex given by∑
n

sPn = s (1− P)−1

cu = E[# times passing from u to v ] =
[
s (1− P)−1

]
u

1

du

c = s (1− P)−1 D−1 = s (D − A)−1

• define random-walk betweenness at (u, v) as |cu − cv |
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Random-walk betweenness

• random-walk betweenness at (u, v) is |cu − cv |
with c = s (D − A)−1

• one matrix inversion O(n3)

• in total O(n3m) time with recalculation

• not scalable

• current-flow betweenness is equivalent!

[Newman and Girvan, 2004] recommend shortest-path
betweenness
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Other modularity-based algorithms

spectral approach [Smyth and White, 2005]

Q =
k∑

c=1

[
mc

2m
−
(

dc

2m

)2
]
∝

k∑
c=1

[
(2m) mc − d2

c

]
=

k∑
c=1

(2m)
n∑

i ,j=1

wijxicxjc −

(
n∑

i=1

dixic

)2


=
k∑

c=1

[
(2m) xTc W xc − xTc D xc

]
= tr(XT (W ′ − D) X )

where X = [x1 . . . xk ] = [xic ] point-cluster assignment matrix
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Spectral-based modularity optimization

maximize tr(XT (W ′ − D) X )

such that X is an assignment matrix

solution:
LQ X = X Λ

where LQ = W ′ − D, Q-Laplacian

• standard eigenvalue problem

• but solution is fractional, we want integral

• treat rows of X as vectors and cluster graph vertices
using k-means

• [Smyth and White, 2005] propose two algorithms, based
on this idea
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Spectral-based modularity optimization

spectral algorithms perform almost as good as the
agglomerative, but they are more efficient
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Figure 2: Clusters for WordNet data, k = 12 (best viewed in color).
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Figure 3: Q versus k for the WordNet data.
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[Smyth and White, 2005]
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Other modularity-based algorithms

mathematical programming [Agarwal and Kempe, 2008]

Q ∝
n∑

i ,j=1

Bij(1− xij)

where

xij =

{
0 if i and j get assigned to the same cluster
1 otherwise

it should be

xik ≤ xij + xjk for all vertices i , j , k

solve the integer program with triangle inequality constraints
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Mathematical-programming approach

for modularity optimization

[Agarwal and Kempe, 2008]

• integer program is NP-hard

• relax integrality constraints

replace xij ∈ {0, 1} with 0 ≤ xij ≤ 1

• corresponding linear program can be solved in polynomial
time

• solve linear program and round the fractional solution

• place in the same cluster vertices i and j if xij is small

(pivot algorithm [Ailon et al., 2008])
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Results
Gaurav Agarwal, David Kempe: Modularity-Maximizing Graph Communities via Mathematical Programming 9

Network size n GN DA EIG VP LP UB
KARATE 34 0.401 0.419 0.419 0.420 0.420 0.420
DOLPH 62 0.520 - - 0.526 0.529 0.531
MIS 76 0.540 - - 0.560 0.560 0.561
BOOKS 105 - - 0.526 0.527 0.527 0.528
BALL 115 0.601 - - 0.605 0.605 0.606
JAZZ 198 0.405 0.445 0.442 0.445 0.445 0.446
COLL 235 0.720 - - 0.803 0.803 0.805
META 453 0.403 0.434 0.435 0.450 - -
EMAIL 1133 0.532 0.574 0.572 0.579 - -

Table 2. The modularity obtained by many of the previously
published methods and by the methods introduced in this pa-
per, along with the upper bound.

any clustering; it seems quite plausible that the clustering
produced by our algorithms is in fact optimal.

Since the running time of the LP and VP rounding
algorithms is significantly larger than for past heuristics,
we also compare them with Simulated Annealing [49], a
slower and more exhaustive algorithm. For this compari-
son, we report both the modularity values obtained and
the running time of the different algorithms. For Simulated
Annealing, we chose three cooling schedules, 0.999, 0.99
and 0.95. As mentioned above, all the running times were
measured on a Linux-based Intel PC with two 3.2GHz pro-
cessors and 2GB of RAM. For readability, we omit from
the table below the modularity obtained by the LP algo-
rithm, which is given in Table 2 and identical to the one
for the VP algorithm, except for the DOLPH network.
We also omit the results for the cooling schedule of 0.99.
Both the modularity obtained and the running time were
between the ones for 0.999 and 0.95.

Network SA (0.999) SA (0.95) VP LP
KARATE 0.420 [0:12] 0.420 [0:02] 0.420 [0:06] [0:02]
DOLPH 0.528 [2:55] 0.527 [0:05] 0.526 [0:09] [0:04]
MIS 0.560 [4:22] 0.556 [0:10] 0.560 [0:11] [0:04]
BOOKS 0.527 [13:02] 0.527 [0:26] 0.527 [0:12] [0:28]
BALL 0.605 [4:10] 0.604 [0:06] 0.605 [0:23] [0:18]
JAZZ 0.445 [58:05] 0.445 [2:50] 0.445 [0:24] [29:22]
COLL 0.799 [25] 0.799 [0:32] 0.803 [1:45] [32:21]
META 0.450 [146] 0.445 [9:02] 0.450 [1:30] -
EMAIL 0.579 [1143] 0.575 [40:12] 0.579 [15:08] -

Table 3. The modularity and running times (in minutes and
seconds) of our algorithms as well as Simulated Annealing with
different cooling schedules.

Notice that the results obtained by our algorithm are
only inferior for one data set to Simulated Annealing with
the slowest cooling schedule. For all other data sets and
schedules, our algorithms match or outperform Simulated
Annealing, even while taking comparable or less time than
the faster cooling schedules.

