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Who are you?

Wewould like to get to know our audience!
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Fundamentals of Multi-Agent
Reinforcement Learning
Daan Bloembergen and Daniel Hennes
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Outline (1)

Single Agent Reinforcement Learning
! Markov Decision Processes

! Value Iteration
! Policy Iteration

! Algorithms
! Q-Learning
! Learning Automata

..
Multiagent Reinforcement Learning - 2/60



Outline (2)

Multiagent Reinforcement Learning
! Game Theory
! Markov Games

! Value Iteration
! Algorithms

! Minimax-Q Learning
! Nash-Q Learning
! Other Equilibrium Learning Algorithms
! Policy Hill-Climbing
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Part I:
Single Agent Reinforcement Learning
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Richard S. Sutton and Andrew G. Barto
Reinforcement Learning: An
Introduction
MIT Press, 1998

Available on-line for free!
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Why reinforcement learning?

Based on ideas from psychology
! Edward Thorndike's law of effect

! Satisfaction strengthens behavior,
discomfort weakens it

! B.F. Skinner's principle of
reinforcement

! Skinner Box: train animals by
providing (positive) feedback

Learning by interacting with the
environment
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Why reinforcement learning?

Control theory
! Design a controller to minimize some measure of a

dynamical systems's behavior
! Richard Bellman

! Use system state and value functions (optimal return)
! Bellman equation

! Dynamic programming
! Solve optimal control problems by solving the Bellman

equation

These two threads came together in the 1980s, producing the
modern field of reinforcement learning
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The RL settingPRELIMINARIES: SETTING OF RL

•What is it?

• Learning from interaction

• Learning about, from and while interacting with an 
external environment

• Learning what to do - how to map situations to 
actions - so as to maximize a numerical reward signal

a(t)

s(t+1)

r(t+1)

Environment

10

! Learning from interactions
! Learning what to do - how tomap situations to actions -

so as to maximize a numerical reward signal
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Key features of RL

! Learner is not told which action to take
! Trial-and-error approach
! Possibility of delayed reward

! Sacrifice short-term gains for greater long-term gains

! Need to balance exploration and exploitation
! In between supervised and unsupervised learning
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The agent-environment interface
Agent interacts at discrete time steps = 0, 1, 2, . . .

! Observes state ∈
! Selects action ∈ ( )

! Obtains immediate reward
+1 ∈ R

! Observes resulting state +1

Agent

Environment

atrt
rt+1

st+1

st

AGENT-ENVIRONMENT INTERFACE

Agent

Environment

action
atst

reward
rt

rt+1
st+1

state

t

. . . st a
rt +1 st +1

t +1a
rt +2 st +2

t +2a
rt +3 st +3

. . .
t +3a

14
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Elements of RL

! Time steps need not refer to fixed intervals of real time
! Actions can be

! low level (voltage to motors)
! high level (go left, go right)
! "mental" (shift focus of attention)

! States can be
! low level "sensations" (temperature, ( , ) coordinates)
! high level abstractions, symbolic
! subjective, internal ("surprised", "lost")

! The environment is not necessarily known to the agent
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Elements of RL

! State transitions are
! changes to the internal state of the agent
! changes in the environment as a result of the agent's action
! can be nondeterministic

! Rewards are
! goals, subgoals
! duration
! ...
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Learning how to behave

! The agent's policy π at time is
! a mapping from states to action probabilities
! π ( , ) = ( = | = )

! Reinforcement learning methods specify how the agent
changes its policy as a result of experience

! Roughly, the agent's goal is to get as much reward as it
can over the long run
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The objective

Suppose the sequence of rewards after time is
+1, +2, +3, . . .

