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Fundamentals of Multi-Agent
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Single Agent Reinforcement Learning

» Markov Decision Processes
» Value lteration
» Policy Iteration
» Algorithms
» Q-Learning
» Learning Automata
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__ Outline (2)

Multiagent Reinforcement Learning

» Game Theory
» Markov Games
» Value lteration

» Algorithms

Minimax-Q Learning

Nash-Q Learning

Other Equilibrium Learning Algorithms
Policy Hill-Climbing
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. Partl: .
Single Agent Reinforcement Learning
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Reinforcement .
Learning
Richard S. Sutton and Andrew G. Barto
Reinforcement Learning: An

Introduction
MIT Press, 1998

Available on-line for free!
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Based on ideas from psychology

» Edward Thorndike's law of effect

» Satisfaction strengthens behavior,
discomfort weakens it

» B.F. Skinner's principle of
reinforcement
» Skinner Box: train animals by
providing (positive) feedback

Learning by interacting with the A
environment
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Why reinf learnina?

Control theory

» Design a controller to minimize some measure of a
dynamical systems's behavior

» Richard Bellman
» Use system state and value functions (optimal return)
» Bellman equation

» Dynamic programming
» Solve optimal control problems by solving the Bellman

equation

These two threads came together in the 1980s, producing the
modern field of reinforcement learning
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___TheRL setting

s(t+1)

r(t+1)

» Learning from interactions

» Learning what to do - how to map situations to actions -
SO as to maximize a numerical reward signal
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_ Key features of RL

» Learneris not told which action to take

Trial-and-error approach
Possibility of delayed reward
» Sacrifice short-term gains for greater long-term gains

v

v

» Need to balance exploration and exploitation
» In between supervised and unsupervised learning

(N
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Agent interacts at discrete time steps t =0, 1,2, . ..

» Observes state s; € S —
» Selects action a; € A(sy)

» Obtains immediate reward St |h ay
LT
Fip1 € N i Environment
» Observes resulting state s+ " Se

eS| Tivo r
4@“; ¢ @atﬂ ¢ @aﬁz'ﬁ3 @at+3

(e
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____Elements of RL

» Time steps need not refer to fixed intervals of real time
» Actions can be

» low level (voltage to motors)
» high level (go left, go right)
» "mental" (shift focus of attention)

» States can be

» low level "sensations" (temperature, (z, y) coordinates)
» high level abstractions, symbolic

» subjective, internal ("surprised", "lost")

» The environment is not necessarily known to the agent
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____Elements of RL

» State transitions are

» changes to the internal state of the agent
» changes in the environment as a result of the agent's action
» can be nondeterministic

» Rewards are

» goals, subgoals
» duration
> ..
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__Learning how to behave

» The agent's policy 7 at time tis
» a mapping from states to action probabilities
> (s, a) = Play = a|sy = s)

» Reinforcement learning methods specify how the agent
changes its policy as a result of experience

» Roughly, the agent's goal is to get as much reward as it
can over the long run
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The obiective

Suppose the sequence of rewards after time tis
Tt4+1, Tt425 Tt+35 - - -

» The goal is to maximize the expected return E{R;} for
each time step ¢

» Episodic tasks naturally break into episodes, e.g., plays of a
game, trips through a maze

Ri=rg1+ 1o+ ...+ 1rr
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__The objective

» Continuing tasks do not naturally break up into episodes
» Use discounted return instead of total reward
Ry =rip1 + 2 + 7 s + .. = Z’Ykrt-l-k-l-l

where v, 0 < v < 1is the discount factor such that

shortsighted 0+« v — 1 farsighted

o3
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__Example: pole balancing

» As an episodic task where each
episode ends upon failure
» reward = +1 for each step before

failure
» return = number of steps before

failure

» As a continuing task with discounted return
» reward =-1 upon failure
» return = —~* for k steps before failure
» In both cases, return is maximized by avoiding failure for as
long as possible
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A unified notati

» Think of each episode as ending in an absorbing state that
always produces a reward of zero

@ r =+l @ ry=+1 @ r;=+l1 DQ%:S
» Now we can cover both episodic and continuing tasks by

writing
oo
_ k
= Z VTt kL
k=0
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Markov decisi

» |tis often useful to a assume that all relevant information is
present in the current state: Markov property

P(St+1, 7’t+1|5t, at) = P(8t+1, 7“t+1|8t, Aty Tty St—1, At—15- -+, 11, S0, Clo)

» If a reinforcement learning task has the Markov property, it
is basically a Markov Decision Process (MDP)

» Assuming finite state and action spaces, it is a finite MDP
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Markov decisi

An MDP is defined by
» State and action sets

» One-step dynamics defined by state transition
probabilities

Pl = P(sir1 = 8|5t = s,a: = a)
» Reward probabilties

Rey = E(re1|si = s, a0 = a, 8101 = )
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___Value functions

» When following a fixed policy = we can define the value of
a state s under that policy as

VT(s) = Ex(Ry|st = s) ny Teykt1|Se = S)
k_

» Similarly we can define the value of taking action a in state
5 as

Q" (s,a) = Ex(Ry|st = s, ap = a)
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___Value functions

» The value function has a particular recursive relationship,
defined by the Bellman equation

Zw s, a ZP“ [R%, +~ V()]

» The equation expresses the recursive relation between the
value of a state and its successor states, and averages over
all possibilities, weighting each by its probability of
occurring
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» We want to find the policy that maximizes long term
reward, which equates to finding the optimal value
function

V*(s) = max V" (s) Vse S

™

@ (s, a) = max (s, o) Vse S, ac A(s)

» Expressed recursively, this is the Bellman optimality
equation

Vi(s) = e Q™" (s, a)

— 7)/ /+ V*
nax a w[Rey +yV*(s)]

{

—
=

,
|7
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Solving the Bell .

