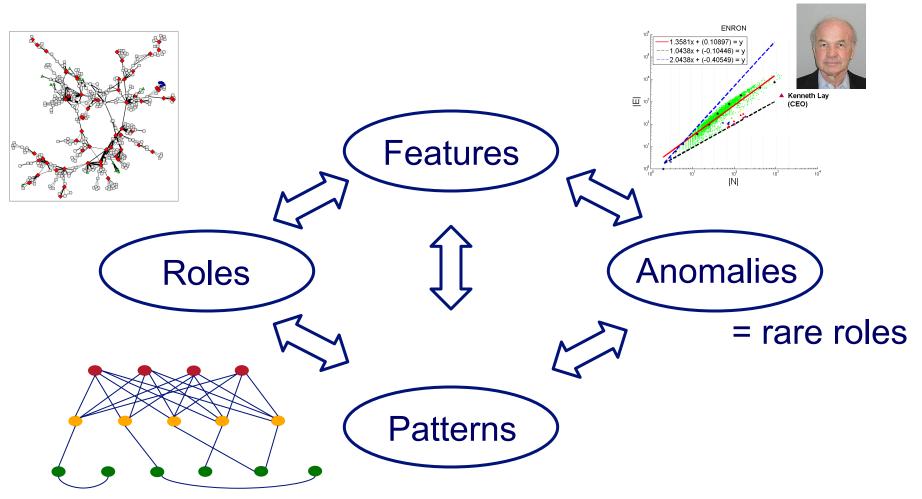


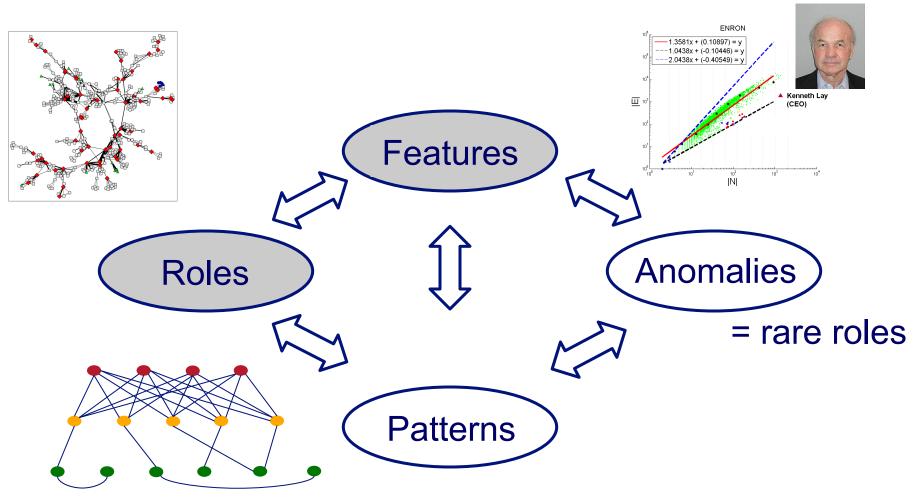
Discovering Roles and Anomalies in Graphs: Theory and Applications Part 1: Roles *Tina Eliassi-Rad* (Rutgers) Christos Faloutsos (CMU)

ECML PKDD 2013 Tutorial

Overview



Overview



Roadmap

- What are roles
- Roles and communities

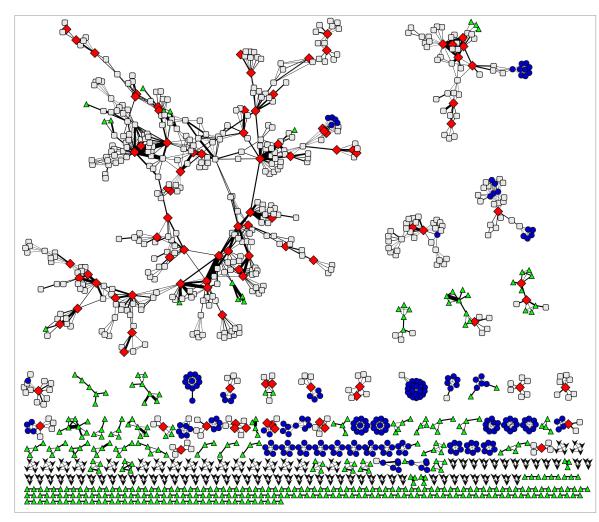
- Roles and equivalences (from sociology)
- Roles (from data mining)
- Summary

What are roles?

- "Functions" of nodes in the network
 - Similar to functional roles of species in ecosystems
- Measured by structural behaviors
- Examples
 - centers of stars
 - members of cliques
 - peripheral nodes

. . .

Example of Roles

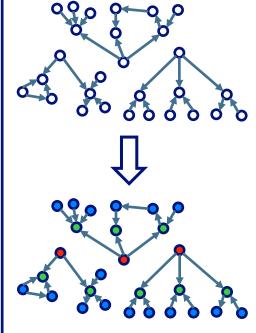


centers of stars
members of cliques
peripheral nodes

ECML PKDD 2013 Tutorial

Why are roles important?

Role Discovery



Automated discovery
 Behavioral roles
 Roles generalize

Task	Use Case
Role query	Identify individuals with similar behavior to a known target
Role outliers	Identify individuals with unusual behavior
Role dynamics	Identify unusual changes in behavior
Identity resolution	Identify known individuals in a new network
Role transfer	Use knowledge of one network to make predictions in another
Network comparison	Determine network compatibility for knowledge transfer

Roadmap

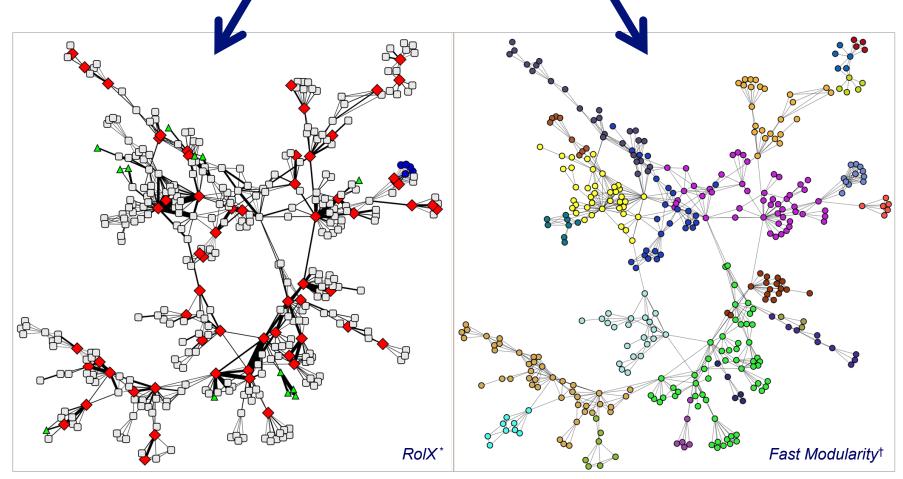
- What are roles
- Roles and communities

- Roles and equivalences (from sociology)
- Roles (from data mining)
- Summary

Roles and Communities

- Roles group nodes with similar structural properties
- Communities group nodes that are wellconnected to each other
- Roles and communities are complementary

Roles and Communities



* Henderson, et al. 2012; † Clauset, et al. 2004

ECML PKDD 2013 Tutorial

T. Eliassi-Rad & C. Faloutsos

Roles and Communities

- Consider the social network of a CS dept
- Roles
 - Faculty
 - Staff

. . .

- Students

- Communities
 - AI lab

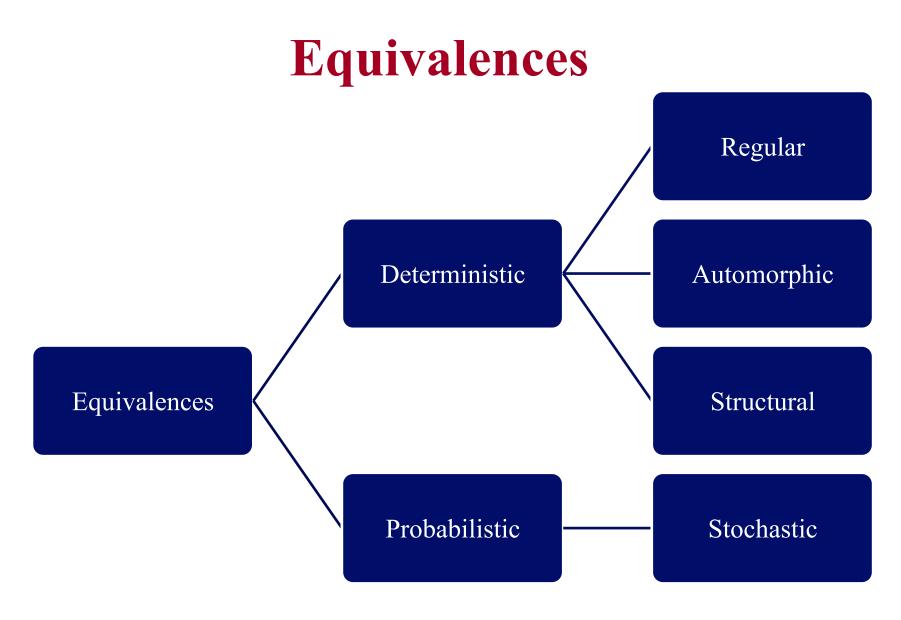
. . .