! The goal is to maximize the expected return { } for
each time step

! Episodic tasks naturally break into episodes, e.g., plays of a
game, trips through a maze

= +1 + +2 + . . .+
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The objective

! Continuing tasks do not naturally break up into episodes
! Use discounted return instead of total reward

= +1 + γ +2 + γ2 +3 + . . . =
∞∑

=0

γ + +1

where γ, 0 ≤ γ ≤ 1 is the discount factor such that

shortsighted 0← γ → 1 farsighted
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Example: pole balancing

! As an episodic task where each
episode ends upon failure

! reward = +1 for each step before
failure

! return = number of steps before
failure

AN EXAMPLE

• As an episodic task where episode ends upon failure

• reward = +1 for each step before failure

• return = number of steps before failure

• As a continuing task with discounted return:

• reward = -1 upon failure, 0 otherwise

• return =            , for k steps before failure��k

In either case, return is 
maximized by avoiding failure 

for as long as possible

20

! As a continuing task with discounted return
! reward = -1 upon failure
! return = −γ , for steps before failure

! In both cases, return is maximized by avoiding failure for as
long as possible
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A unified notation

! Think of each episode as ending in an absorbing state that
always produces a reward of zero

A UNIFIED NOTATION

• Think of each episode as ending in an absorbing state that 
always produces reward of zero

•We can cover all cases by writing

r1 = +1s0 s1
r2 = +1 s2

r3 = +1 r4 = 0
r5 = 0 Rt =

1X

k=0

�krt+k+1

24

! Now we can cover both episodic and continuing tasks by
writing

=
∞∑

=0

γ + +1
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Markov decision processes

! It is often useful to a assume that all relevant information is
present in the current state: Markov property

( +1, +1| , ) = ( +1, +1| , , , −1, −1, . . . , 1, 0, 0)

! If a reinforcement learning task has the Markov property, it
is basically a Markov Decision Process (MDP)

! Assuming finite state and action spaces, it is a finite MDP
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Markov decision processes

An MDP is defined by
! State and action sets
! One-step dynamics defined by state transition

probabilities

P ′ = ( +1 =
′| = , = )

! Reward probabilties

R ′ = ( +1| = , = , +1 =
′)
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Value functions

! When following a fixed policy π we can define the value of
a state under that policy as

π( ) = π( | = ) = π(
∞∑

=0

γ + +1| = )

! Similarly we can define the value of taking action in state
as

π( , ) = π( | = , = )
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Value functions

! The value function has a particular recursive relationship,
defined by the Bellman equation

π( ) =
∑

π( , )
∑

′

P ′ [R ′ + γ π( ′)]

! The equation expresses the recursive relation between the
value of a state and its successor states, and averages over
all possibilities, weighting each by its probability of
occurring
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Optimal policy for an MDP
! We want to find the policy that maximizes long term

reward, which equates to finding the optimal value
function

∗( ) =
π

π( ) ∀ ∈
∗( , ) =

π

π( , ) ∀ ∈ , ∈ ( )

! Expressed recursively, this is the Bellman optimality
equation

∗( ) =
∈ ( )

π∗( , )

=
∈ ( )

∑

′

P ′ [R ′ + γ ∗( ′)]
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Solving the Bellman equation

! We can find the optimal policy by solving the Bellman
equation

! Dynamic Programming
! Two approaches:

! Iteratively improve the value function: value iteration
! Iteratively evaluate and improve the policy: policy iteration

! Both approaches are proven to converge to the optimal
value function

..
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Value iteration
VALUE ITERATION

• Possibility to finding optimal policy

Bootstrapping!
36
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Policy iteration

! Often the optimal policy has been reached long before the
value function has converged

! Policy iteration calculates a new policy based on the
current value function, and then calculates a new value
function based on this policy

! This process often converges faster to the optimal policy

..
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Policy iteration
POLICY ITERATION

39

..
Multiagent Reinforcement Learning - 26/60



Learning an optimal policy online

! Both previous approaches require to know the dynamics
of the environment

! Often this information is not available
! Using temporal difference (TD) methods is one way of

overcoming this problem
! Learn directly from raw experience
! No model of the environment required (model-free)
! E.g.: Q-learning

! Update predicted state values based on new observations
of immediate rewards and successor states

..
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Q-learning

! Q-learning updates state-action values based on the
immediate reward and the optimal expected return

( , )← ( , )+α
[

+1 + γ ( +1, )− ( , )
]

! Directly learns the optimal value function independent of
the policy being followed

! In contrast to on-policy learners, e.g. SARSA
! Proven to converge to the optimal policy given "sufficient"

updates for each state-action pair, and decreasing learning
rate α [Watkins92]
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Q-learning

Q-LEARNING

One-step Q-learning

Q(st, at) Q(st, at) + ↵[rt+1 + �max

a
Q(st+1, a)�Q(st, at)]

Proven to converge to the optimal policy,
 given certain conditions [Tsitsiklis, 1994]

46
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Action selection

! How to select an action based on the values of the states
or state-action pairs?