5 Conclusion

We have shown that the technique of rounding solutions
to fractional mathematical programs yields high-quality
modularity maximizing communities, while also providing
a useful upper bound on the best possible modularity. The
drawback of our algorithms is their resource requirement.
Due to Θ(n3) constraints in the LP, and Θ(n2) variables
in the VP, the algorithms currently do not scale beyond
about 300 resp. 4000 nodes. Thus, a central goal for fu-
ture work would be to improve the running time without
sacrificing solution quality. An ideal outcome would be a
purely combinatorial algorithm avoiding the explicit solu-
tion to the mathematical programs, but yielding the same
performance.

Secondly, while our algorithms perform very well on all
networks we considered, they do not come with a priori
guarantees on their performance. Heuristics with such per-
formance guarantees are called approximation algorithms
[29], and are desirable because they give the user a hard
guarantee on the solution quality, even for pathological
networks. Since the algorithms of Charikar et al. and Goe-
mans and Williamson on which our approaches are based
do have provable approximation guarantees, one would
hope that similar guarantees could be attained for modu-
larity maximization. However, this does not hold for the
particular algorithms we use, due to the shift of the ob-
jective function by a constant. Obtaining approximation
algorithms for modularity maximization thus remains a
challenging direction for future work.
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5. R. Guimerà and L. Amaral. Functional cartography of
complex metabolic networks. Nature, 433:895–900, 2005.

(table from [Agarwal and Kempe, 2008])

Frieze, Gionis, Tsourakakis Algorithmic Techniques for Modeling and Mining Large Graphs 195 / 277



Need for scalable algorithms

• spectral, agglomerative, LP-based algorithms

• not scalable to very large graphs

• handle datasets with billions of vertices and edges

• facebook: ∼ 1 billion users with avg degree 130

• twitter: ≥ 1.5 billion social relations

• google: web graph more than a trillion edges (2011)

• design algorithms for streaming scenarios

• real-time story identification using twitter posts

• election trends, twitter as election barometer
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Graph partitioning

• graph partitioning is a way to split the graph vertices in
multiple machines

• graph partitioning objectives guarantee low
communication overhead among different machines

• additionally balanced partitioning is desirable

G = (V, E)

Sunday, August 4, 13

• each partition contains ≈ n/k vertices
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Off-line k-way graph partitioning

METIS algorithm [Karypis and Kumar, 1998]

• popular family of algorithms and software

• multilevel algorithm

• coarsening phase in which the size of the graph is
successively decreased

• followed by bisection (based on spectral or KL method)

• followed by uncoarsening phase in which the bisection is
successively refined and projected to larger graphs
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Off-line k-way graph partitioning

Krauthgamer, Naor and Schwartz [Krauthgamer et al., 2009]

• problem: minimize number of edges cut, subject to
cluster sizes Θ(n/k)

• approximation guarantee: O(
√

log k log n)

• based on the work of Arora-Rao-Vazirani for the
sparsest-cut problem (k = 2) [Arora et al., 2009]

Frieze, Gionis, Tsourakakis Algorithmic Techniques for Modeling and Mining Large Graphs 199 / 277



streaming k-way graph partitioning

• input is a data stream

• graph is ordered
• arbitrarily
• breadth-first search
• depth-first search

• generate an approximately balanced graph partitioning

graph stream
partitioner

⇥(n/k)
each partition
holds     
vertices

Monday, August 5, 13
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Graph representations

• adjacency stream

• at time t, a vertex arrives with its neighbors

• edge stream

• at time t, an edge arrives
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Partitioning strategies

• hashing: place a new vertex to a cluster/machine chosen
uniformly at random

• neighbors heuristic: place a new vertex to the
cluster/machine with the maximum number of neighbors

• non-neighbors heuristic: place a new vertex to the
cluster/machine with the minimum number of
non-neighbors
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Partitioning strategies

[Stanton and Kliot, 2012]

• dc(v): neighbors of v in cluster c

• tc(v): number of triangles that v participates in cluster c

• balanced: vertex v goes to cluster with least number of
vertices

• hashing: random assignment

• weighted degree: v goes to cluster c that maximizes
dc(v) · w(c)

• weighted triangles: v goes to cluster j that maximizes
tc(v)/

(
dc (v)
2

)
· w(c)
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Weight functions

• sc : number of vertices in cluster c

• unweighted: w(c) = 1

• linearly weighted: w(c) = 1− sc(k/n)

• exponentially weighted: w(c) = 1− e(sc−n/k)
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fennel algorithm

[Tsourakakis et al., 2012]

minimize P=(S1,...,Sk ) |∂ e(P)|

subject to |Si | ≤ ν
n

k
, for all 1 ≤ i ≤ k

• hits the arv barrier

minimize P=(S1,...,Sk ) |∂ E (P)|+ cIN(P)

where cIN(P) =
∑

i s(|Si |), so that objective self-balances

• relax hard cardinality constraints
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fennel algorithm

[Tsourakakis et al., 2012]

• for S ⊆ V , f (S) = e[S ]− α|S |γ, with γ ≥ 1

• given partition P = (S1, . . . , Sk) of V in k parts define

g(P) = f (S1) + . . . + f (Sk)

• the goal: maximize g(P) over all possible k-partitions

• notice:
g(P) =

∑
i

e[S1]︸ ︷︷ ︸
number of
edges cut

− α
∑
i

|Si |γ︸ ︷︷ ︸
minimized for

balanced partition!
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Connection

notice

f (S) = e[S ]− α
(
|S |
2

)
• related to modularity

• related to quasicliques (see next)
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fennel algorithm

theorem [Tsourakakis et al., 2012]