- Database lab
- Architecture lab

Roadmap

- What are roles
- Roles and communities

- Roles and equivalences (from sociology)
- Roles (from data mining)
- Summary

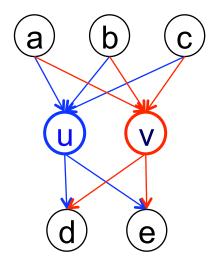


Deterministic Equivalences

Re	gular		
	Autor	norphic]
		Structural	

Structural Equivalence

- [Lorrain & White, 1971]
- Two nodes *u* and *v* are structurally equivalent if they have the same relationships to all other nodes
- Hypothesis: Structurally equivalent nodes are likely to be similar in other ways – i.e., you are your friend



- Weights & timing issues are not considered
- Rarely appears in real-world networks

Structural Equivalence: Algorithms

- CONCOR (CONvergence of iterated CORrelations) [Breiger et al. 1975]
- A hierarchical divisive approach
 - 1. Starting with the adjacency matrix, repeatedly calculate Pearson correlations between rows until the resultant correlation matrix consists of +1 and -1 entries
 - 2. Split the last correlation matrix into two structurally equivalent submatrices (a.k.a. blocks): one with +1 entries, another with -1 entries
- Successive split can be applied to submatrices in order to produce a hierarchy (where every node has a unique position)

Structural Equivalence: Algorithms

- STRUCUTRE [Burt 1976]
- A hierarchical agglomerative approach
 - 1. For each node *i*, create its ID vector by concatenating its row and column vectors from the adjacency matrix
 - 2. For every pair of nodes $\langle i, j \rangle$, measure the square root of sum of squared differences between the corresponding entries in their ID vectors
 - 3. Merge entries in hierarchical fashion as long as their difference is less than some threshold α

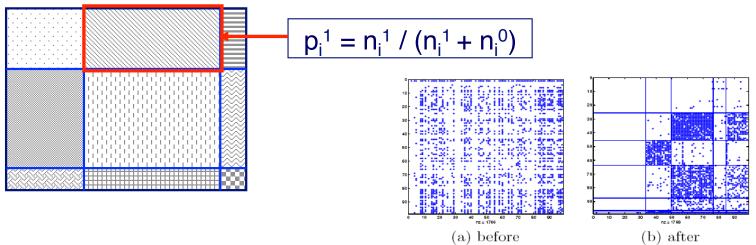
Structural Equivalences: Algorithms

- Combinatorial optimization approaches
 - Numerical optimization with tabu search [UCINET]
 - Local optimization [Pajek]
- Partition the sociomatrices into blocks based on a cost function that minimizes the sum of within block variances
 - Basically, minimize the sum of code cost within each block

Cross-Associations (XA)

- [Chakrabarti+, KDD 2004]
- Minimize total encoding cost of the adjacency matrix Code Cost Description Cost $\sum_{i} \left((n_i^1 + n_i^0) \times H(p_i^1) \right) + \sum_{i} \left(\text{cost of describing } n_i^1, n_i^0 \text{ and groups} \right)$

Binary Matrix



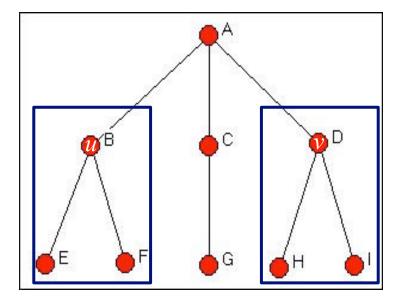
T. Eliassi-Rad & C. Faloutsos

Deterministic Equivalences

Automorphic	
Structural	

Automorphic Equivalence

- [Borgatti, et al. 1992; Sparrow 1993]
- Two nodes *u* and *v* are automorphically equivalent if all the nodes can be relabeled to form an isomorphic graph with the labels of *u* and *v* interchanged
 - Swapping *u* and *v* (possibly along with their neighbors) does not change graph distances
- Two nodes that are automorphically equivalent share exactly the same label-independent properties



Automorphic Equivalence: Algorithms

- Sparrow (1993) proposed an algorithm that scales linearly to the number of edges
- Use numerical signatures on degree sequences of neighborhoods
- Numerical signatures use a unique transcendental number like π , which is independent of any permutation of nodes
- Suppose node *i* has the following degree sequence: 1, 1, 5, 6, and 9. Then its signature is $S_{i,1} = (1 + \pi)(1 + \pi)(5 + \pi)(6 + \pi)(9 + \pi)$
- The signature for node *i* at *k*+1 hops is $S_{i,(k+1)} = \prod(S_{i,k} + \pi)$
- To find automorphic equivalence, simply compare numerical signatures of nodes

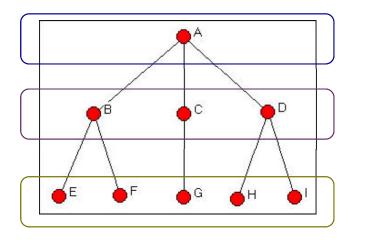
Deterministic Equivalences

Re	gular		
	Autor	norphic	
		Structural	

ECML PKDD 2013 Tutorial

Regular Equivalence

- [Everett & Borgatti, 1992]
- Two nodes *u* and *v* are regularly equivalent *if* they are equally related to equivalent others



President Motes

Faculty

Graduate Students

Hanneman, Robert A. and Mark Riddle. 2005. Introduction to social network methods. Riverside, CA: University of California, Riverside (published in digital form at http://faculty.ucr.edu/~hanneman/)

Regular Equivalence (continued)

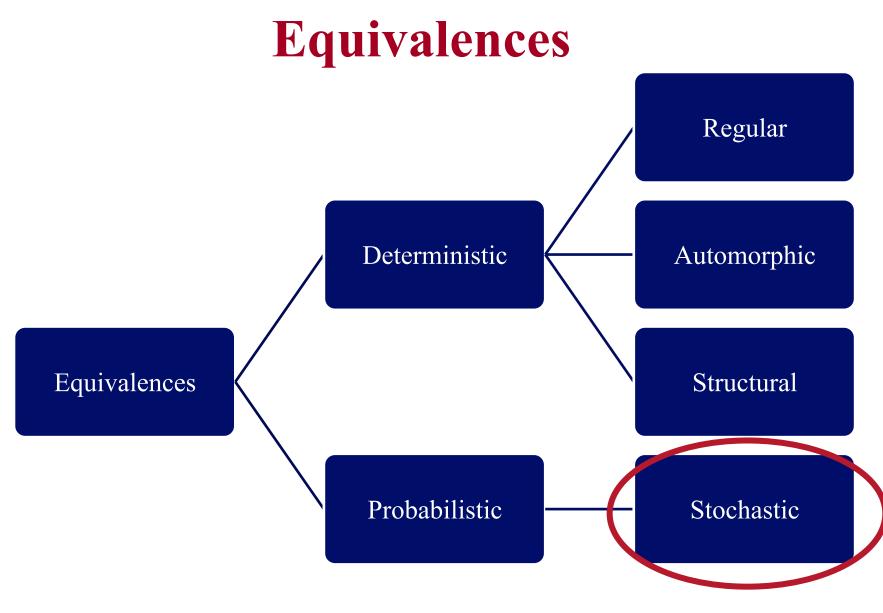
- Basic roles of nodes
 - source
 repeater
 sink
 isolate

Regular Equivalence (continued)

- Based solely on the social roles of neighbors
- Interested in
 - Which nodes fall in which social roles?
 - How do social roles relate to each other?
- Hard partitioning of the graph into social roles
- A given graph can have more than one valid regular equivalence set
- Exact regular equivalences can be rare in large graphs

Regular Equivalence: Algorithms

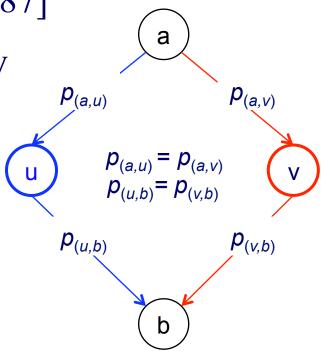
- Many algorithms exist here
- Basic notion
 - Profile each node's neighborhood by the presence of nodes of other "types"
 - Nodes are regularly equivalent to the extent that they have similar "types" of other nodes at similar distances in their neighborhoods



T. Eliassi-Rad & C. Faloutsos

Stochastic Equivalence

- [Holland, et al. 1983; Wasserman & Anderson, 1987]
- Two nodes are stochastically equivalent if they are "exchangeable" w.r.t. a probability distribution
- Similar to structural equivalence but probabilistic



Stochastic Equivalence: Algorithms

- Many algorithms exist here
- Most recent approaches are generative [Airoldi, et al 2008]
- Some choice points
 - Single [Kemp, et al 2006] vs. mixed-membership
 [Koutsourelakis & Eliassi-Rad, 2008] equivalences
 (a.k.a. "positions")
 - Parametric vs. non-parametric models