! Success of RL depends on a trade-off
! Exploration
! Exploitation

! Exploration is needed to prevent getting stuck in local
optima

! To ensure convergence you need to exploit
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Action selection

Two common choices
! ε-greedy

! Choose the best action with probability 1− ε
! Choose a random action with probability ε

! Boltzmann exploration (softmax) uses a temperature
parameter τ to balance exploration and exploitation

π ( , ) =
( , )/τ

∑
′∈

( , ′)/τ

pure exploitation 0← τ →∞ pure exploration
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Learning automata

! Learning automata [Narendra74] directly modify their
policy based on the observed reward (policy iteration)

! Finite action-set learning automata learn a policy over a
finite set of actions

π′( ) = π( )+

{
α (1− π( ))− β(1− )π( ) if =

−α π( ) + β(1− )[( − 1)−1 − π( )] if (=

where = | |, and α and β are reward and penalty
parameters respectively, and ∈ [0, 1]

! Cross learning is a special case where α = 1 and β = 0
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Networks of learning automata

! A single learning automaton ignores any state information
! In a network of learning automata [Wheeler86] control is

passed on from one automaton to another
! One automaton A is active for each state
! The immediate reward is replaced by the average

cumulative reward ¯ since the last visit to that state

¯ ( ) =
∆

∆
=

∑ −1
= ( )

− ( )

where ( ) indicates in which time step state was last
visited
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Extensions
! Multi-step TD: eligibility traces

! Instead of observing one immediate reward, use
consecutive rewards for the value update

! Intuition: your current choice of action may have
implications for the future

! State-action pairs are eligible for future rewards, with more
recent states getting more credit
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Extensions

! Reward shaping
! Incorporate domain knowledge to provide additional

rewards during an episode
! Guide the agent to learn faster
! (Optimal) policies preserved given a potential-based

shaping function [Ng99]
! Function approximation

! So far we have used a tabular notation for value functions
! For large state and actions spaces this approach becomes

intractable
! Function approximators can be used to generalize over

large or even continuous state and action spaces
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Questions so far?
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Part II:
Multiagent Reinforcement Learning

Preliminaries: Fundamentals of Game Theory

..
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Game theory

! Models strategic interactions as games
! In normal form games, all players simultaneously select an

action, and their joint action determines their individual
payoff

! One-shot interaction
! Can be represented as an -dimensional payoff matrix, for

players

! A player's strategy is defined as a probability distribution
over his possible actions
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Example: Prisoner's Dilemma

! Two prisoners (A and B) commit a crime
together

! They are questioned separately and can
choose to confess or deny

! If both confess, both prisoners will serve 3
years in jail

! If both deny, both serve only 1 year for
minor charges

! If only one confesses, he goes free, while
the other serves 5 years

C D

C -3, -3 -0, -5

D -5, -0 -1, -1

..
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Example: Prisoner's Dilemma

! What should they do?
! If both deny, their total penalty is lowest

! But is this individually rational?
! Purely selfish: regardless of what the other

player does, confess is the optimal choice
! If the other confesses, 3 instead of 5 years
! If the other denies, free instead of 1 year

C D

C -3, -3 -0, -5

D -5, -0 -1, -1
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Solution concepts
! Nash equilibrium

! Individually rational
! No player can improve by unilaterally

changing his strategy
! Mutual confession is the only Nash

equilibrium of this game
! Jointly the players could do better

! Pareto optimum: there is no other
solution for which all players do at least as
well and at least one player is strictly
better off

! Mutual denial Pareto dominates the Nash
equilibrium in this game

C D

C -3, -3 -0, -5

D -5, -0 -1, -1
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Types of games

! Competitive or zero-sum
! Players have opposing preferences
! E.g. Matching Pennies

! Symmetric games
! Players are identical
! E.g. Prioner's Dilemma

! Asymmetric games
! Players are unique
! E.g. Battle of the Sexes

Matching Pennies
H T

H +1, -1 -1, +1

T -1, +1 +1, -1

Prisoner's Dilemma
C D

C -3, -3 -0, -5

D -5, -0 -1, -1

Battle of the Sexes
B S

B 2, 1 0, 0

S 0, 0 1, 2
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Part II:
Multiagent Reinforcement Learning