• γ = 2 gives approximation factor log(k)/k

where k is the number of clusters

• random partitioning gives approximation factor 1/k

• no dependence on n

mainly because relaxing the hard cardinality constraints
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fennel algorithm — greedy scheme

• γ = 2 gives non-neighbors heuristic

• γ = 1 gives neighbors heuristic

• interpolate between the two heuristics, e.g., γ = 1.5
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fennel algorithm — greedy scheme

graph stream
partitioner

⇥(n/k)
each partition
holds     
vertices

Monday, August 5, 13

• send v to the partition / machine that maximizes

f (Si ∪{v})− f (Si)

= e[Si ∪ {v}]− α(|Si |+ 1)γ − (e[Si ]− α|Si |γ)

= dSi (v)− αO(|Si |γ−1)

• fast, amenable to streaming and distributed setting

Frieze, Gionis, Tsourakakis Algorithmic Techniques for Modeling and Mining Large Graphs 210 / 277



fennel algorithm — results

λ =
#{edges cut}

m
ρ = max

1≤i≤k

|Si |
n/k

Fennel METIS
m k � ⇢ � ⇢

7 185 314 4 62.5 % 1.04 65.2% 1.02
6 714 510 8 82.2 % 1.04 81.5% 1.02
6 483 201 16 92.9 % 1.01 92.2% 1.02
6 364 819 32 96.3% 1.00 96.2% 1.02
6 308 013 64 98.2% 1.01 97.9% 1.02
6 279 566 128 98.4 % 1.02 98.8% 1.02

Table 4: Fraction of edges cut � and normalized
maximum load ⇢ for Fennel and METIS [29] averaged
over 5 random graphs generated according to the
HP(5000,0.8,0.5) model. As we see, Fennel despite
its small computational overhead and deciding on-
the-fly where each vertex should go, achieves com-
parable performance to METIS.

• Linear Weighted Deterministic Greedy (LDG): place v

to Si that maximizes |N(v) \ Si| ⇥ (1 � |Si|
n
k

).

• Exponentially Weighted Deterministic Greedy (EDG):

place v to Si that maximizes |N(v)\Si|⇥
⇣
1�exp

�
|Si| � n

k

�⌘
.

• Triangles (T): place v to Si that maximizes tSi(v).

• Linear Weighted Triangles (LT): place v to Si that

maximizes tSi(v) ⇥
⇣
1 � |Si|

n
k

⌘
.

• Exponentially Weighted Triangles (ET): place v to Si

that maximizes tSi(v) ⇥
⇣
1 � exp

�
|Si| � n

k

�⌘
.

• Non-Neighbors (NN): place v to Si that minimizes |Si\
N(v)|.

In accordance with [54], we observed that LDG is the best
performing heuristic. Even if Stanton and Kliot do not com-
pare with NN, LDG outperforms it also. Non-neighbors typ-
ically have very good load balancing properties, as LDG as
well, but cut significantly more edges. Table 3 shows the
typical performance we observe across all datasets. Specif-
ically, it shows � and ⇢ for both BFS and random order
for amazon0312. DFS order is omitted since qualitatively it
does not di↵er from BFS. We observe that LDG is the best
competitor, Fennel outperforms all existing competitors and
is inferior to METIS, but of comparable performance. In
whatever follows, whenever we refer to the best competi-
tor, unless otherwise mentioned we refer to LDG. Time-wise
METIS is the fastest, taking 11.4 seconds to run. Hashing
follows with 12 seconds and the rest of the methods except
for T, LT, ET take the same time up the integer part, i.e., 13
seconds. Triangle based methods take about 10 times more
time. Existing approximate counting methods can mitigate
this [57, 58]. It is also worth emphasizing that for larger
graphs Fennel is faster than METIS.

5.2 Synthetic Datasets
Before we delve into our findings, it is worth summarizing

the main findings of this section. (a) For all synthetic graphs
we generated, the value � = 3

2
achieves the best performance

pointwise, not in average. (b) The e↵ect of the stream or-
der is minimal on the results. Specifically, when � � 3

2
all

orders result in the same qualitative results. When � < 3
2

BFS and DFS orders result in the same results which are
worse with respect to load balancing –and hence better for
the edge cuts– compared to the random order. (c) Fennel’s
performance is comparable to METIS.

Hidden Partition: We report averages over five randomly
generated graphs according to the model HP(5000, k, 0.8, 0.5)
for each value of k we use. We study (a) the e↵ect of the
parameter �, which parameterizes the function c(x) = ↵x� ,
and (b) the e↵ect of the number of clusters k.

We range � from 1 to 4 with a step of 1/4, for six di↵erent
values of k shown in the second column of Table 4. For
all k, we observe, consistently, the following behavior: for
� = 1 we observe that � = 0 and ⇢ = k. This means that
one cluster receives all vertices. For any � greater than 1,
we obtain excellent load balancing with ⇢ ranging from 1 to
1.05, and the same fraction of edges cut with METIS up the
the first decimal digit. This behavior was not expected a
priori, since in general we expect � shifting from small to
large values and see ⇢ shifting from large to small values
as � grows. Given the insensitivity of Fennel to � in this
setting, we fix � = 3

2
and present in Table 4 our findings. For

each k shown in the second column we generate five random
graphs. The first column shows the average number of edges.
Notice that despite the fact that we have only 5,000 vertices,
we obtain graphs with several millions of edges. The four
last columns show the performance of Fennel and METIS.
As we see, their performance is comparable and in one case
(k=128) Fennel clearly outperforms METIS.