Roadmap

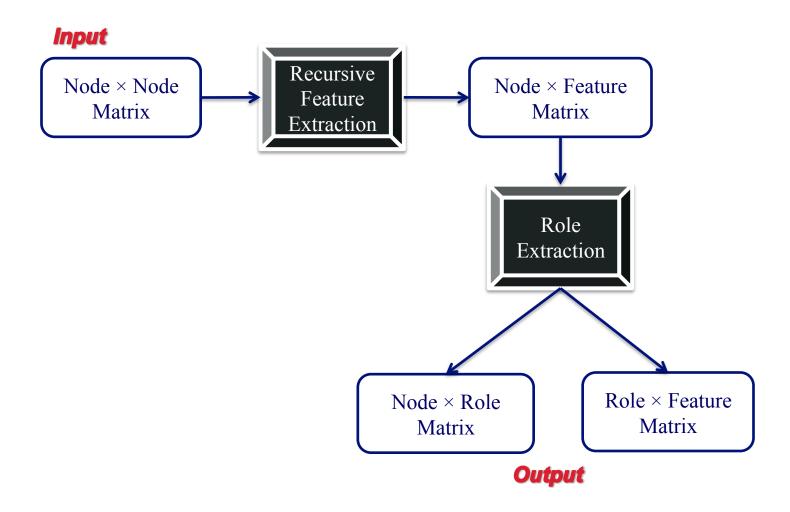
- What are roles
- Roles and communities

- Roles and equivalences (from sociology)
- Roles (from data mining)
- Summary

RolX: Role eXtraction

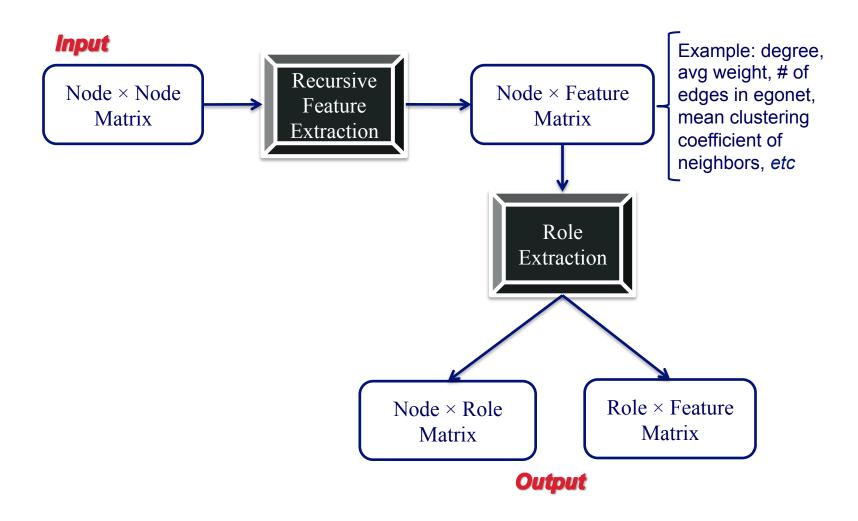
- Introduced by Henderson *et al*. KDD 2012
- Automatically extracts the underlying roles in a network
 - No prior knowledge required
- Determines the number of roles automatically
- Assigns a mixed-membership of roles to each node
- Scales linearly on the number of edges

RolX: Flowchart



ECML PKDD 2013 Tutorial

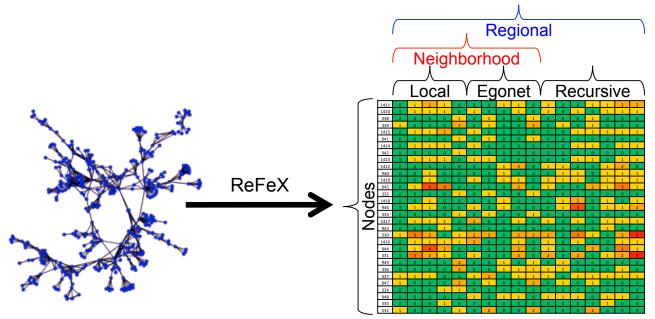
RolX: Flowchart



ECML PKDD 2013 Tutorial

Recursive Feature Extraction

• ReFeX [Henderson, et al. 2011a] turns network connectivity into recursive structural features



- Neighborhood features: What is your connectivity pattern?
- Recursive Features: To what *kinds* of nodes are you connected?

Propositionalisation (PROP)

- [Knobbe, et al. 2001; Neville, et al. 2003; Krogel, et al. 2003]
- From multi-relational data mining with roots in Inductive Logic Programming (ILP)
- Summarizes a multi-relational dataset (stored in multiple tables) into a propositional dataset (stored in a single "target" table)
- Derived attribute-value features describe properties of individuals
- Related more to recursive structural features than structural roles

Role Extraction

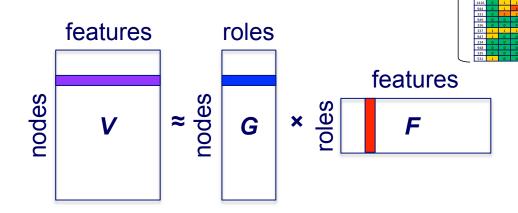


T. Eliassi-Rad & C. Faloutsos

Features

Role Extraction: Feature Grouping

- Soft clustering in the structural feature space
 - Each node has a mixed-membership across roles
- Generate a rank *r* approximation of $V \approx GF$



- RolX uses NMF for feature grouping
 - Computationally efficient

$$\operatorname{argmin}_{G,F} \| V - GF \|_{fro}, \text{s.t. } G \ge 0, \ F \ge 0$$

- Non-negative factors simplify interpretation of roles and memberships

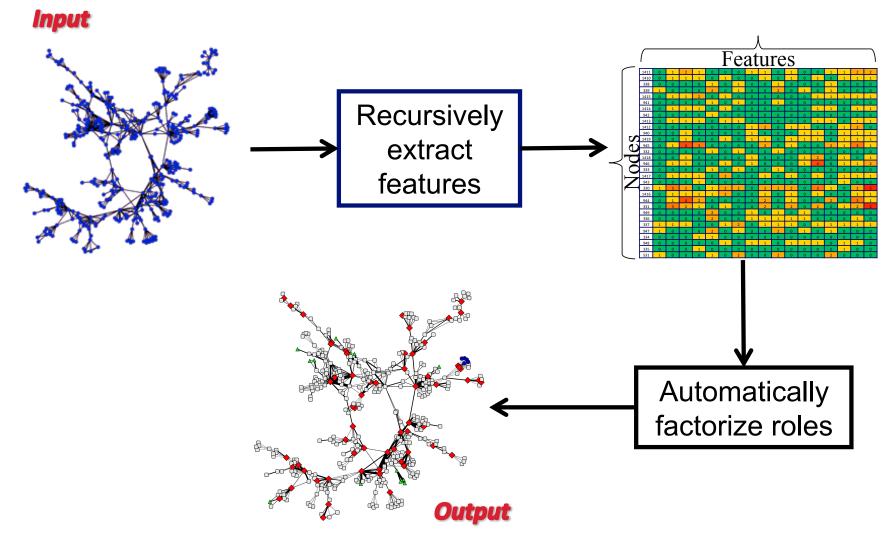
Role Extraction: Model Selection

- Roles summarize behavior
 - Or, they compress the feature matrix, V
- Use MDL to select the model size r that results in the best compression
 - *L*: description length
 - M: # of bits required to describe the model
 - E: cost of describing the reconstruction errors in V-GF
 - Minimize L = M + E
 - To compress high-precision floating point values, RolX combines Llyod-Max quantization with Huffman codes
- $M = \overline{b}r(n+f)$

• Errors in *V-GF* are not distributed normally, RolX uses KL divergence to compute *E*

$$E = \sum_{i,j} \left(V_{i,j} \log \frac{V_{i,j}}{(GF)_{i,j}} - V_{i,j} + (GF)_{i,j} \right)$$