» We can find the optimal policy by solving the Bellman
equation

» Dynamic Programming
» Two approaches:
» [teratively improve the value function: value iteration
» Iteratively evaluate and improve the policy: policy iteration

» Both approaches are proven to converge to the optimal
value function

1
z
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Value iterati

Initialize V" arbitrarily, e.g..V(s) = 0, for all s € ST

Repeat
A—10
For each s € S:
v V(s)

V(s) < max, Z‘_, P, [ R, + V( S/)]
A < max(A, [v = V(s)))

until A < # (a small positive number)

Output a deterministic policy, 7, such that

m(s) = argmax, y__, P2, ['Rf\,’s, + *\(s')]
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» Often the optimal policy has been reached long before the
value function has converged

» Policy iteration calculates a new policy based on the
current value function, and then calculates a new value
function based on this policy

» This process often converges faster to the optimal policy

=
z

.3
®
»n
Q
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1. Initialization
Vi(s) € R and w(s) € A(s) arbitrarily for all s € §

3]

. Policy Evaluation
Repeat
JANEE )
For each s € S:
v — V(s)
Vis) — 3, P {R ) AV (s j]}
A — max(A, [v — V(s)])
until A < # (a small positive number)

3. Policy Improvement
policy-stable « true
For each s € S:
b— 7(s)
m(s) «— argmax, » P, ['R._’js, + vV s’)]
If b # w(s), then policy-stable «— false
It policy-stable, then stop; else go to 2
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Learn; . bolicy online

» Both previous approaches require to know the dynamics
of the environment

» Often this information is not available
» Using temporal difference (TD) methods is one way of
overcoming this problem

» Learn directly from raw experience
» No model of the environment required (model-free)
» E.g. Q-learning

» Update predicted state values based on new observations
of immediate rewards and successor states

(s
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___Q-learning

» Q-learning updates state-action values based on the
immediate reward and the optimal expected return

Qsts ar) — Qs ar) 0 [risy +ymax Qsee1, @) — Qlsis )|

» Directly learns the optimal value function independent of
the policy being followed

» In contrast to on-policy learners, e.g. SARSA

» Proven to converge to the optimal policy given "sufficient”
updates for each state-action pair, and decreasing learning
rate a [Watkins92]

=
%‘

®
®
2
Q
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___Q-learning

Initialize Q(s.a) arbitrarily
Repeat (for each episode):
Initialize s
Repeat (for each step of episode):
Choose a from s using policy derived from @ (e.g., e-greedy)
Take action a, observe r, s’
Qls.a) «— Qls,a) ulr b~y max, Q(s', a") Q[s.ujl

) ol
S8 — 5

until s is terminal

=

=
o
72
o
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Acti locti

» How to select an action based on the values of the states
or state-action pairs?
» Success of RL depends on a trade-off

» Exploration
» Exploitation

v

Exploration is needed to prevent getting stuck in local
optima
» To ensure convergence you need to exploit
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Acti lacti

Two common choices
> e-greedy
» Choose the best action with probability 1 — e
» Choose a random action with probability e

» Boltzmann exploration (softmax) uses a temperature
parameter 7 to balance exploration and exploitation

o Qi(s.0)/7
D wea e@UIT

pure exploitation 0+ 7 — oo pure exploration

(s, a) =

(s
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__ lLearning automata

» Learning automata [Narendra74] directly modify their
policy based on the observed reward (policy iteration)

» Finite action-set learning automata learn a policy over a
finite set of actions

ar(l —z(a)) — B(1 — r)m(a) ifa=ay

o= 7T<a>+{omr(a) FB0 =Dk 1) —n(a)] Far o

where k= |A|, and aand  are reward and penalty
parameters respectively, and r € [0, 1]

» Cross learning is a special case wherea =1and 8 =0

®
»n
QO
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_ Networks of learning automata

» Asingle learning automaton ignores any state information
» In a network of learning automata [\Wheeler86] control is
passed on from one automaton to another

» One automaton A is active for each state
» The immediate reward ris replaced by the average
cumulative reward 7 since the last visit to that state

m(s) = 2T = Liciy ™
YA T t—1(s)

where [(s) indicates in which time step state s was last
visited
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____Extensions

» Multi-step TD: eligibility traces
» Instead of observing one immediate reward, use n
consecutive rewards for the value update
» Intuition: your current choice of action may have
implications for the future
» State-action pairs are eligible for future rewards, with more
recent states getting more credit

C’r
- C t‘r
-
)
-2 -
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____Extensions

» Reward shaping

» Incorporate domain knowledge to provide additional
rewards during an episode

» Guide the agent to learn faster

» (Optimal) policies preserved given a potential-based
shaping function [Ng99]

» Function approximation

» So far we have used a tabular notation for value functions

» For large state and actions spaces this approach becomes
intractable

» Function approximators can be used to generalize over
large or even continuous state and action spaces
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___Questions so far?