Power Law: It is well known that power law graphs have
no good cuts [23], but they are commonly observed in prac-
tice. We examine the e↵ect of parameter � for k fixed to
10. In contrast to the hidden partition experiment, we ob-
serve the expected tradeo↵ between � and ⇢ as � changes.
We generate five random power law graphs CL(20 000,2.5),
since this value matches the slope of numerous real-world
networks [45]. Figure 1 shows the tradeo↵ when � ranges
from 1 to 4 with a step of 0.25 for the random stream order.
The straight line shows the performance of METIS. As we
see, when � < 1.5, ⇢ is unacceptably large for demanding
real-world applications. When � = 1.5 we obtain essentially
the same load balancing performance with METIS. Specifi-
cally, ⇢Fennel = 1.02, ⇢METIS = 1.03. The corresponding cut
behavior for � = 1.5 is �Fennel = 62.58%,�METIS = 54.46%.
Furthermore, we experimented with the random, BFS and
DFS stream orders. We observe that the only major di↵er-
ence between the stream orders is obtained for � = 1.25. For
all other � values the behavior is identical. For � = 1.25 we
observe that BFS and DFS stream orders result in signifi-
cantly worse load balancing properties. Specifically, ⇢BFS =
3.81, ⇢DFS = 3.73, ⇢Random = 1.7130. The corresponding
fractions of edges cut are �BFS = 37.83%, �DFS = 38.85%,
and �Random = 63.51%.

5.3 Real-World Datasets
Again, before we delve into the details of the experimen-

tal results, we summarize the main points of this Section:
(1) Fennel is superior to existing streaming partitioning al-
gorithms. Specifically, it consistently, over a wide range of k
values and over all datasets, performs better than the cur-
rent state-of-the-art. Fennel achieves excellent load balanc-
ing with significantly smaller edge cuts. (2) For smaller val-
ues of k (less or equal than 64) the observed gain is more
pronounced. (c) Fennel is fast. Our implementation scales

• γ = 1.5

• comparable results in quality, but fennel is lightway,
fast, and streamable
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Conclusions (graph partitioning)

summary

• spectral techniques, modularity-based methods,
graph partitioning

• well-studied and mature area

future directions

• develop alternative notions for communities,
e.g., accounting for graph labels, constraints, etc.

• further improve efficiency of methods

• overlapping communities
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Dense subgraphs



What is a dense subgraph?

• a set of vertices with abundance of edges

• a highly connected subgraph

• key primitive for detecting communities

• related problem to community detection and
graph partitioning, but not identical

• not constrainted for a disjoint partition of all vertices
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Applications of finding dense subgraphs

• thematic communities and spam link farms
[Kumar et al., 1999]

• graph visualization [Alvarez-Hamelin et al., 2005]

• real-time story identification [Angel et al., 2012]

• motif detection [Fratkin et al., 2006]

• epilepsy prediction [Iasemidis et al., 2003]

• finding correlated genes [Zhang and Horvath, 2005]

• many more ...
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Density measures

• consider subgraph induced by S ⊆ V of G = (V ,E )

• clique: each vertex in S is connected
to every other vertex in S

• α-quasiclique: the set S has at least α|S |(|S | − 1)/2
edges

• k-core: every vertex in S is connected to at least k other
vertices in S
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Density measures

• consider subgraph induced by S ⊆ V of G = (V ,E )

• density:

δ(S) =
e[S ](|S |

2

) =
2e[S ]

|S |(|S | − 1)

• average degree:

d(S) =
2e[S ]

|S |

• k-densest subgraph:

δ(S) =
2e[S ]

|S |
, such that |S | = k
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Density measures

compare with measures we saw previously....

graph expansion:

α(G ) = min
S

e[S ,V \ S ]

min{|S |, |V \ S |}

graph conductance:

φ(G ) = min
S⊆V

e[S ,V \ S ]

min{vol(S), vol(V \ S)}

edges within (e[S ]) instead of edges accross (e[S ,V \ S ])
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Complexity of density problems — clique

• find the max-size clique in a graph:
NP-hard problem

• strong innaproximability result:

for any ε > 0, there cannot be a polynomial-time
algorithm that approximates the maximum clique problem
within a factor better than O(n1−ε), unless P = NP

[Håstad, 1997]

Frieze, Gionis, Tsourakakis Algorithmic Techniques for Modeling and Mining Large Graphs 219 / 277



Complexity of other density problems

density δ(S) = e[S]

(|S|2 )
pick a single edge

average degree d(S) = 2e[S]
|S| in P

k-densest subgraph δ(S) = 2e[S]
|S | , |S | = k NP-hard

DalkS δ(S) = 2e[S]
|S | , |S | ≥ k NP-hard

DamkS δ(S) = 2e[S]
|S | , |S | ≤ k L-reduction to DkS
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Densest subgraph problem

• find set of vertices S ⊆ V with maximum average degree
d(S) = 2e[S ]/|S |

• solvable in polynomial time

• max-flow [Goldberg, 1984]

• LP relaxation [Charikar, 2000]

• simple linear-time greedy algorithm gives factor-2
approximation [Charikar, 2000]
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Greedy algorithm for densest subgraph

[Charikar, 2000]

input: undirected graph G = (V ,E )
output: S , a dense sungraph of G
1 set Gn ← G
2 for k ← n downto 1
2.1 let v be the smallest degree vertex in Gk