..
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MARL: Motivation

! MAS offer a solution paradigm that can cope with complex
problems

! Technological challenges require decentralised solutions
! Multiple autonomous vehicles for exploration, surveillance

or rescue missions
! Distributed sensing
! Traffic control (data, urban or air traffic)

! Key advantages: Fault tolerance and load balancing
! But: highly dynamic and nondeterministic environments!
! Need for adaptation on an individual level
! Learning is crucial!
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MARL: From single to multiagent learning

! Inherently more challenging
! Agents interact with the environment and each other
! Learning is simultaneous
! Changes in strategy of one agent might affect strategy of

other agents
! Questions:

! One vs. many learning agents?
! Convergence?
! Objective: maximise common reward or individual reward?
! Credit assignment?

..
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Independent reinforcement learners

! Naive extension to multi agent setting
! Independent learners mutually ignore each other
! Implicitly perceive interaction with other agents as noise in

a stochastic environment
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Learning in matrix games

! Two Q-learners interact in Battle of the
Sexes

! α = 0.01
! Boltzmann exploration with τ = 0.2

! They only observe their immediate reward
! Policy is gradually improved

B S

B 2, 1 0, 0

S 0, 0 1, 2
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Learning in matrix games
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Learning in matrix games
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Markov games

-player game:
〈

, , 1, . . . , ,R1, . . . ,R ,P
〉

! : set of states
! : action set for player
! R : reward/payoff for player
! P : transition function

The payoff function R : × 1 × · · ·× *→ R maps the joint
action =

〈
1 . . .

〉
to an immediate payoff value for player .

The transition function P : × 1 × · · ·× *→ +( )
determines the probabilistic state change to the next state +1.
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Value iteration in Markov games
Single agent MDP:

∗( ) =
∈ ( )

π∗( , )

=
∈ ( )

∑

′

P ′ [R ′ + γ π( ′)]

2-player zero-sum stochastic game:

∗( ,
〈

1, 2
〉
) = R( ,

〈
1, 2

〉
) + γ

∑

′∈
P ′( ,

〈
1, 2

〉
) ∗( ′)

∗( ) =
π∈&( 1) 2∈ 2

∑

1∈ 1

π 1
∗( ,

〈
1, 2

〉
)
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Minimax-Q
! Value iteration requires knowledge of the reward and

transition functions
! Minimax- [Littman94]: learning algorithm for zero-sum

games
! Payoffs balance out, each agent only needs to observe its

own payoff
! is a function of the joint action:

( ,
〈

1, 2
〉
) = R( ,

〈
1, 2

〉
) + γ

∑

′∈
P ′( ,

〈
1, 2

〉
) ( ′)

! A joint action learner (JAL) is an agent that learns -values
for joint actions as opposed to individual actions.
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Minimax-Q (2)

Update rule for agent 1 with reward function R at stage :

+1( ,
〈

1, 2
〉
) = (1− α ) ( ,

〈
1, 2

〉
) + α [R + γ ( +1)]

The value of the next state ( +1):

+1( ) =
π∈&( 1) 2∈ 2

∑

1∈ 1

π 1 ( ,
〈

1, 2
〉
) .

Minimax- converges to Nash equilibria under the same
assumptions as regular -learning [Littman94]
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Nash-Q learning

! Nash- learning [Hu03]: joint action learner for
general-sum stochastic games

! Each individual agent has to estimate values for all other
agents as well

! Optimal Nash- values: sum of immediate reward and
discounted future rewards under the condition that all
agents play a specified Nash equilibrium from the next
stage onward

..
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Nash-Q learning (2)

Update rule for agent :

+1( ,
〈

1, . . . ,
〉
) = (1− α ) ( ,

〈
1, . . . ,

〉
)

+ α
[
R + γ ( +1)

]

A Nash equilibrium is computed for each stage game(
1( +1, ·), . . . , ( +1, ·)

)
and results in the equilibrium

payoff ( +1, ·) to agent

Agent uses the same update rule to estimate values for all
other agents, i.e., ∀ ∈ {1, . . . , }\
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Other equilibrium learning algorithms

