A Hierarchical Cluster Analysis to Identify Principles of Popular Music Composition Used by The Beatles

Douglas J. Mason
Harvard University

Abstract. We present a database system for storing and retrieving abstracted musical information as well as visualizations for interpreting this information. We then apply hierarchical cluster analysis to show statistical phenomena occurring in a corpus of popular songs written by the Beatles. We find that chords and melodic rhythms fall into clusters which distinguish each song by the inclusion of unusual chords or melodic onsets, indicating principles of composition and album-creation.

1 Introduction

Sheet music notation serves performers rather than analysts. As a result, rhythmic values and absolute chromatic pitches take precedence over the relationship of melody to harmony, rhythm, or key. Recent developments in musical information storage and retrieval attempt to ameliorate the situation by encasing musical objects in abstractions which can then be manipulated and rendered at-will on the computer. With the recent introduction of MIT’s Music21 Python package[1], musical objects can now be married to state-of-the-art techniques in computational musicology that allow for the automation of musical analyses. In this paper, we use Music21 to drive visualizations that emphasize statistical aspects of the musical data. We begin with SongMaps – which succinctly normalizes individual songs and emphasizes structural components to facilitate comparisons – to drive our statistical models. Applying hierarchical clustering on these statistics, we have identified strong threads throughout the corpus guiding the composition of harmony and melody.

2 Our Approach

Unlike audio analysis which is used to analyze production, timbre, and beat, our analysis uses a single melodic line written in standard music notation, along with chords (the co-occurrence of multiple notes in the background) which sound simultaneously. Our software front-end divides the task of musical input into individual phrases that can be typed using an easy-to-understand textual musical language called TinyNotation, developed at MIT and enhanced for our purposes. Phrases are linked together into larger units (the verse, chorus, and bridge), which are then strung together to form the entire song data-stream (verse-verse-bridge-verse).

Once a song has been stored in this format, it can be retrieved and processed using Music21 to generate visualizations called SongMaps, which are designed to emphasize
elements of interest to the analyst. For instance, SongMaps are normalized to the song’s
tonal center and emphasize the distribution of stable/unstable tones in the melody, while
rhythmic syncopation is identified along the bottom to indicate structural choices. The
length and placement of musical phrases against the bar lines, along with their har-
monies, take precedence by forming the SongMap’s foundation. Each visualization fits
on a single page to facilitate comparative analysis between songs and song sections.

3 Results

SongMaps make it possible to cultivate a gestalt impression of a corpus of music by
presenting songs side-by-side in a normalized fashion. In the case of this poster, we
have focused on the Rolling Stone list of the 100 Greatest Beatles Song[2], which have
all been entered into the database and cross-checked against The Beatles Fake Book[3].

We quickly noticed the inclusion of unusual chords in The Beatles corpus (this has
also been observed in other corpuses of rock music, see de Clercq and Temperley[4]).
In common practice classical music, the vast majority of harmonies fall on the diatonic
scale, and can be written in Roman numeral notation as I, ii, iii, IV, V and vi (the
number indicates the scale degree of the chord root; upper-case indicates major tonality,
and lower-case indicates minor tonality). For the Beatles corpus, chords like bVII, bIII,
and bVI, which are borrowed from other scales, are surprisingly common, although the
corpus is still dominated by diatonic harmonies.

To examine the presence of these unusual chords, we describe each song in a fea-
ture vector space that links each dimension to an individual chord in relation to the tonal
center. The value of a song in each dimension corresponds to the percentage of the song
which plays that chord. We then normalize our feature space by applying tf*idf mea-
ures[5] to indicate the specificity of the feature to the song. After applying hierarchical
cluster analysis[6], we find that most songs in the corpus (~70%) strongly emphasize
non-diatonic chords, and among those, the majority (~80%) exhibit the strong presence
of only one. Moreover, song clusters span many albums and almost never include two
Figure 2: We perform cluster analysis on chords using tf*idf measures. Above, a snippet of the chord-cluster heatmap showing the strong grouping of songs based on the presence of non-diatonic chords (all chords except I, ii, iii, IV, V, and vi). Green indicates the unusual presence of a chord in a song, while red indicates its notable absence. Obvious clusters can be found, such as the bright marking for the bVII chord in the middle of the plot.

songs from the same album. Both of these results suggest that the Beatles were deliberate in limiting the harmonic palette of each song and careful not to repeat that palette in the same album.

Because of the richness of our dataset, we are able to examine elements of melody as well as harmony. In the SongMaps, the onset of musical phrases and their relation to the beats of the measure are strongly emphasized because it has been argued that this is a key element in a song’s composition. To examine this assumption, we performed hierarchical cluster analysis on beat-onset of musical phrases. Because division between musical phrases is a subjective measure, we elected to define a feature space in which each dimension corresponds to a beat (or half-beat) of the measure, and the value corresponds to the percentage of melody notes which fall on that beat. These values are weighted by the length of time to the previous note to emphasize notes that start musical phrases. Then a tf*idf measure is applied to emphasize the specificity of the beat-onset.

Our analysis indicates high-level clustering of songs with on-beat rhythms (with integer beat values) or off-beat rhythms (with integer-plus-1/2 beat values), which is indicated by their order at the bottom of Figure 3. We also find strong clustering at the lower level which emphasizes individual beat onsets. Each cluster includes songs from many albums, although due to the limited dimensionality of beat values (8 possible beats and off-beats compared to 24 possible chords) it is common for multiple songs in the same album to cluster together. Like the chordal analysis, however, almost all songs emphasize only one beat value, indicating that the beat-onset of musical phrases acts as a musical anchor for each song.
Figure 3: We also cluster songs using tf*idf measures on the beat of each note, weighted by the temporal distance to the note before. Above, a snippet of our analysis reveals strong clusters along each beat in green, suggesting that the beat on which melodic phrases start acts is a strong feature of each song. Just as unusual chords tend to appear in isolation, we find that the majority of songs emphasize only one starting beat.

4 Conclusion

We have demonstrated the use of a large musical database which encodes abstractions of popular music, and derived visualizations to help interpret compositional principles from a corpus – in our case, 100 songs written by The Beatles. By applying hierarchical cluster analysis, we have produced robust statistical measures that identify distinguishing features of individual popular songs, such as the presence of an unusual chord or the tendency for musical phrases to start on the same beat of the measure. We also find that our corpus organizes along on-beat and off-beat rhythms.

References