Role Extraction



T. Eliassi-Rad & C. Faloutsos

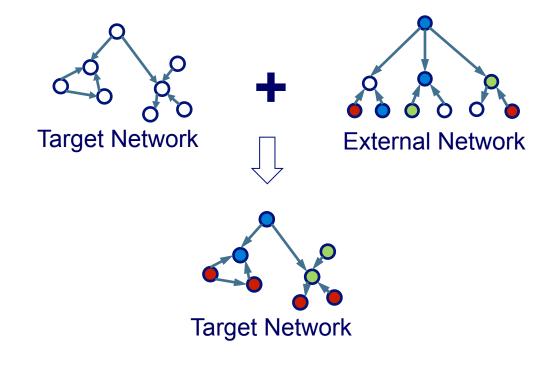
Experiments on Role Discovery

- Role transfer
- Role sense-making
- Role query
- Role mixed-memberships

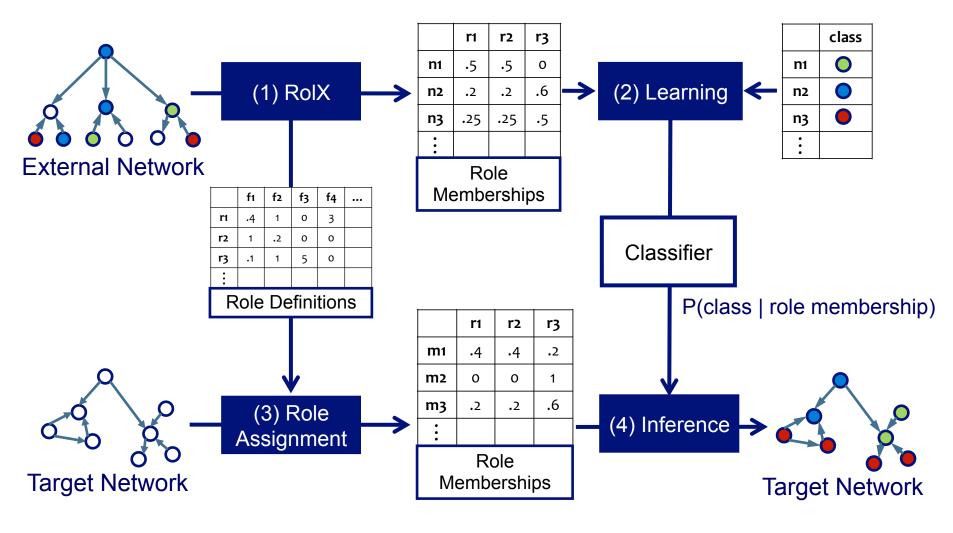
Details in Henderson et al. KDD 2012

Role Transfer

 Question: How can we use labels from an external source to predict labels on a network with no labels?



Role Transfer = RolX + SL

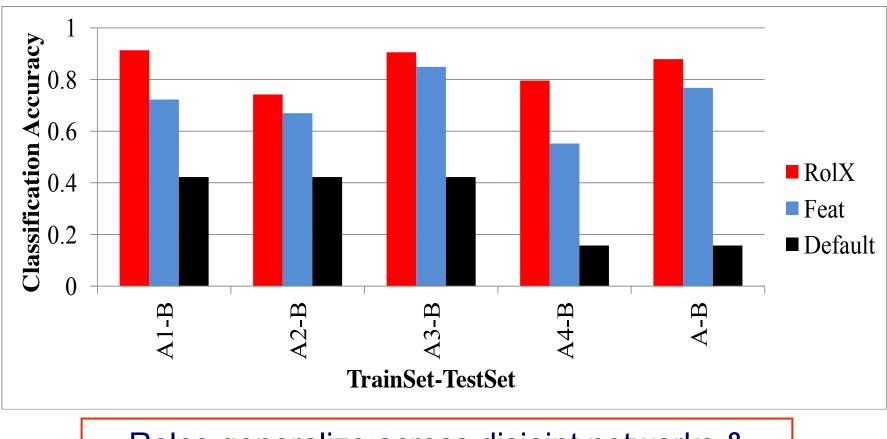


Data for Role Transfer

	IP-A1	IP-A2	IP-A3	IP-A4	IP-B			
# Nodes	81,450	57,415	154,103	206,704	181,267			
% labeled	36.7%	28.1%	20.1%	32.9%	15.3%			
# Links	968,138	432,797	1,266,341	1,756,082	1,945,215			
(# unique)	206,112	137,822	358,851	465,869	397,925			
Class Distribu- tion								

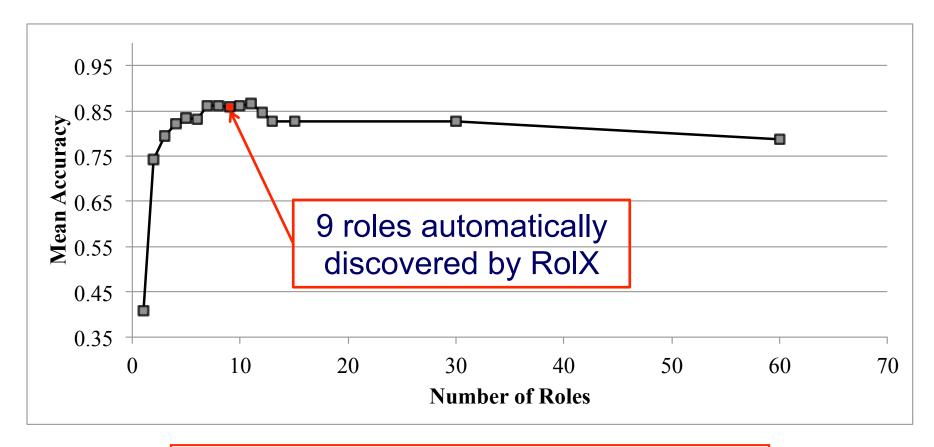
T. Eliassi-Rad & C. Faloutsos

Role Transfer Results



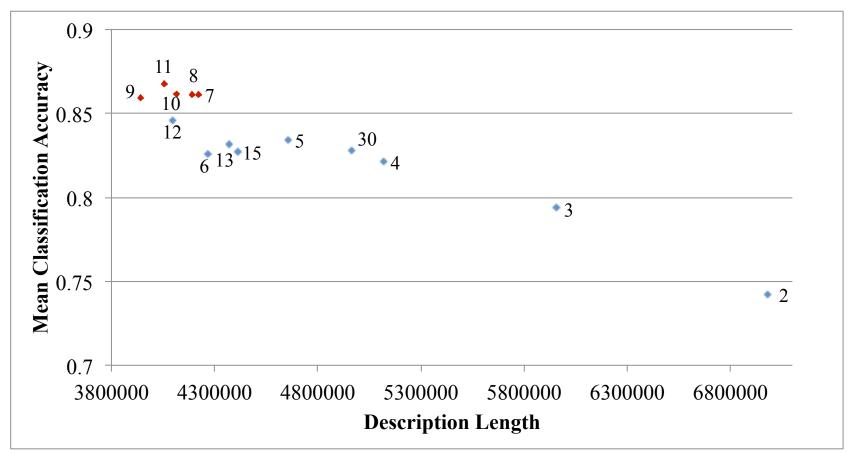
Roles generalize across disjoint networks & enable prediction without re-learning

Model Selection



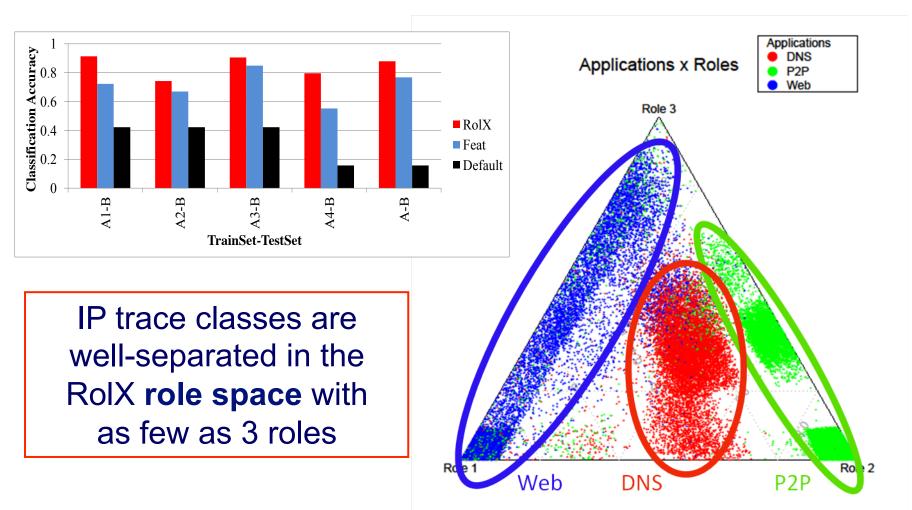
RolX selects high accuracy model sizes

Model Selection (continued)

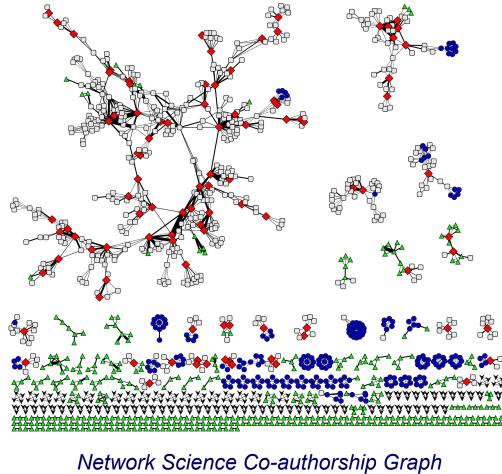


Classification accuracy is highest when RoIX selection criterion is minimized

Role Space



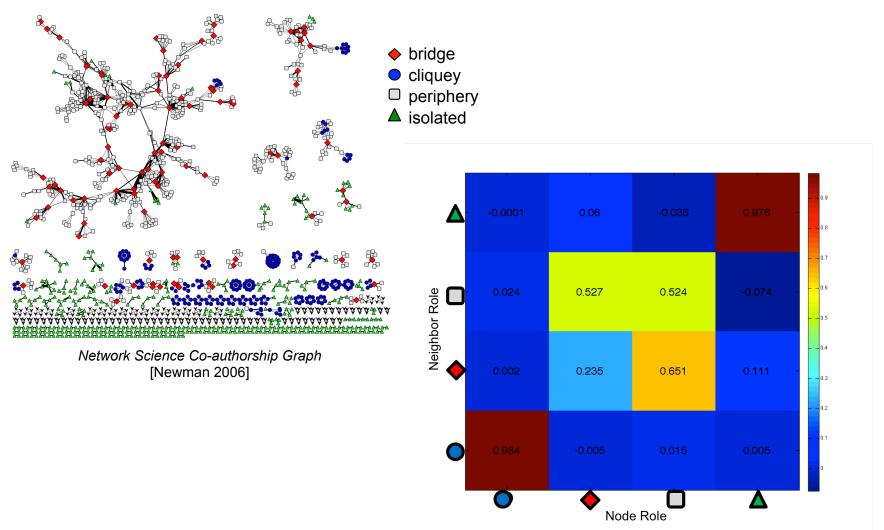
Automatically Discovered Roles



[Newman 2006]