2.2 Gk−1 ← Gk \ {v}
3 output the densest subgraph among Gn,Gn−1, . . . ,G1
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Greedy algorithm for densest subgraph — example
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Greedy algorithm for densest subgraph — example
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Greedy algorithm for densest subgraph — example
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Greedy algorithm for densest subgraph — example
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Greedy algorithm for densest subgraph — example
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Greedy algorithm for densest subgraph — example
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Greedy algorithm for densest subgraph — example
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Greedy algorithm for densest subgraph — example

Frieze, Gionis, Tsourakakis Algorithmic Techniques for Modeling and Mining Large Graphs 230 / 277



Greedy algorithm for densest subgraph — example
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Greedy algorithm for densest subgraph — example
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Greedy algorithm for densest subgraph — example
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Greedy algorithm for densest subgraph — example
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Other notions and generalizations

• k-core: every vertex in S is connected to at least k other
vertices in S

• α-quasiclique: the set S has at least α|S |(|S | − 1)/2
edges

• enumerate all α-quasicliques [Uno, 2010]

• dense subgraphs of directed graphs: find sets S ,T ⊆ V
to maximize

d(S ,T ) =
e[S ,T ]√
|S | |T |

[Charikar, 2000, Khuller and Saha, 2009]
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Edge-surplus framework

• for a set of vertices S define edge surplus

f (S) = g(e[S ])− h(|S |)

where g and h are both strictly increasing

• optimal (g , h)-edge-surplus problem:

find S∗ such that

f (S∗) ≥ f (S), for all sets S ⊆ S∗
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Edge-surplus framework

• edge surplus f (S) = g(e[S ])− h(|S |)

• example 1
g(x) = h(x) = log x

find S that maximizes log e[S]
|S |

densest-subgraph problem

• example 2

g(x) = x , h(x) =

{
0 if x = k
+∞ otherwise

k-densest-subgraph problem
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The optimal quasiclique problem

• edge surplus f (S) = g(e[S ])− h(|S |)

• consider

g(x) = x , h(x) = α
x(x − 1)

2

find S that maximizes e[S ]− α
(|S|

2

)
optimal quasiclique problem [Tsourakakis et al., 2013]

• theorem: let g(x) = x and h(x) concave

then the optimal (g , h)-edge-surplus problem is
polynomially-time solvable
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The optimal quasiclique problem

theorem: let g(x) = x and h(x) concave

then the optimal (g , h)-edge-surplus problem is
polynomially-time solvable

proof

g(x) = x is supermodular

if h(x) concave h(x) is submodular

−h(x) is supermodular

g(x)− h(x) is supermodular

maximizing supermodular functions is solvable in
polynomial time
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Optimal quasicliques in practice

densest subgraph vs. optimal quasiclique

fined as 2e[S]
|S| The densest-subgraph problem is to find a set

S that maximizes the average degree. The densest subgraph
can be identified in polynomial time by solving a parametric
maximum-flow problem [17, 19]. Charikar [10] shows that
the greedy algorithm proposed by Asashiro et al. [6] pro-
duces a 1

2
-approximation of the densest subgraph in linear

time.
In the classic definition of densest subgraph there is no

size restriction of the output. When restrictions on the size
|S| are imposed, the problem becomes NP-hard. Specifi-
cally, the DkS problem of finding the densest subgraph of k
vertices is known to be NP-hard [5]. For general k, Feige
et al. [14] provide an approximation guarantee of O(n↵),
where ↵ < 1

3
. The greedy algorithm by Asahiro et al. [6]

gives instead an approximation factor of O(n
k
). Better ap-

proximation factors for specific values of k are provided by
algorithms based on semidefinite programming [15]. From
the perspective of (in)approximability, Khot [22] shows that
there cannot exist any PTAS for the DkS problem under a
reasonable complexity assumption. Arora et al. [4] propose
a PTAS for the special case k = ⌦(n) and m = ⌦(n2). Fi-
nally, two variants of the DkS problem are introduced by
Andersen and Chellapilla [2]. The two problems ask for the
set S that maximizes the average degree subject to |S|  k
(DamkS) and |S| � k (DalkS), respectively. They provide
constant factor approximation algorithms for DalkS and ev-
idence that DamkS is hard. The latter was verified by [23].

Quasi-cliques. A set of vertices S is an ↵-quasi-clique if
e[S] � ↵

�|S|
2

�
, i.e., if the edge density of the induced sub-

graph G[S] exceeds a threshold parameter ↵ 2 (0, 1). Simi-
larly to cliques, maximum quasi-cliques and maximal quasi-
cliques [8] are quasi-cliques of maximum size and quasi-
cliques not contained into any other quasi-clique, respec-
tively. Abello et al. [1] propose an algorithm for finding a
single maximal ↵-quasi-clique, while Uno [31] introduces an
algorithm to enumerate all ↵-quasi-cliques.

1.2 Contributions
Extracting the densest subgraph (i.e., finding the sub-

graph that maximizes the average degree) is particularly
attractive as it can be solved exactly in polynomial time
or approximated within a factor of 2 in linear time. Indeed
it is a popular choice in many applications. However, as we
will see in detail next, maximizing the average degree tends
to favor large subgraphs with not very large edge density
�. The prototypical dense graph is the clique, but, as dis-
cussed above, finding the largest clique is inapproximable.
Also, the clique definition is too strict in practice, as not
even a single edge can be missed from an otherwise dense
subgraph. This observation leads to the definition of quasi-
clique, whose underlying intuition is the following: assuming
that each edge in a subgraph G[S] exists with probability ↵,

then the expected number of edges in G[S] is ↵
�|S|

2

�
. Thus,

the condition of the ↵-quasi-clique expresses the fact that
the subgraph G[S] has more edges than those expected by
this binomial model.