-
® |
S
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_ Partll: .
Multiagent Reinforcement Learning

Preliminaries: Fundamentals of Game Theory

(s
% Maastricht University §\&\\\§ cSa Multiagent Reinforcement Learning - 37/60

__Game theory

» Models strategic interactions as games

» In normal form games, all players simultaneously select an
action, and their joint action determines their individual
payoff

» One-shot interaction
» (Can be represented as an n-dimensional payoff matrix, for n
players

» A player's strategy is defined as a probability distribution
over his possible actions

A
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» Two prisoners (A and B) commit a crime
together

» They are questioned separately and can
choose to confess or deny C

» If both confess, both prisoners will serve 3

years in jail C|-3,-3]-0,-5

» If both deny, both serve only 1 year for
minor charges D1 -5-0]-1-1

» If only one confesses, he goes free, while
the other serves 5 years

(s
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» What should they do?

» If both deny, their total penalty is lowest
» But s this individually rational? C D

» Purely selfish: regardless of what the other cl33]05
player does, confess is the optimal choice ’ ’

O

-5,-0 | -1, -1

» If the other confesses, 3 instead of 5 years

» |If the other denies, free instead of 1 year

=
?

o2
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___Solution concepts

» Nash equilibrium
» Individually rational
» No player can improve by unilaterally
changing his strategy
» Mutual confession is the only Nash
equilibrium of this game

» Jointly the players could do better

» Pareto optimum: there is no other
solution for which all players do at least as
well and at least one player is strictly
better off

» Mutual denial Pareto dominates the Nash
equilibrium in this game

C D
-3,-3 | -0,-5
-5,-0 | -1,-1

% Maastricht University &\y esa
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__ Types of games

» Competitive or zero-sum
» Players have opposing preferences
» E.g. Matching Pennies
» Symmetric games
» Players are identical
» E.g. Prioner's Dilemma
» Asymmetric games

» Players are unique
» E.g. Battle of the Sexes

Matching Pennies

H

T

-1, 41

-1, +1

+1,-1

C

Prisoner's Dilemma

D

-3,-3

-0,-5

-5,-0

-1,-1

Battle of the Sexes

B

S

2,1

0,0

0,0

1,2

\\L
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. Partll: .
Multiagent Reinforcement Learning

(N
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MARL: Motivati

» MAS offer a solution paradigm that can cope with complex
problems

» Technological challenges require decentralised solutions

» Multiple autonomous vehicles for exploration, surveillance
or rescue missions

» Distributed sensing

» Traffic control (data, urban or air traffic)

» Key advantages: Fault tolerance and load balancing

» But: highly dynamic and nondeterministic environments!
» Need for adaptation on an individual level

» Learning is crucial!

(s
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v

Inherently more challenging

» Agents interact with the environment and each other

» Learning is simultaneous

» Changes in strategy of one agent might affect strategy of
other agents

» Questions:

» One vs. many learning agents?

» Convergence?

» Objective: maximise common reward or individual reward?
» Credit assignment?

% Maastricht University &W ecSsa Multiagent Reinforcement Learning - 45/60

___Independent reinforcement learners

» Naive extension to multi agent setting
» Independent learners mutually ignore each other

» Implicitly perceive interaction with other agents as noise in
a stochastic environment
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___Learning in matrix games

» Two Q-learners interact in Battle of the

Sexes B S
» o= 0.01
» Boltzmann exploration with 7 = 0.2 B1211]100
» They only observe their immediate reward S10011,2
» Policy is gradually improved
% Maastricht University &\&\S\gesa Multiagent Reinforcement Learning - 47/60
___lLearning in matrix games
1
0.9
-‘§3 0.8
: B S
E 0
2" B|[211]00
]
§0-6 S10011,2
0.5 — Player 1
— Player 2
O'40 56 1 60 1 éO 260 25‘30

Iterations

(¥
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_Markov games

n-player game: (n, S, A',..., A", R, ..., R", P)
» S: set of states
» A':action set for player i
» R': reward/payoff for player i
» P transition function

The payoff function R : § x Al x --- x A™ — R maps the joint
action a = (a*...a") to an immediate payoff value for player .

The transition function P : § x Al x -+ x A"+ A(9)

determines the probabilistic state change to the next state s, .

&

\\\L
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___Value iteration in Markov games

Single agent MDP:
V* — 7T &
(s) nax Q™ (s, a)
— Pa/ Ra/ !
nax s R V™ (s)]

S/

2-player zero-sum stochastic game:

Q" (s, <a1, a2>) = R (s, <a1, a2>) + Z Py (s, <a1, a2>) V*(d)

ses

V*(s) = max min 71 Q" (s, (at, a®
( ) TEA(AL) a?€ A% @ ¢ ( 7< 7 >)
ale Al

(s
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Minimax-GQ

» Value iteration requires knowledge of the reward and
transition functions

» Minimax-Q [Littman94]: learning algorithm for zero-sum
games

» Payoffs balance out, each agent only needs to observe its
own payoff

» (Qis afunction of the joint action:
Q(s, (', a*)) = R(s,(a',a®)) +7 Y Po(s,(a', a®)) V(&)
se s

» Ajoint action learner (JAL) is an agent that learns @Q-values
for joint actions as opposed to individual actions.