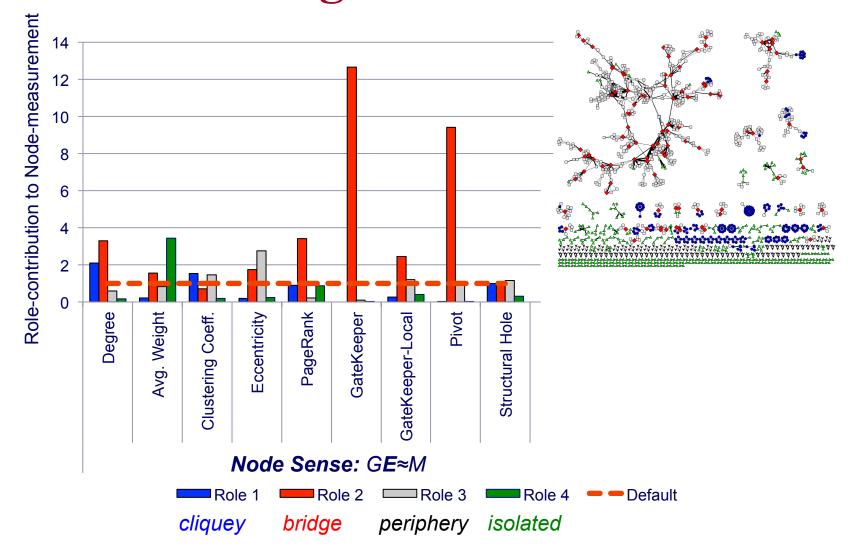
T. Eliassi-Rad & C. Faloutsos

Role Affinity Heat Map

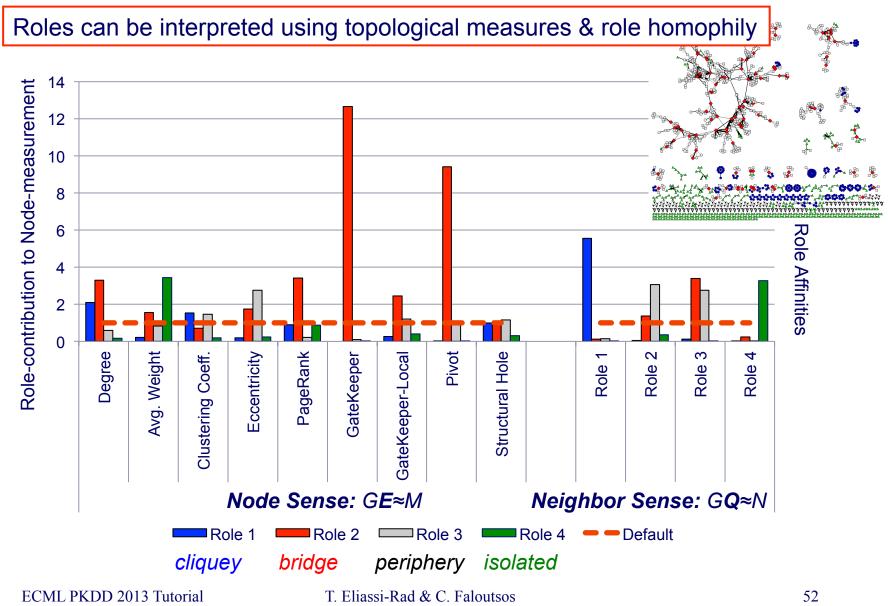


T. Eliassi-Rad & C. Faloutsos

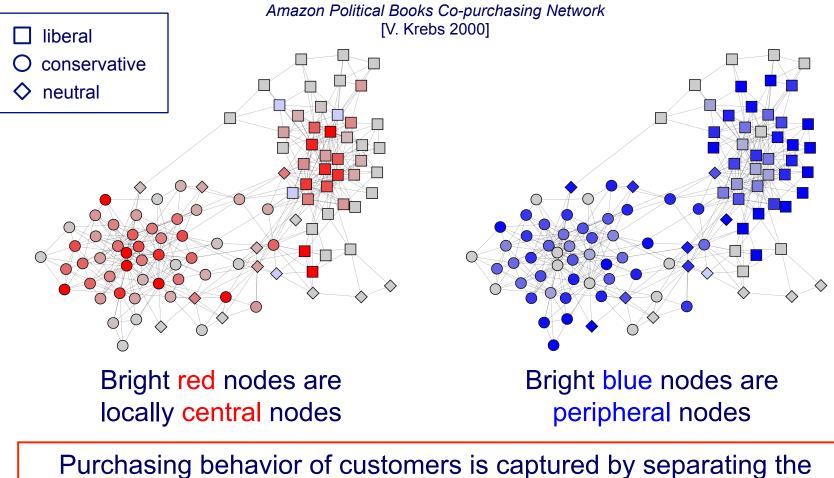
Making Sense of Roles



Making Sense of Roles



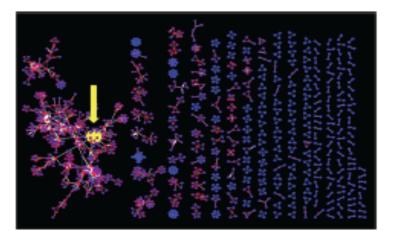
Mixed Membership over Roles



"locally central" books from the "locally peripheral" books

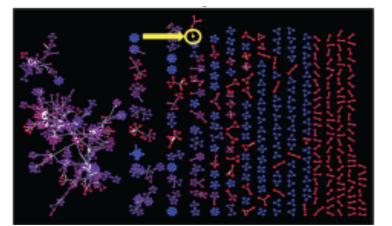
ECML PKDD 2013 Tutorial

Role Query

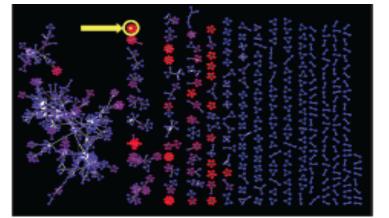


Node Similarity for M.E.J. Newman (*bridge*)

Mixed-membership roles enable us to measure similarity of nodes based on their role memberships



Node Similarity for J. Rinzel (*isolated*)

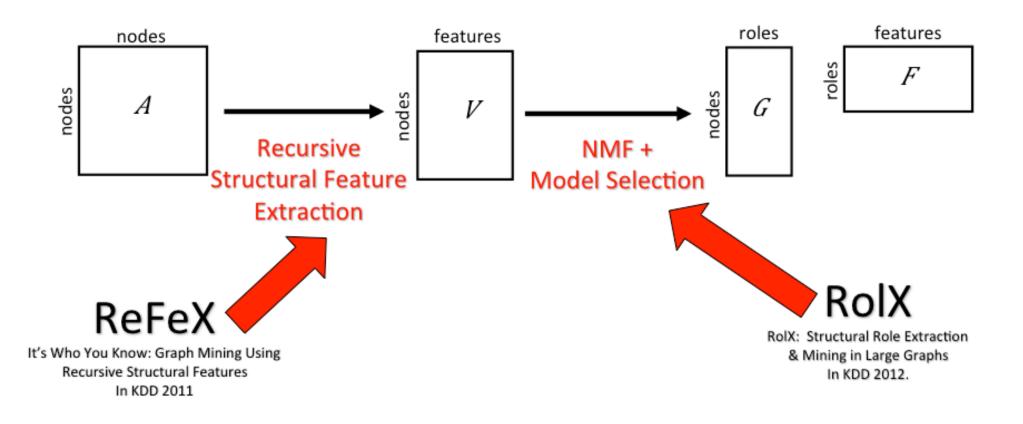


Node Similarity for F. Robert (*cliquey*)