Motivated by this definition, we turn the quasi-clique con-
dition into an objective function. In particular, we define the
density function f↵(S) = e[S]� ↵

�|S|
2

�
, which expresses the

edge surplus of a set S over the expected number of edges
under the random-graph model. We consider the problem of
finding the best ↵-quasi-clique, i.e., a set of vertices S that
maximizes the function f↵(S). We refer to the subgraphs

Table 1: Di↵erence between densest subgraph and
optimal quasi-clique on some popular graphs. � =
e[S]/

�|S|
2

�
is the edge density of the extracted sub-

graph, D is the diameter, and ⌧ = t[S]/
�|S|

3

�
is the

triangle density.
densest subgraph optimal quasi-clique

|S|
|V | � D ⌧

|S|
|V | � D ⌧

Dolphins 0.32 0.33 3 0.04 0.12 0.68 2 0.32
Football 1 0.09 4 0.03 0.10 0.73 2 0.34

Jazz 0.50 0.34 3 0.08 0.15 1 1 1
Celeg. N. 0.46 0.13 3 0.05 0.07 0.61 2 0.26

that maximize f↵(S) as optimal quasi-cliques. To the best
of our knowledge, the problem of extracting optimal quasi-
cliques from a graph has never been studied before. We
show that optimal quasi-cliques are subgraphs of high qual-
ity, with edge density � much larger than densest subgraphs
and with smaller diameter. We also show that our novel den-
sity function comes indeed from a more general framework
which subsumes other well-known density functions and has
appreciable theoretical properties.

Our contributions are summarized as follows.

• We introduce a general framework for finding dense sub-
graphs, which subsumes popular density functions. We
provide theoretical insights into our framework: show-
ing that a large family of objectives are e�ciently solv-
able while other subcases are NP-hard.

• As a special instance of our framework, we introduce
the novel problem of extracting optimal quasi-cliques.

• We design two e�cient algorithms for extracting opti-
mal quasi-cliques. The first one is a greedy algorithm
where the smallest-degree vertex is repeatedly removed
from the graph, and achieves an additive approximation
guarantee. The second algorithm is a heuristic based on
the local-search paradigm.

• Motivated by real-world scenarios, we define interesting
variants of our original problem definition: (i) finding
the top-k optimal quasi-cliques, and (ii) finding optimal
quasi-cliques that contain a given set of vertices.

• We extensively evaluate our algorithms and problem
variants on numerous datasets, both synthetic and
real, showing that they produce high-quality dense sub-
graphs, which clearly outperform densest subgraphs. We
also present applications of our problem in data-mining
and bioinformatics tasks, such as forming a successful
team of domain experts and finding highly-correlated
genes from a microarray dataset.

1.3 A preview of the results
Table 1 compares our optimal quasi-cliques with densest

subgraphs on some popular graphs.1 The results in the table
clearly show that optimal quasi-cliques have much larger edge
density than densest subgraphs, smaller diameters and larger
triangle densities. Moreover, densest subgraphs are usually
quite large-sized: in the graphs we report in Table 1, the
densest subgraphs contain always more than the 30% of the
vertices in the input graph. For instance, in the Football

1
Densest subgraphs are extracted here with the exact Goldberg’s algo-

rithm [19]. As far as optimal quasi-cliques, we optimize f↵ with ↵ = 1
3

and use our local-search algorithm.

[Tsourakakis et al., 2013]
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Finding and optimal quasiclique

adaptation of the greedy algorithm of [Charikar, 2000]

input: undirected graph G = (V ,E )
output: a quasiclique S
1 set Gn ← G
2 for k ← n downto 1
2.1 let v be the smallest degree vertex in Gk

2.2 Gk−1 ← Gk \ {v}
3 output the subgraph in Gn, . . . ,G1 that maximizes f (S)

additive approximation guarantee [Tsourakakis et al., 2013]
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top-k densest subgraphs and quasicliques

Table 3: Densest subgraphs extracted with Charikar’s method vs. optimal quasi-cliques extracted with the pro-
posed GreedyOQC algorithm (greedy) and LocalSearchOQC algorithm (ls). � = e[S]/

�|S|
2

�
is the edge density

of the extracted subgraph S, D is the diameter, and ⌧ = t[S]/
�|S|

3

�
is the triangle density.

|S| � D ⌧
densest opt. quasi-clique densest opt. quasi-clique densest opt. quasi-clique densest opt. quasi-clique

subgraph greedy ls subgraph greedy ls subgraph greedy ls subgraph greedy ls
Dolphins 19 13 8 0.27 0.47 0.68 3 3 2 0.05 0.12 0.32
Polbooks 53 13 16 0.18 0.67 0.61 6 2 2 0.02 0.28 0.24
Adjnoun 45 16 15 0.20 0.48 0.60 3 3 2 0.01 0.10 0.12
Football 115 10 12 0.09 0.89 0.73 4 2 2 0.03 0.67 0.34

Jazz 99 59 30 0.35 0.54 1 3 2 1 0.08 0.23 1
Celeg. N. 126 27 21 0.14 0.55 0.61 3 2 2 0.07 0.20 0.26
Celeg. M. 44 22 17 0.35 0.61 0.67 3 2 2 0.07 0.26 0.33

Email 289 12 8 0.05 1 0.71 4 1 2 0.01 1 0.30
AS-22july06 204 73 12 0.40 0.53 0.58 3 2 2 0.09 0.19 0.20
Web-Google 230 46 20 0.22 1 0.98 3 2 2 0.03 0.99 0.95