=
z
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__Minimax-Q (2)

Update rule for agent 1 with reward function R at stage ¢
Qe (s, (ag, a7)) = (1 — a) Qulse, (ag, a7)) + ¢ [Re+ v Vil s141))]

The value of the next state V(su1):

V. $) = max min s s {a'. a®)).
t+1( ) WEA(Al) e A2 ; al Qt( ) < ) >)
ale Al

Minimax- @ converges to Nash equilibria under the same
assumptions as regular @Q-learning [Littman94]
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___Nash-Q learning

» Nash-Q learning [HuO3]: joint action learner for
general-sum stochastic games

» Each individual agent has to estimate @ values for all other
agents as well

» Optimal Nash-@ values: sum of immediate reward and
discounted future rewards under the condition that all
agents play a specified Nash equilibrium from the next
stage onward

% Maastricht University &\\\\ cSsa Multiagent Reinforcement Learning - 54/60



_Nash-Q learning (2)
Update rule for agent i

Qiﬂ(st, <a1, e a”>) = (1 — ay) Q(st, <a1, e a”>)
+ oy [Ri+ v Nash Vi(s141)]

A Nash equilibrium is computed for each stage game
(Qt(st4+1.7), - -, QF(se41,+)) and results in the equilibrium
payoff Nash V(s 1,-) to agent i

Agent 4 uses the same update rule to estimate @Q values for all
other agents,ie, @Vje {1,...,n}\i
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» Friend-or-Foe @-learning [Littman01]

» Correlated-@Q learning (CE-Q) [Greenwald03]

» Nash bargaining solution @-learning (NBS-Q) [Qiaoc06]]
» Optimal adaptive learning (OAL) [Wang02]

» Asymmetric-Q learning [Kononen(03]
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» Convergence guarantees are mostly restricted to stateless
repeated games

» ... orare inapplicable in general-sum games

» Many convergence proofs have strong assumptions with
respect to a-priori knowledge and/or observability

» Equilibrium learners focus on stage-wise solutions (only
indirect state coupling)

&

__ Summary
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In a multi-agent system
» be aware what information is available to the agent

» if you can afford to try, just run an algorithm that matches
the assumptions

» proofs of convergence are available for small games

» new research can focus either on engineering solutions, or
advancing the state-of-the-art theories

&

\\
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Thank youl!

Daan Bloembergen | daan.bloembergen@gmail.com
Daniel Hennes | daniel.hennes@gmail.com
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Dynamics of Learning in Strategic
Interactions

Michael Kaisers

||||| DAl - La bo r ﬂﬁ September 27,2013 - ECML MARL Tutorial

___QOutline

» Action values in dynamic environments

» Deriving learning dynamics

» lllustrating Convergence

» Comparing dynamics of various algorithms

» Replicator dynamics as models of evolution, swarm
intelligence and learning

» Summary
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Action values are estimated by sampling from interactions with
the environment, possibly in the presence of other agents.

”III DAI - La b or ﬂﬁ Multiagent Reinforcement Learning - 3/23

Static environment, off-policy Q-value updates
1r

< action 1|| --- Expected value
’ > action 2|| — Q-value

reward

1 50 100
time
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Static environment, on-policy Q-value updates
1r

- action 1|| --- Expected value
° > action 2|| — Q-value

reward

1 50 100
time
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Static environment, on-policy Q-value updates
1

o action 2
0.8
0.2
o 50 100
time
1 : 1
action
0.8
0.6
o
S
20.4;
0.2
o action 2
1 50 100
time
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Adversarial environment, on-policy Q-value updates

1n

O 8*><>OOODODOOD OQGID GO0 OO0 XX XX XX XX XX X

reward

- action 1

o action 2

--- Expected value
— Q-value

100

026 0 x0 Ox0 @ 0a@DO 0 O X® O 300000
O L
1 50
time

Il DAI-Labor ‘T8
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Adversarial environment, on-policy Q-value updates

* action 1
° action 2

50
time

action 2

100

il DAI-Labor T
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Deriving Learning D .

Matching Pennies

H T

H 1,0 | 0,1

T 10,1 1,0
1 1
0.8 0.8
y, 0.6 v, 0.6
0.4 0.4
0.2 0.2

% 02040608 1

4

a=20.1

% 02040608 1

%y

a = 0.001

Il DAI-Labor ‘T8

Deriving Learning O .

. : , _ dx
Learning algorithm ilirb (E(Az)) = =
Advantages of dynamical systems

» Deterministic

Multiagent Reinforcement Learning - 5/23

= z Dynamical system

» Convergence guarantees using Jacobian
» Vast related body of literature (e.g., bifurcation theory)

il DAI-Labor T
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___Deriving Learning Dynamics

Example: Cross learning [Boergers97/]
(1 — ar)z; +ar;  ifiselected
xz-(t+ 1) — ) .
(1 — arj)z; for other action j selected

E(Ax) = z;[(1 — ary)x; + ar; — ;] + Z x [(1 — arg)x; — x)
kot

= az;[(1 — z;)r E Tpry] = ax;r g Ty k]

k1

Learning algorithm lim (E(Az)) = dr_ z Dynamical system
a—0 dt

T = x; Z o Er] | = =z [(Ay) — :JJAy]
rephcator dynamics
”III DAI - La b or ﬂﬁ Multiagent Reinforcement Learning - 7/23

Deriving Learning O .