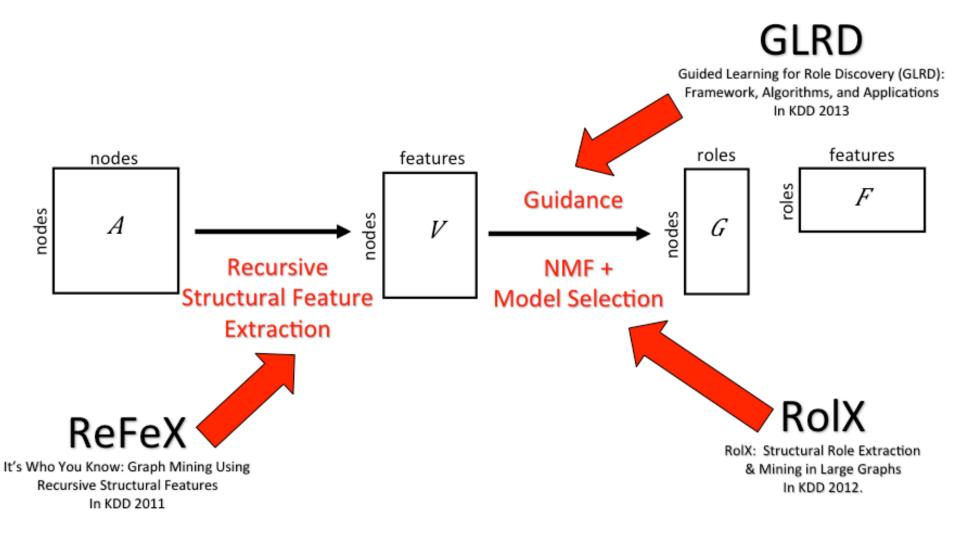
GLRD: Guided Learning for Role Discovery

- Introduced by Sean Gilpin *et al*.
- RolX is unsupervised
- What if we had guidance on roles?
 - Guidance as in weak supervision encoded as constraints
- Types of guidance
 - Sparse roles
 - Diverse roles
 - Alternative roles, given a set of existing roles

GLRD

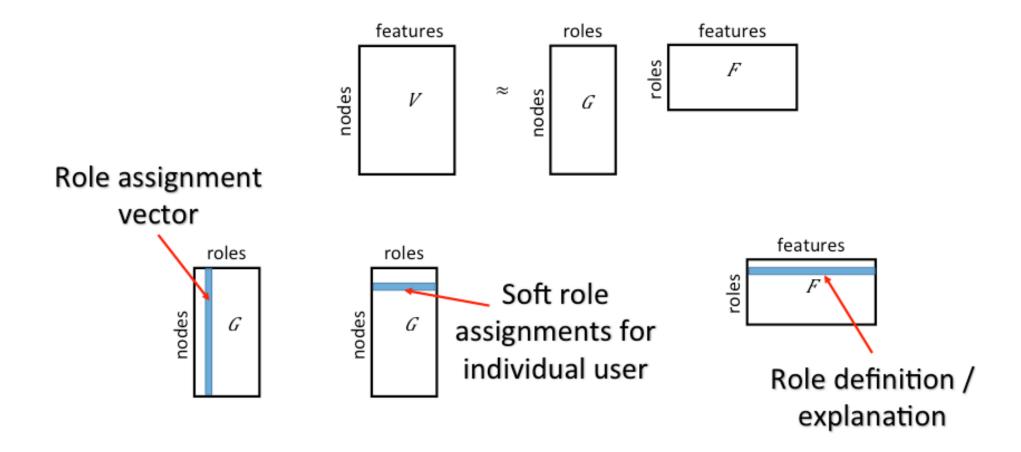


GLRD



T. Eliassi-Rad & C. Faloutsos

Adding Constraints



GLRD Framework

• Constraints on columns of *G* (i.e., role assignments) or rows of *F* (i.e. role definitions) are convex functions

 $\begin{array}{ll} \underset{\mathbf{G},\mathbf{F}}{\text{minimize}} & ||\mathbf{V} - \mathbf{GF}||_2\\ \text{subject to} & g_i(\mathbf{G}) \leq d_{Gi}, \ i = 1, \dots, t_G\\ & f_i(\mathbf{F}) \leq d_{Fi}, \ i = 1, \dots, t_F \end{array}$ where g_i and f_i are convex functions.

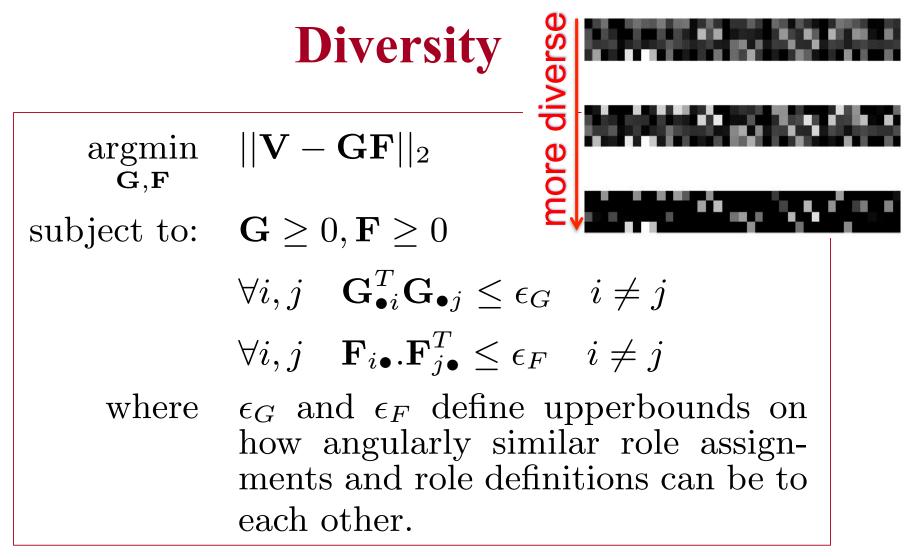
- Use an alternative least squares (ALS) formulation
 - Do <u>not</u> alternate between solving for the entire G and F
 - Solve for one column of G or one row of F at a time
 - This is okay since we have convex constraints

Guidance Overview

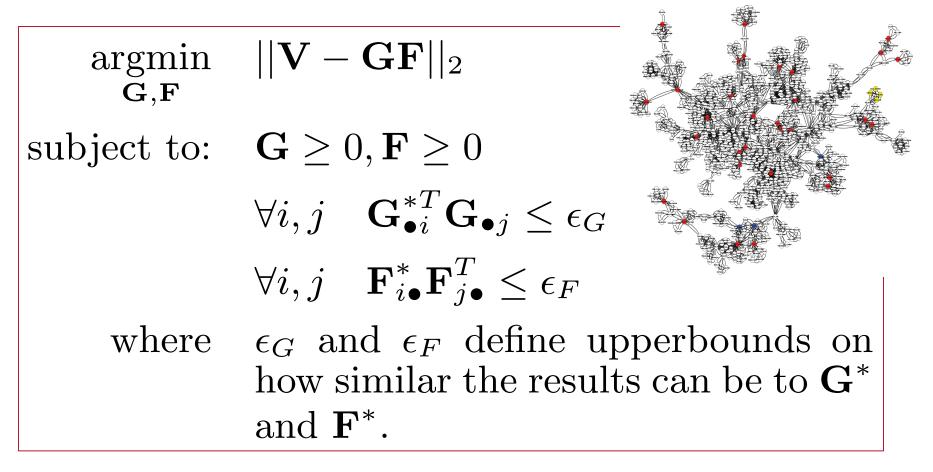
Guidance	Effect of increasing guidance				
Туре	on role assignment (G)	on role definition (F)			
Sparsity	Reduces the number of nodes with minority memberships in roles	Decreases likelihood that features with small explanatory benefit are included			
Diversity	Limits the amount of allowable overlap in assignments	Roles must be explained with completely different sets of features			
Alternative	Decreases the allowable similarity between the two sets of role assignments	Ensures that role definitions are very dissimilar between the two sets of role assignments			

Sparsity

argmin G,F	$ \mathbf{V} - \mathbf{GF} _2$
subject to:	$\mathbf{G} \ge 0, \mathbf{F} \ge 0$
	$orall i \mathbf{G}_{ullet \mathbf{i}} _1 \leq \epsilon_G$
	$\forall i \mathbf{F}_{\mathbf{i}\bullet} _1 \leq \epsilon_F$
where	ϵ_G and ϵ_F define upperbounds for the sparsity constraints (amount of allowable density).