! Friend-or-Foe -learning [Littman01]
! Correlated- learning (CE- ) [Greenwald03]
! Nash bargaining solution -learning (NBS- ) [Qiao06]]
! Optimal adaptive learning (OAL) [Wang02]
! Asymmetric- learning [Kononen03]
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Limitations of MARL

! Convergence guarantees are mostly restricted to stateless
repeated games

! ... or are inapplicable in general-sum games
! Many convergence proofs have strong assumptions with

respect to a-priori knowledge and/or observability
! Equilibrium learners focus on stage-wise solutions (only

indirect state coupling)
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Summary

In a multi-agent system
! be aware what information is available to the agent
! if you can afford to try, just run an algorithm that matches

the assumptions
! proofs of convergence are available for small games
! new research can focus either on engineering solutions, or

advancing the state-of-the-art theories
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Questions so far?
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Thank you!
Daan Bloembergen | daan.bloembergen@gmail.com
Daniel Hennes | daniel.hennes@gmail.com
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Dynamics of Learning in Strategic
Interactions
Michael Kaisers

..
September 27, 2013 - ECML MARL Tutorial

Outline

! Action values in dynamic environments
! Deriving learning dynamics
! Illustrating Convergence
! Comparing dynamics of various algorithms
! Replicator dynamics as models of evolution, swarm
intelligence and learning

! Summary

..
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Action values in dynamic environments

Action values are estimated by sampling from interactions with
the environment, possibly in the presence of other agents.

..
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Action values in dynamic environments
Static environment, off-policy Q-value updates

1 50 1000

0.2

0.4

0.6

0.8

1

time

re
w

ar
d

 

 
action 1
action 2

Expected value
Q-value

..
Multiagent Reinforcement Learning - 4/23



Action values in dynamic environments
Static environment, on-policy Q-value updates
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Action values in dynamic environments
Static environment, on-policy Q-value updates
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Action values in dynamic environments
Adversarial environment, on-policy Q-value updates
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Action values in dynamic environments
Adversarial environment, on-policy Q-value updates
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Deriving Learning Dynamics
Matching Pennies

H T
H 1, 0 0, 1
T 0, 1 1, 0

α = 0.1 α = 0.001

..
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Deriving Learning Dynamics

Learning algorithm
α→0

(
(∆ )

)
= = ˙ Dynamical system

Advantages of dynamical systems
! Deterministic
! Convergence guarantees using Jacobian
! Vast related body of literature (e.g., bifurcation theory)

..
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Deriving Learning Dynamics
Example: Cross learning [Boergers97]

( + 1)←
{

(1− α ) + α if selected
(1− α ) for other action selected

(∆ ) = [(1− α ) + α − ] +
∑

"=
[(1− α ) − ]

= α [(1− ) −
∑

"=
] = α [ −

∑
]

Learning algorithm
α→0

(
(∆ )

)
= = ˙ Dynamical system

˙ =

[
[ ]−

∑
[ ]

]
= [( ) − ]︸ ︷︷ ︸
replicator dynamics

..
Multiagent Reinforcement Learning - 7/23

Deriving Learning Dynamics
Prisoners' Dilemma Battle of Sexes Matching Pennies

D C
D 1, 1 5, 0
C 0, 5 3, 3

B S
B 2, 1 0, 0
S 0, 0 1, 2

H T
H 1,−1 −1, 1
T −1, 1 1,−1

1

1− 1

1 1− 1 1 1− 1 1 1− 1
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Deriving Learning Dynamics

Dynamics have been derived for
! Learning Automata (Cross Learning)
! Regret Matching (RM)
! Variations of Infinitesimal Gradient Ascent

! Infinitesimal Gradient Ascent (IGA)
! Win-or-Learn-Fast (WoLF) IGA
! Weighted Policy Learning (WPL)

! Variations of Q-learning
! Repeated Update Q-learning
See our talk on Thursday, Session F4 Learning 1, 13:50

! Frequency Adjusted Q-learning

..
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Illustrating Convergence
Q-learning [Watkins92]

probability of playing action
α learning rate
reward

τ temperature
Update rule

( + 1)← ( ) + α

(
( ) + γ ( )− ( )

)

Policy generation function

( , τ) =
τ−1

∑
τ−1
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Illustrating Convergence
Frequency Adjusted Q-learning (FAQ-learning) [Kaisers2010]

probability of playing action
α learning rate
reward

τ temperature
Update rule

( + 1)← ( ) + α
1
(

( ) + γ ( )− ( )