Prisoners' Dilemma Battle of Sexes Matching Pennies
D C B S H T
D [1,1 | 50| B |21 |00]| H 1,—-1 | =1, 1 21
c o5 (33| s]o0]|12] 7]|-1, 1 1L,-1] 1—x
n 11— n 1= Y L=
! f A rr ] ! I ! o e o
\\\\\ g \\
o8 § 1L 08 NN s 1 772
NI VAN 177N\
o8 LIS 08 | \ NN 0s M//\\\x
Wl LSS I RN N / 2 N )
ot LSS S]] oa LA VNN o4t | N\ /
L/ s )] Ll \,/L\ A\ NNl 7/
ool /S ) 0.2 }}///‘\\\ 0.2 \\\\\‘,:i:ﬁ/ /
o) o)

0 02 04 06 08 1 0 02 04_06 08 1
X1 X1
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Deriving Learning D .

Dynamics have been derived for
» Learning Automata (Cross Learning)

» Regret Matching (RM)
» Variations of Infinitesimal Gradient Ascent

» Infinitesimal Gradient Ascent (IGA)
» Win-or-Learn-Fast (WoLF) IGA
» Weighted Policy Learning (WPL)

» Variations of Q-learning

» Repeated Update Q-learning
See our talk on Thursday, Session F4 Learning 1, 13:50
» Frequency Adjusted Q-learning

”III DAI - La b or ﬂﬁ Multiagent Reinforcement Learning - 9/23

__lllustrating Convergence

Q-learning [Watkins92]
z; probability of playing action 4
o learning rate
r reward
7 temperature
Update rule

Qi(t—l— 1) < Qz(t) + « (Ti(t) + 'ymjax Qj(t) — Qz(t))
Policy generation function

xi(Qﬁ):_—_@

”III DAI - La b or ﬂﬁ Multiagent Reinforcement Learning - 10/23



___lllustrating Convergence

Frequency Adjusted Q-learning (FAQ-learning) [Kaisers2010]
z; probability of playing action 4
« learning rate
r reward
T temperature
Update rule
Qi(t+1) + Qi(t) + a% (ri(t) + 'ym;fix Qi(t) — Qz(t))

7

Policy generation function

HQT) = g

”III DAI - La b or ﬂﬁ Multiagent Reinforcement Learning - 10/23

__lllustrating Convergence

Cross Learning [Boergers97]

Elri(t)] = iL’ksE[Tk:(t)]]
k

:.L’Z':xi

Frequency Adjusted Q-learning [Tuyls05, Kaisers2010]
T = a; (7’1 E|ri(t)] — Z a;’kE[frk(t)]] — log x; + Z 1, log :L“k>
k k

Proof of convergence in two-player two-action games
[Kaisers2011, Kianercy2012]

”III DAI - La b or ﬂﬁ Multiagent Reinforcement Learning - 11/23



Prlsoners D|Iemma

wl [ 7
Q v, J

0.4
0.2
G0 02 04 06 08 1 GO 02 04 06 08 1 00 02 04 06 08 1
X1 X1 X‘
1 1 1
0.8 K‘—/ 0.8 0.8
0.6 0.6 0.6
FAQ
0.4 0.4 0.4
0.2] 0.2] 0.2]
G0 02 04 06 08 1 00 02 04 06 08 1 OO 02 04 06 08 1
X1 ><1 X1
Qi Pessimistic neutral optimistic

”III DAI - La b or ﬂﬁ Multiagent Reinforcement Learning - 12/23

ce

Battle of Sexes

0.8 0.8] 0.8]
0.6 0.6 0.6
Q g
0.4 0.4 0.4
0.2] 0.2] 0.2]
G0 0 2 0. 4 O 6 08 O0 02 04 X 06 08 1 O0 02 04 X 06 038 1
1 1
1 1 1
0.8 0.8 0.8
0.6 0.6 0.6
FAQ
0.4 0.4 0.4
0.2 0.2 0.2
G 0.2 0. 4 0 6 08 1 OO 02 04 X 06 08 1 OO 02 04 X 06 0.8 1
1 1
Qinit  PESsimistic neutral optimistic
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___lllustrating Convergence

Matching Pennies

FVA/—\

1

08
0.6 '
| y
0.4 ‘
A

0.2 —

1 OO 0.2 0.4X 06 08 1

1

1 1 1

0.8] 08 /

0.6] 0.6]

FAQ ) 0.4] 0.4] 0.4]
0.2 0.2 0.2 ‘
GO 0.2 0.4X 06 0.8 1 00 0.2 O.4X 06 0.8 1 OO 0.2 O.4x 06 0.8 1
Qinit pessimistic neutral optimistic
”III DAI - La b or ﬂﬁ Multiagent Reinforcement Learning - 14/23

____Comparing Dynamics

Dynamical systems have been associated with
» Infinitesimal Gradient Ascent (IGA)
» Win-or-Learn-Fast Infinitesimal Gradient Ascent (WoLF)
» Weighted Policy Learning (WPL)

» Cross Learning (CL)
» Frequency Adjusted Q-learning (FAQ)
Regret Matching (RM)

v
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____Comparing Dynamics

Learning dynamics for two-agent two-action games. The
common gradient is abbreviated 8 = [yhAh’ + A1o — Ags].