Youtube 1874 124 119 0.05 0.46 0.49 4 2 2 0.02 0.12 0.14
AS-Skitter 433 319 96 0.41 0.53 0.49 2 2 2 0.10 0.19 0.13

Wiki ’05 24555 451 321 0.26 0.43 0.48 3 3 2 0.02 0.06 0.10
Wiki ’06/9 1594 526 376 0.17 0.43 0.49 3 3 2 0.10 0.06 0.11

Wiki ’06/11 1638 527 46 0.17 0.43 0.56 3 3 2 0.31 0.06 0.35

Our main goal is to compare our optimal quasi-cliques with
densest subgraphs. For extracting optimal quasi-cliques, we
involve both our proposed algorithms, i.e., GreedyOQC
and LocalSearchOQC, which, following the discussion in
Section 3.1, we run with ↵ = 1

3
(for LocalSearchOQC, we

also set Tmax = 50). For finding densest subgraphs, we use
the Goldberg’s exact algorithm [19] for small graphs, while
for graphs whose size does not allow the Goldberg’s algo-
rithm to terminate in reasonable time we use the Charikar’s
1
2
-approximation algorithm [10].
All algorithms are implemented in java, and all experi-

ments are performed on a single machine with Intel Xeon
cpu at 2.83GHz and 50GB ram.

5.1 Real-world graphs
Results on real graphs are shown in Table 3. We compare

optimal quasi-cliques outputted by the proposed Greedy-
OQC and LocalSearchOQC algorithms with densest sub-
graphs extracted with the Charikar’s algorithm. Particu-
larly, we use the Charikar’s method to be able to handle
the largest graphs. For consistency, Table 3 reports on re-
sults achieved by Charikar’s method also for the smallest
graphs. We recall that the results in Table 1 in the Intro-
duction refer instead to the exact Goldberg’s method. How-
ever, a comparison of the two tables on their common rows
shows that the Charikar’s algorithm, even though it is ap-
proximate, produces almost identical results with the results
produced by the Goldberg’s algorithm.

Table 3 clearly confirms the preliminary results reported
in the Introduction: optimal quasi-cliques have larger edge
and triangle densities, and smaller diameter than densest
subgraphs. Particularly, the edge density of optimal quasi-
cliques is evidently larger on all graphs. For instance, on
Football and Youtube, the edge density of optimal quasi-
cliques (for both the GreedyOQC and LocalSearchOQC
algorithms) is about 9 times larger than the edge den-
sity of densest subgraphs, while on Email the di↵erence in-
creases up to 20 times (GreedyOQC) and 14 times (Local-
SearchOQC). Still, the triangle density of the optimal
quasi-cliques outputted by both GreedyOQC and Local-
SearchOQC is one order of magnitude larger than the tri-
angle density of densest subgraphs on 11 out of 15 graphs.

Figure 1: Edge density and diameter of the top-
10 subgraphs found by our GreedyOQC and Local-
SearchOQC methods, and Charikar’s algorithm, on
the AS-skitter graph (top) and the Wikipedia 2006/11
graph (bottom).

Comparing our two algorithms to each other, we can
see that LocalSearchOQC performs generally better than
GreedyOQC. Indeed, the edge density achieved by Local-
SearchOQC is higher than that of GreedyOQC on 10 out
of 15 graphs, while the diameter of the LocalSearchOQC
optimal quasi-cliques is never larger than the diameter of the
GreedyOQC optimal quasi-cliques.

Concerning e�ciency, all algorithms are linear in the num-
ber of edges of the graph. Charikar’s and GreedyOQC
algorithm are somewhat slower than LocalSearchOQC,
but mainly due to bookkeeping. LocalSearchOQC algo-
rithm’s running times vary from milliseconds for the small
graphs (e.g., 0.004s for Dolphins, 0.002s for Celegans N.), few
seconds for the larger graphs (e.g., 7.94s for Web-Google and
3.52s for Youtube) and less than one minute for the largest
graphs (e.g., 59.27s for Wikipedia 2006/11).
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The community-search problem

• a dense subgraph that contains a given subset
of vertices Q ⊆ V (the query vertices)

• the center-piece subgraph problem

• the team formation problem

• the cocktail party problem

applications

• find the community of a given set of users
• a meaningful way to address the issue of

overlapping communities

• find a set of proteins related to a given set

• form a team to solve a problem
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Center-piece subgraph

[Tong and Faloutsos, 2006]

• given: graph G = (V ,E ) and set of query vertices Q ⊆ V

• find: a connected subgraph H that

(a) contains Q
(b) optimizes a goodness function g(H)

• main concepts:

• k softAND: a node in H should be well connected to at
least k vertices of Q

• r(i , j) goodness score of j wrt qi ∈ Q

• r(Q, j) goodness score of j wrt Q

• g(H) goodness score of a candidate subgraph H

• H∗ = arg maxH g(H)

Frieze, Gionis, Tsourakakis Algorithmic Techniques for Modeling and Mining Large Graphs 244 / 277



Center-piece subgraph

[Tong and Faloutsos, 2006]

• r(i , j) goodness score of j wrt qi ∈ Q

probability to meet j in a random walk with restart to qi

• r(Q, j) goodness score of j wrt Q

probability to meet j in a random walk with restart to k
vertices of Q

• proposed algorithm:

1. greedy: find a good destination vertex j ito add in H

2. add a path from each of top-k vertices of Q path to j

3. stop when H becomes large enough
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Center-piece subgraph — example results

(a) “K softANDquery”: k = 2

(b) “AND query”

Figure 1: Center-piece subgraph among Rakesh Agrawal, Jiawei Han, Michael I. Jordan and Vladimir Vapnik.