)

Policy generation function

( , τ) =
τ−1

∑
τ−1

..
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Illustrating Convergence

Cross Learning [Boergers97]

˙ =

[
[ ( )]−

∑
[ ( )]

]

Frequency Adjusted Q-learning [Tuyls05, Kaisers2010]

˙ = α

(
τ−1

[
[ ( )]−

∑
[ ( )]

]
− +

∑
)

Proof of convergence in two-player two-action games
[Kaisers2011, Kianercy2012]

..
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Illustrating Convergence
Prisoners' Dilemma

Q
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Illustrating Convergence
Battle of Sexes
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Illustrating Convergence
Matching Pennies

Q
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Comparing Dynamics

Dynamical systems have been associated with
! Infinitesimal Gradient Ascent (IGA)
! Win-or-Learn-Fast Infinitesimal Gradient Ascent (WoLF)
! Weighted Policy Learning (WPL)

! Cross Learning (CL)
! Frequency Adjusted Q-learning (FAQ)
! Regret Matching (RM)

..
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Comparing Dynamics
Learning dynamics for two-agent two-action games. The
common gradient is abbreviated ð =

[
+ 12 − 22

]
.

Algorithm ˙

IGA αð

WoLF ð ·
{

α ( , ) > ( , )
α

WPL αð ·
{

ð < 0
(1− )

CL α (1− ) ð
FAQ α (1− )

[
ð ·τ−1 − 1−

]

RM α (1− ) ð ·
{

(1 + α ð)−1 ð < 0
(1− α(1− )ð)−1

..
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Comparing Dynamics
Cross Learning is linked to the replicator dynamics

˙ =

[
[ ( )]−

∑
[ ( )]

]

Gradient based algorithms use the orthogonal projection
function, leading to the following dynamics for IGA:

˙ = α

[
[ ( )]−

∑ 1
[ ( )]

]

Gradient dynamics use information about all actions, and are
equivalent to the replicator dynamics under the uniform policy
(i.e., also given off-policy updates).

..
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Replicator Dynamics
Path finding with Ant Colony Optimization

Pheromones τ and travel cost heuristic η lead to probabilistic
selection of state transition , from to :

, =
τα, η

β

∑
τα, η

β
,

,with α,β tuning parameters

..
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Replicator Dynamics
Pheromone trail reinforcement in Ant Colony Optimization

τ , ( + 1) = (1− ρ)τ , ( ) +
∑

=1

δ , ( , ),

where ρ denotes the pheromone evaporation rate, is the
number of ants and δ , ( , ) = , with being a constant,

, being the number of times edge ( , ) has been visited.

˙ , =

(
τα, η

β

∑
τα, η

β
,

)′

= α ,
τ̇ ,

τ ,
− α ,

∑ ˙τ ,

τ ,
,

= α ,

(
Θ , −

∑
, Θ ,

)

︸ ︷︷ ︸
replicator dynamics

,Θ , =
˙τ ,

τ ,

..
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Replicator Dynamics

˙ =

[
[ ( )]−

∑
[ ( )]

]

Relative competitiveness as encoded by the replicator
dynamics models

! the selection operator in evolutionary game theory
! pheromone trail reinforcement in swarm intelligence
! and exploitation in reinforcement learning dynamics.

..
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Summary

In strategic interactions
! the action values change over time
! the joint learning is a complex stochastic system
! dynamics can be captured in dynamical systems

! proof of convergence
! similarity of dynamics despite different implementations
! link between learning, evolution and swarm intelligence

! different assumptions about observability give rise to a
menagerie of algorithms to choose from

..
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Questions?
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Thank you!
Michael Kaisers | michaelkaisers@gmail.com
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Multiagent Reinforcement Learning - 23/23



1

2



3

4



5

6



7

8



9

10



11

12



13

14



15

16



17

18



19

20



21

22



23

24



25

26



27

28



29

30



31

32



33

34



35

36



37

38



39

40



41

42



43

44



45

46



47

48



49

50



51

52



53

54



55

56



57

58



59

60



61

62



63

64



65

66



67

68



69

70



71

72



73

74



75

76



77

78



79

80



81

82