Algorithm T
IGA a0
V\/OLF 0 - Xmin if V(m7 y) > V(xe’ y)
mar  Otherwise
x if0<0
WPL a0 { 1 —z) otherwise
CL ar(l—1z) 0
FAQ ax(l —z)[0 771 —log 1]
B f a+ ard) ! if <0
W az(l-2) { (1—a(l—2)0)"! otherwise
”III DAI - La b O r ﬂﬁ Multiagent Reinforcement Learning - 16/23

____Comparing Dynamics

Cross Learning is linked to the replicator dynamics

fl?z'ZIEZ'

EIfi(t)] =) ak [fk(t>]]
k

Gradient based algorithms use the orthogonal projection
function, leading to the following dynamics for IGA:

:'EZ':Oé

BIf(H] -3 m]

k

Gradient dynamics use information about all actions, and are
equivalent to the replicator dynamics under the uniform policy
(i.e., also given off-policy updates).

”III DAI - La b or ﬂﬁ Multiagent Reinforcement Learning - 17/23



___Replicator Dynamics

Path finding with Ant Colony Optimization

Pheromones 7 and travel cost heuristic n lead to probabilistic
selection of state transition z;; from i to j:

8
T

Ti; = T,With a, B tuning parameters
EC Z Cnl C

”III DAI - La b or ﬂﬁ Multiagent Reinforcement Learning - 18/23

___Replicator Dynamics

Pheromone trail reinforcement in Ant Colony Optimization

Tij(t+1) = (1 — p)7i (1) + 25,9 (t, m),

where p denotes the pheromone evaporation rate, Mis the
number of ants and §;;(¢, m) = Q= with @ being a constant,
n; ; being the number of times edge (4,7) has been visited.

/
o . .
: ,9775 Tij Ti,c
CE@j = = Oéxi,j? — Oéﬂfi?j fxi,c

c zcnzc bJ ¢ Tie
T;'j
= QT @i,j — E xi,k@z‘,k 7@75,]' — T—’
A 2y

- -

"

replicator dynamics
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___Replicator Dynamics

k

Relative competitiveness as encoded by the replicator
dynamics models

» the selection operator in evolutionary game theory
» pheromone trail reinforcement in swarm intelligence
» and exploitation in reinforcement learning dynamics.

”III DAI - La b or ﬂﬁ Multiagent Reinforcement Learning - 20/23

__ Summary

In strategic interactions
» the action values change over time

» the joint learning is a complex stochastic system

» dynamics can be captured in dynamical systems

» proof of convergence
» similarity of dynamics despite different implementations
» link between learning, evolution and swarm intelligence

» different assumptions about observability give rise to a
menagerie of algorithms to choose from

”III DAI - La b or ﬂﬁ Multiagent Reinforcement Learning - 21/23



____Questions?

——
b//

> |

”III DAI - La b or ﬂﬁ Multiagent Reinforcement Learning - 22/23

Thank youl!

Michael Kaisers | michaelkaisers@gmail.com
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Scaling Multi-agent
Reinforcement Learning

Peter Vrancx

Joint work with:Y-M De Hauwere, A.Rodriguez, A. Nowe

CoMo ¥ Iniversiteit

Sparse Interactions in Multi-agent reinforcement
learning

CoMo. ¥ (e AuEsm—




Motivation

® Several issues arise when applying single agent RL
techniques in multi-agent settings:

One vs. many learning agents?
Convergence? non-stationary, non-Markovian,...

Learning goal: e.g. maximize common reward vs. individual
reward

Influence of action selection strategies and interactions

Credit assignment?

Simple example




Boltzmann X X
-
exploration
g - ?ﬂ — Aowrdl 1
- .13 A;“_.i
- o
g
= S -
EA E’ Py
-~
g
220 400 o Boc 700 1000 2000 2000 4200 2000
estodes ertodes

Agents need information on other agents to coordinate

Multi-agent reinforcement learning

joint state s[t41)
- L
reward r(t+1)

S -' -1] g . .
® Agents influence each A @

other

® Possibly conflicting
interests

* Observations

+ Expensive communication




@ a-(t) . a:(t+1) . ait+2)

n

S ={s',...,
A:A]_X
T:5%xA; X
B 23900 Ay N

a(t)

R (t)

s"}
e OF ; =

Markov Games

{t+1)
r?[l-H )

r..('t'-;i}

as(t+1)

a(t 1)

XA, xS—=[0,1 ©
XA, xS —>Re

(t+2) ax(1+2)

r;[t+2) an[1+2)
rn(i.-l‘-2)
the number of agents
a finite set of states
with Ak the action set of agent k

the transition function

the reward function of agent k

Learning in Markov Games

Learning occurs in join state space
(= all local information of all agents)

Coordination mechanisms often require
learning in joint action space

Large information/communication
requirements

Exponential increases in problem size




Sparse interactions

—J_T—U_—'— | agent

1!;1 [ Transitions & rewards are only dependent on |
= .~ agent
—x L. 2agents
K
rom |

1

M motidhaway and not interacting with each other
e ransitions & rewards are independent of state/
" LeJAgentactiodofsothethiggniseful alone

‘ o"h‘teraqiggimssparse

=l

—‘-E‘.‘-*'Tjir S Y R AUS OTRR SR ERRY AR

i.e. transitions & rewards are dependent

Intuition of sparse interactions

Is there influence from ancther agent?