Alternativeness



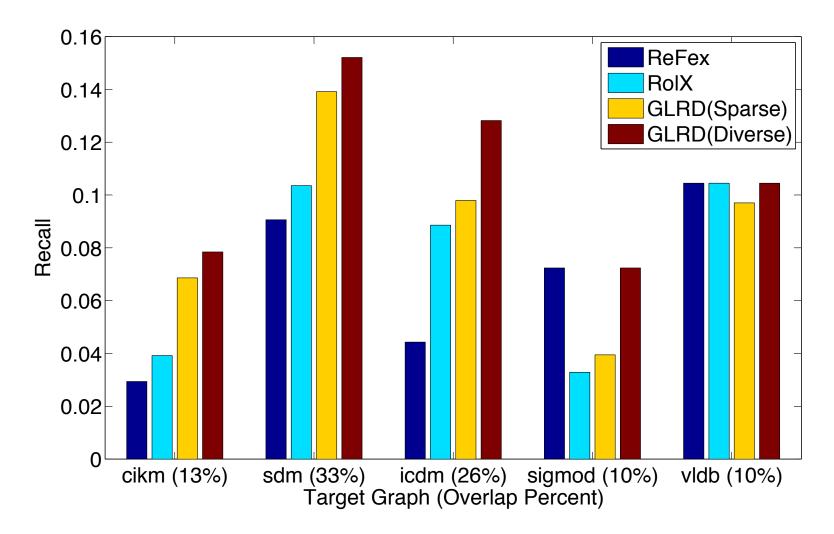
Diverse Roles and Sparse Roles

- Question: Can diversity and sparsity constraints create better role definitions?
- Conjecture: Better role definitions will better facilitate other problems such as identity resolution across graphs
- Experiment: Compare graph mining results using various methods for role discovery

Network	$ \mathbf{V} $	$ \mathbf{E} $	k	LCC	#CC
VLDB	1,306	3,224	4.94	769	112
SIGMOD	1,545	4,191	5.43	1,092	116
CIKM	2,367	4,388	3.71	890	361
SIGKDD	1,529	$3,\!158$	4.13	743	189
ICDM	1,651	2,883	3.49	458	281
SDM	915	1,501	3.28	243	165

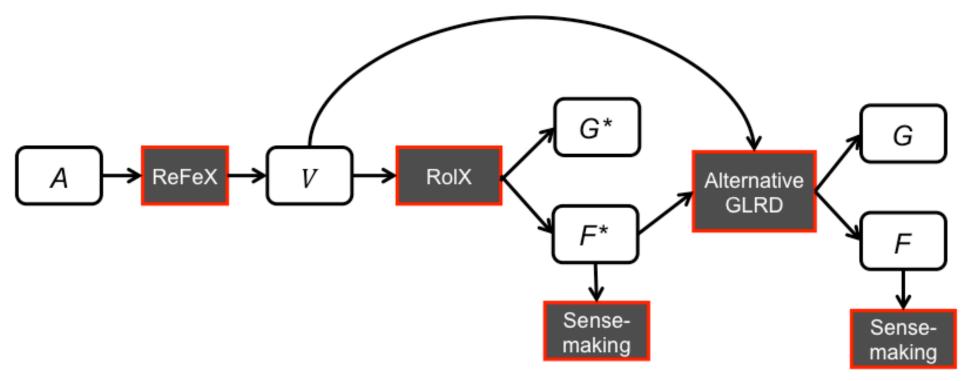
DBLP Co-authorship Networks from 2005-2009

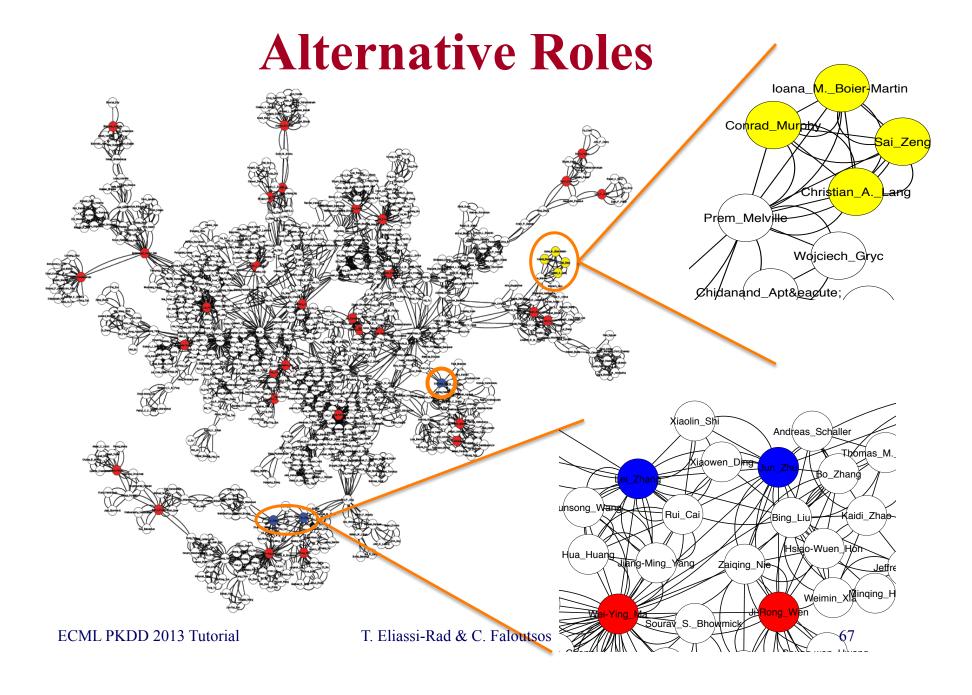
Identity Resolution across Networks



Alternative Roles

• Question: Do alternative sets of roles exist in graphs and can they be discovered?





Modeling Dynamic Graphs with Roles

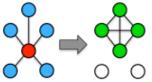
• Introduced by Rossi et al. WSDM 2013

1. Identify dynamic patterns in node behavior

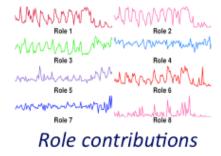
	0.111	a terate		112 11			1114	1,510	
10010		1000	STATES IN	100010	10.00		TROPT	1000	HADRED
14.6	5 T 1911	1.00	17 P. 1	111	1.1	1111	1000	100.00	1000
		1200	1.66	10.51	HI (H P	1	1.1		
		10)) (I (I		111	1.16	1.11	11111	- 111	
1000000	11		1111	11	111	100	Hilling .	100 100	
10.00	100	12.01	10.00	100					110011
			11011						
77 9 10	and the second second	HOŬON.	and the second	т¢н.		11411	112-011		1 11

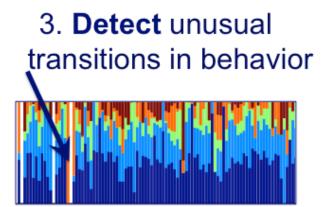
Evolving mixed-role memberships

2. **Predict** future structural changes



Transition from star to clique

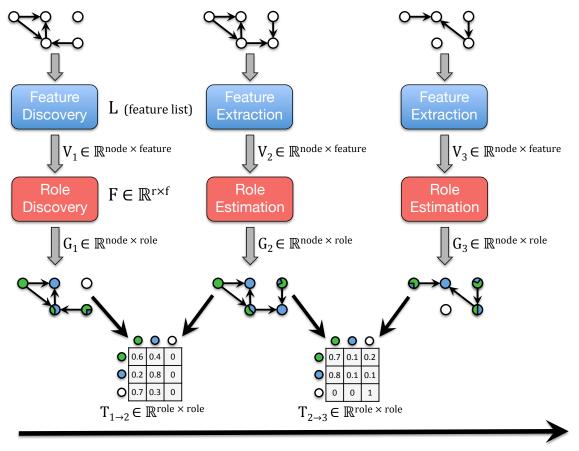




Dynamic Behavioral Mixed-Membership (DBMM) Model

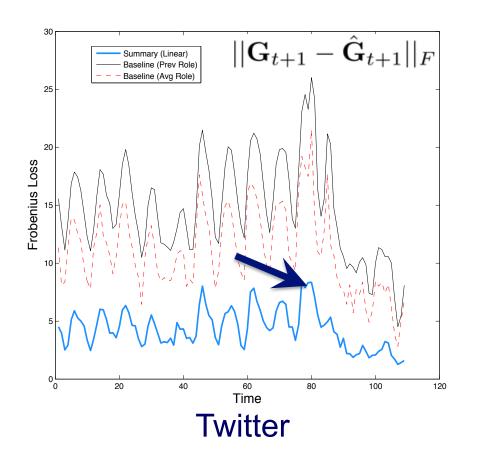
- Scalable for **BIG** graphs
- Easily parallelizable
- Non-parametric & data-driven
- Flexible and interpretable

Dynamic Behavioral Mixed-Membership (DBMM) Model



- 1. Compute set of features
- 2. Estimate the features on each snapshot graph
- 3. Learn roles from features using NMF, number of roles selected via MDL
- 4. Extract roles from each feature matrix over time
 - 5. Use NMF to estimate transition model

Predicting Structural Behavior



Given G_{t-1} and G_t find a transition model T that minimizes the functional:

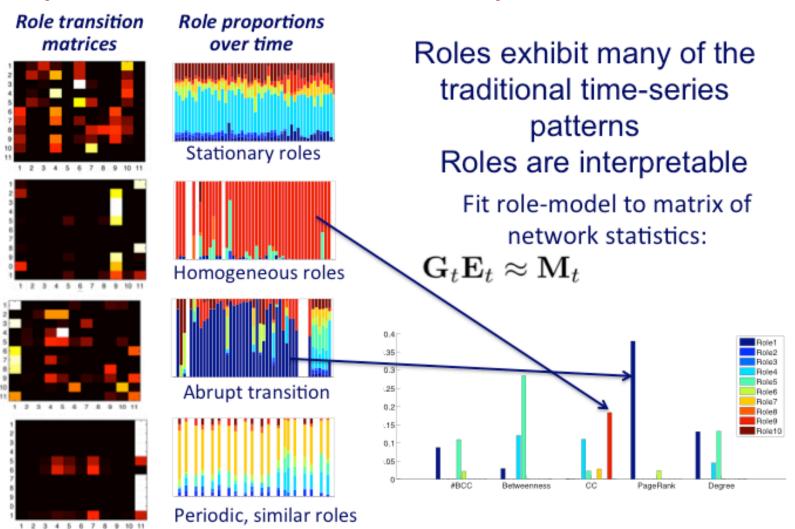
$$f(\mathbf{G}_t, \mathbf{G}_{t-1}) = \frac{1}{2} ||\mathbf{G}_t - \mathbf{G}_{t-1}\mathbf{T}||_F^2$$