Thus, we define the center-piece subgraph problem, as
follows:

Problem 1. Center-Piece Subgraph Discovery(CEPS)

Given: an edge-weighted undirected graph W, Q nodes as
source queries Q = {qi} (i = 1, ..., Q), the softAND
coefficient k and an integer budget b

Find: a suitably connected subgraph H that (a) contains all
query nodes qi (b) at most b other vertices and (c) it
maximizes a “goodness” function g(H).

Allowing Q query nodes creates a subtle problem: do we
want the qualifying nodes to have strong ties to all the query
nodes? to at least one? to at least a few? We handle all
of the above cases with our proposed K softAND queries.
Figure 1(a) illustrates the case where we want intermediate
nodes with good connections to at least k = 2 of the query
nodes. Notice that the resulting subgraph is much different
now: there are two disconnected components, reflecting the
two sub-communities (databases/statistics).

The contributions of this work are the following

• The problem definition, for arbitrary number Q of
query nodes, with careful handling of a lot of the sub-
tleties.

• The introduction and handling of K softAND queries.

• EXTRACT, a novel subgraph extraction algorithm.

• The design of a fast, approximate method, which pro-
vides a 6 : 1 speedup with little loss of accuracy.

The system is operational, with careful design and nu-
merous optimizations, like alternative normalizations of the
adjacency matrix, a fast algorithm to compute the scores for
K softAND queries.

Our experiments on a large real dataset (DBLP) show that
our method returns results that agree with our intuition, and
that it can be made fast (a few seconds response time), while
retaining most of the accuracy (about 90%).

The rest of the paper is organized as follows: in Section 2,
we review some related work; Section 3 provides an overview
of the proposed method: CEPS. The goodness score calcu-
lation is proposed Section 4 and its variants are presented in
the Appendix. The “EXTRACT” algorithm and the speed-
ing up strategy are provided in Section 5 and Section 6,
respectively. We present experimental results in Section 7;
and conclude the paper in Section 8.

2. RELATED WORK
In recent years, there is increasing research interest in

large graph mining, such as pattern and law mining [2][5][7][20],
frequent substructure discovery [27], influence propagation [18],
community mining [9][11][12] and so on. Here, we make a
brief review of the related work, which can be categorized
into four groups: 1) measuring the goodness of connection;
2) community mining; 3) random walk and electricity re-
lated methods; 4) graph partition.

The goodness of connection. Defining a goodness cri-
terion is the core for center-piece subgraph discovery. The
two most natural measures for “good” paths are shortest dis-
tance and maximum flow. However, as pointed out in [6],
both measurements might fail to capture some preferred
characteristics for social network. The goodness function for
survivable network [13], which is the count of edge-disjoint
or vertex-disjoint paths from source to destination, also fails
to adequately model social relationship. A more related dis-
tance function is proposed in [19] [23]. However, It can-
not describe the multi-faceted relationship in social network
since center-piece subgraph aims to discover collection of
paths rather than a single path.

In [6], the authors propose an delivered current based
method. By interpreting the graph as an electric network,
applying +1 voltage to one query node and setting the other
query node 0 voltage, their method proposes to choose the
subgraph which delivers maximum current between the query
nodes. In [25], the authors further apply the delivered cur-
rent based method to multi-relational graph. However, the
delivered current criterion can only deal with pairwise source

405
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[Tong and Faloutsos, 2006]
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The community-search problem
[Sozio and Gionis, 2010]

• given: graph G = (V ,E ) and set of query vertices Q ⊆ V

• find: a connected subgraph H that

(a) contains Q
(b) vertices of H are close to Q
(c) optimizes a density function d(H)

• distance constraint (b):

d(Q, j) =
∑
q∈Q

d2(qi , j) ≤ B

• density function (c):

average degree, minimum degree, quasiclique, measured
on the induced subgraph H
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The community-search problem

both the distance constraint and the minimum-degree density
help addressing the problem of free riders
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The community-search problem

algorithm proposed by [Sozio and Gionis, 2010]

adaptation of the greedy algorithm of [Charikar, 2000]

input: undirected graph G = (V ,E ), query vertices Q ⊆ V
output: connected, dense subgraph H
1 set Gn ← G
2 for k ← n downto 1
2.1 remove all vertices violating distance constraints
2.2 let v be the smallest degree vertex in Gk

among all vertices not in Q
2.3 Gk−1 ← Gk \ {v}
2.4 if left only with vertices in Q or disconnected graph, stop
3 output the subgraph in Gn, . . . ,G1 that maximizes f (H)
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Properties of the greedy algorithm

• returns optimal solution if no size constraints or
lower-bound constraints

• heuristic variants proposed when upper-bound constraints

• generalized for monotone constraints and monotone
objective functions
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The community-search problem — example results
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Figure 4: Different communities of Christos Papadimitriou. Rectangular nodes indicate the query nodes, and elliptical

nodes indicate nodes discover by our algorithm.
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Conclusions (dense subgraphs)

summary

• discussed a number of different density measures

• discussed a number of diiferent problem formulations

• polynomial-time solvable or NP-hard problems

• global dense subgraphs or relative to query vertices

promising future directions

• explore further the concept of α-quasiclique

• better algorithms for upper-bound constraints

• top-k versions of dense subgraphs

• adapt concepts for labeled graphs

• local algorithms
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thank you!
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