: - Use a multi-agent technique to
Act independently, as if single-agent. t
coordinate.

TS - %E:
- - I o |

o k-

'1_r_._l' '1'-4. ]

When should agents observe the state information
of other agents to avoid coordination problems?

10



Modeling interactions

® Dynamics of the system are a Markov game

® Model sparse interactions as a DEC-SIMDP eic eca

2010)

o & k Il Sl,l
R )

R &
/ \
MDP for each agent k in the Team Markov game for the local
absence of other agents interaction between K agents in L
(containing local states) interaction states (containing

L = L, system states) -
‘D E‘ .D.:; %

Learning of
Coordination

mq . Global Q-function
¢

When to observe? !iﬂ

Melo & Veloso, 2009




Learning of Coordination

® Add Pseudo COORDINATE

action

o

’ ‘ h s
¢ \
s . '

" Global Q-function
¢
’
’

' R

® External Active Perception L

/:Ilj Lecal”™ Q-funcion
=

® Cost for coordination

The algorithm

Algorithm 1 Learning algosithm for agent &

1o Instialize QF and Qf -
2 Sett = x
3. while (FOREVER) do

4 Choose Ay(f) using 7.2

b If Au(t) =~ COORDINATE then

& il Active Percepd = TRUE then

7 Au(t) » m, Q5 , X(0)):

8 clse

9. Au(t) = m (Q5. Xiu(t)):

10 ond il

1: Sample Ro(t) and Xo(t + 1):

12: I Active Percopt = TRUE then

13: QLUpdate( QL : X (1), Au(t), Relt), Xelt +1),Q1):
14; end if

15 else

16: Sample Ra(t) and Xo(t + 1);

17 end i

18:  QLUpdate(Q: Xu(t), Aa(t). Relt), Xalt +1).Q1):
19 t=t41.

20 end while

13
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Utile
Coordination

Q'

When to @
coordinate? o

(0

Gicba! Q-function

: 4 A

Kok & Viassis, 2005

Coordination graphs

Qi ay,a2)

(.J‘.: ¢ ay.az)

Iflnjs.lﬂ
/ Ay \ A Qi(s.a)
{ Ay (s, a)
/ l- (i"‘vl.\./l‘v.ll 1)
Ay
) Qyls,az,a3) Ry(s.a)
/ -

Coordination through variable elimination

algorithm

Qals", ay)

15
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Example: Robosoccer

CQ-Learning X

Who to observe when?

De Hauwere et al, 2010

17
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Problem setting

® Agents only interact where their policies
interfere

® |ocally adapt policy

Representation idea

19
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Solution method:
CQ-learning

Statistical test on the rewarcs

Single agent Q-learning Q-leaming, based on the

selecting actions based on combination of local state

local state information information and the state
information of another agent

CQ-learninG

STATISTICALTESTS

Expectod reward:

Expand

e Agents have been learning alone in
the environment

® Agent k acts independently using
only local state infofmation (s) in a
multi-agent environment

® Performs statistical test against a
baseline

® Samples its rewards, based on the

state information of other agents &

performs the same test
4 )
sk = (sk,si)

21
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CQ-LEARNING

BASELINE FOR STATISTICALTESTS

g8 — Agent
— Agurnt?
E -
= B
°
.-_ . - ) o
* Initig prds (slif ~ °
X [X
for a particular stj
00000000000000 | R 2 2 2 P
1 '_ ezoudes
W We
K
« against W
Compare Wy against Wi
Experimental results (1)
Env | Alg | #states | #actions | #coll | #steps
° Gridgame 2 [ Indep | 9 | 4 1 27 [222=179
JS 81 4 0.1 40=0.2
(min steps: 3} JSA 81 16 0.0 4.7=0.1
LOC 9905 5 0.1 10=04
X X cQ 10=0.0 4 0.0 36=03
CQ-NI | 10.9=2.0 i 0.1 40=03

Env . Alg | #states | Factions | Fcoll | Fsteps
ISR Indep 43 4 0.4 03+ 44.8
J5 1849 4 0.1 37=16
(min steps: 4) JSA 1849 16 0.0 7614
LOC | 51.3+823 5 0.2 6.7=75
CQ 49.0+£23 4 0.1 51=0.7
‘ CQNI | 199£738 i 0.1 6.0=19
- -
|

23
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Transfer learning with CQ-learning

Source task

-

Rule learring
system (Roper)