All models predict G_{t+1} using G_t as $G'_{t+1} = G_t T$

Summary model: Weight training examples from k previous time-steps Baseline models: Predict future role based on (1) previous role or (2) average role distribution

DBMM is more accurate at predicting future behavior than baselines

Dynamic Network Analysis with Roles



ECML PKDD 2013 Tutorial

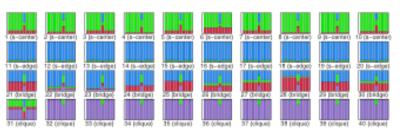
Anomalous Structural Transitions

Problem: detect nodes with unusual structural transitions

Anomaly score:

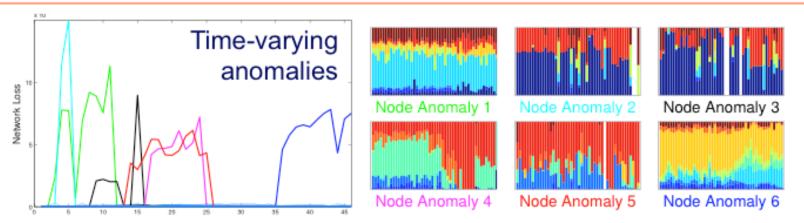
1. Estimate transition model T for v

- 2. Use it to predict v's memberships
 - Take the difference from actual



Inject anomalies into synthetic data: Detected 88.5% over 200 repeated trials

DBMM model finds nodes that are anomalous for only short time-periods



ECML PKDD 2013 Tutorial

T. Eliassi-Rad & C. Faloutsos

Roles: Regular Equivalence vs. Role Discovery

	Role Discovery	Regular Equivalence
Mixed-membership over roles	\checkmark	
Automatically selects the best model	\checkmark	
Can incorporate arbitrary features	✓	
Uses structural features	\checkmark	
Uses structure	✓	✓
Generalizes across disjoint networks (longitudinal & cross-sectional)	✓	?
Scalable (linear on # of edges)	1	
Guidance	✓	

Roadmap

- What are roles
- Roles and communities

- Roles and equivalences (from sociology)
- Roles (from data mining)
- Summary

Summary

- Roles
 - Structural behavior ("function") of nodes
 - Complementary to communities
 - Previous work mostly in sociology under equivalences
 - Recent graph mining work produces mixedmembership roles, is fully automatic and scalable
 - Can be used for many tasks: transfer learning, reidentification, anomaly detection, *etc*
 - Extensions: including guidance, modeling dynamic networks, *etc*

Acknowledgement

- LLNL: Brian Gallagher, Keith Henderson
- CCNY: Hanghang Tong
- Google: Sugato Basu
- SUNY Stony Brook: Leman Akoglu
- CMU: Danai Koutra, Lei Li
- UC Davis: Ian Davidson, Sean Gilpin

Thanks to: LLNL, NSF, IARPA, DARPA, DTRA.

Deterministic Equivalences

- S. Boorman, H.C. White: Social Structure from Multiple Networks: II. Role Structures. *American Journal of Sociology*, 81:1384-1446, 1976.
- S.P. Borgatti, M.G. Everett: Notions of Positions in Social Network Analysis. In P. V. Marsden (Ed.): *Sociological Methodology*, 1992:1–35.
- S.P. Borgatti, M.G. Everett, L. Freeman: UCINET IV, 1992.
- S.P. Borgatti, M.G. Everett, Regular Blockmodels of Multiway, Multimode Matrices. *Social Networks*, 14:91-120, 1992.
- R. Breiger, S. Boorman, P. Arabie: An Algorithm for Clustering Relational Data with Applications to Social Network Analysis and Comparison with Multidimensional Scaling. *Journal of Mathematical Psychology*, 12:328-383, 1975.
- R.S. Burt: Positions in Networks. *Social Forces*, 55:93-122, 1976.

- P. DiMaggio: Structural Analysis of Organizational Fields: A Blockmodel Approach. *Research in Organizational Behavior*, 8:335-70, 1986.
- P. Doreian, V. Batagelj, A. Ferligoj: *Generalized Blockmodeling*. Cambridge University Press, 2005.
- M.G. Everett, S. P. Borgatti: Regular Equivalence: General Theory. *Journal of Mathematical Sociology*, 19(1):29-52, 1994.
- K. Faust, A.K. Romney: Does Structure Find Structure? A critique of Burt's Use of Distance as a Measure of Structural Equivalence. *Social Networks*, 7:77-103, 1985.
- K. Faust, S. Wasserman: Blockmodels: Interpretation and Evaluation. *Social Networks*, 14:5–61. 1992.
- R.A. Hanneman, M. Riddle: *Introduction to Social Network Methods*. University of California, Riverside, 2005.

- F. Lorrain, H.C. White: Structural Equivalence of Individuals in Social Networks. *Journal of Mathematical Sociology*, 1:49-80, 1971.
- L.D. Sailer: Structural Equivalence: Meaning and Definition, Computation, and Applications. *Social Networks*, 1:73-90, 1978.
- M.K. Sparrow: A Linear Algorithm for Computing Automorphic Equivalence Classes: The Numerical Signatures Approach. *Social Networks*, 15:151-170, 1993.
- S. Wasserman, K. Faust: *Social Network Analysis: Methods and Applications*. Cambridge University Press, 1994.
- H.C. White, S. A. Boorman, R. L. Breiger: Social Structure from Multiple Networks I. Blockmodels of Roles and Positions. *American Journal of Sociology*, 81:730-780, 1976.
- D.R. White, K. Reitz: Graph and Semi-Group Homomorphism on Networks and Relations. *Social Networks*, 5:143-234, 1983.

Stochastic blockmodels

- E.M. Airoldi, D.M. Blei, S.E. Fienberg, E.P. Xing: Mixed Membership Stochastic Blockmodels. *Journal of Machine Learning Research*, 9:1981-2014, 2008.
- P.W. Holland, K.B. Laskey, S. Leinhardt: Stochastic Blockmodels: Some First Steps. *Social Networks*, 5:109-137, 1983.
- C. Kemp, J.B. Tenenbaum, T.L. Griffiths, T. Yamada, N. Ueda: Learning Systems of Concepts with an Infinite Relational Model. AAAI 2006.
- P.S. Koutsourelakis, T. Eliassi-Rad: Finding Mixed-Memberships in Social Networks. AAAI Spring Symposium on Social Information Processing, Stanford, CA, 2008.
- K. Nowicki ,T. Snijders: Estimation and Prediction for Stochastic Blockstructures, *Journal of the American Statistical Association*, 96:1077–1087, 2001.
- Z. Xu, V. Tresp, K. Yu, H.-P. Kriegel: Infinite Hidden Relational Models. UAI 2006.
- S. Wasserman, C. Anderson: Stochastic a Posteriori Blockmodels: Construction and Assessment, *Social Networks*, 9:1-36, 1987.

Role Discovery

- K. Henderson, B. Gallagher, L. Li, L. Akoglu, T. Eliassi-Rad, H. Tong, C. Faloutsos: It's Who Your Know: Graph Mining Using Recursive Structural Features. KDD 2011: 663-671.
- R. Jin, V. E. Lee, H. Hong: Axiomatic ranking of network role similarity. KDD 2011: 922-930.
- K. Henderson, B. Gallagher, T. Eliassi-Rad, H. Tong, S. Basu, L. Akoglu, D. Koutra, C. Faloutsos, L. Li: RolX: Structural role extraction & mining in large graphs. KDD 2012: 1231-1239.
- R. A. Rossi, B. Gallagher, J. Neville, K. Henderson: Modeling dynamic behavior in large evolving graphs. WSDM 2013: 667-676.
- S. Gilpin, T. Eliassi-Rad, I. Davidson: Guided Learning for Role Discovery (GLRD): Framework, algorithms, and applications. KDD 2013.

Community Discovery

- A. Clauset, M.E.J. Newman, C. Moore: Finding Community Structure in Very Large Networks. Phys. Rev. E., 70:066111, 2004.
- M.E.J. Newman: Finding Community Structure in Networks Using the Eigenvectors of Matrices. Phys. Rev. E., 74:036104, 2006.

Propositionalisation

- A.J. Knobbe, M. de Haas, A. Siebes: Propositionalisation and Aggregates. PKDD 2001: 277-288.
- M.-A. Krogel, S. Rawles, F. Zelezny, P.A. Flach, N. Lavrac, S. Wrobel: Comparative Evaluation of Approaches to Propositionalization. ILP 2003: 197-214.
- J. Neville, D. Jensen, B. Gallagher: Simple Estimators for Relational Bayesian Classifiers. ICDM 2003: 609-612.

Back to Overview