-
7 Tonde traiced dasiler N\

-

-— -~

Target task
a,

+ Q™00

Trained classiber

Coordiration & dination 6
not reeded

Sngle agere Qrleaming

L ] |

State space Agent k

State space Agent 1

Q- learning initilned
aith Q7 ke |

CQ-dearning IFA:<LAND Ay <1 AND A= > -1 AND Ay > -1 =» DANGEROUS
IFAr<OAND Az >0 AND Ay< 2 AND Ay > -2 = DANGEROUS
IF Ay <0AND Ay >0 AND Ar > -2 AND Ar <2 = DANGEROUS
Vrancx et al, 2011 eLse - sAFE
De Hauwere et al, 201 |
L . | | | |
x I [ T 11
1 i
® o
L - 1]
> ] |
|
e — - e —Q)-ewrg
\M“W‘ v sy

cA

e sy

(1)

o3

é%‘
|

25
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Transfer learning with CQ-learning (2)

X
Transfer high .
level =
p S S ST T
knowled . .
; /gg/' E:‘u —”—rrL_‘ Apply in more
3 4, l ‘ complex
o T[T 1 - environment
: ‘ \
Learn to L]r:—l_—_,:v
coordinate in Hrr IE ﬂ
simple T
environment ?[
Results
X
»
o

27
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FCQ-Learning x| | [Ix

Who to observe when?

De Hauwere et al, 201 |

Problem setting

J X
o ik, H&, ® ““&2. Hil
X | | | X |

Reward: +20 Reward: +10

® Reflected in immediate reward signal

® Too late to solve the problem

29
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Detecting relevant states

T

Changes in reward signal are reflected in the

Q-values

FCQ-learning

Learned Q-value:

Expand S

A

statistical tests

Agent k has been learning alone, and
its Q-values have converged

Agent k acts independently using
only local state information (s¢) in a
multi-agent environment

Performs statistical test against the
single agent Q-values

Samples rewards monte carlo and
perform a comparison test to

determine what information should
be included

st =» (st &)

31
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Experimental results

Environment | Algorithm | #states | #actions | #collisions #stops rewnrd
® Gridgame 2 | Indep a A ZAL00 | 2272304 —203:356
JS 81 4 0100 6.5 =03 182206
LOC 9.0 2040 LE£ DD 103227 CS =80
) 4 x FeQ 19444 4 01400 81%139 17637
FCQ.NI 21.74£3.1 4 01400 7.1+69 17907
Erpeer ‘mithm Zatates Factions | Fcollisions FHstops reward
@ I Hottldneck .' i" 43 4 1A n.e
¢ ! jod N na La 14
b 184S H 0L.0=040 233 £ 308 131 =36
1A k’ MOE0S 5 1.7=0.6 167.2= 19,345.1 157.0 = 10,3
FJQ 124.5 £+ 328 { 1.1=4040 17313 166 =0
{ 1 | 1 1 lrod Nt | 13504887 4 1200 9.2 + 5.6 154423
x| | X

Conclusions

In multi-agent environments with sparse interactions,
learning these interaction states improves the learning
process

® Interaction states can be learned through increased
penalties for miscoordination Meio &Veloso, 2009]

® |nteraction states can be identified using statistical
tests on the reward signal (immediate + future) e

Hauwere et al, 2010 & 201 1]
® |nformation about interaction states can be generalized

and transferred between agents and environments [oe
Hauwere et al 2010, Vrancex et al 2010]
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Multi-agent Reinforcement Learning in Continuous
Action Games

h \V:l COMO. - ¥ ' Sile
R B t

Learning in Continuous Action Games

e Generalization of discrete
normal form games

e Each agent now selects
actions from continuous set

e Reward function is
continuous function of all
agents’ actions

¢ o~ .

Assumpticns: reward function is continuous,
action sats are compact

35
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Continuous Action Reinforcement
Learning Automata (CARLA)

X e Extension of learning
automata idea to continuous
action spaces

_ ® Now store continuous
pdf [ probability density

distribution
— > ® nonparametric pdf over
actions
frer (@) = {"‘“ (f'“ @) +puae il 'I) ® parametric alternative: CALA
0 (Santharam et al.,1994)
Howell, 1997
CARLA Update
e Extension of reward-inaction
A principles
A\ ® Reinforce selected action by
P N O adding Gaussian Bell to
odf | distribution
® Amplitude (strength of
——— . reinforcement) is
actions determined by magnitude of
Piaorirgine, reward and learning rate &
recdred wibheepeanding ® Width (generalization) is
disesa)tdon determined by spreading

rate parameter A

37
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CARLA Results

® |n single agent systems: Converges to
optimal neighborhood, depending on
spreading rate A (Rocriguez et 1, 2011)

® |n (cooperative) games a set of CARLA will
converge to a locally superior strategy
(Rodriguez et al, 2012)

® More accurate convergence can be
achieved by transforming rewards and

adaptively tuning the spreading rate A
(Rodriguez et al, 201 1)

Coordinated Exploration in
Continuous Action Games

® |n games CARLA may
get stuck in local optima

® A narrow basin of
attraction can make the
global optimum difficult
to find

e Coordinated
exploration can allows
learners to efficiently
explore the joint action
space

39
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Coordinated Exploration in discrete
Games:

Exploring selfish reinforcement learners (ESRL)

Exploration Phases Basic idea: 2 phases
Exploration: Be Selfish
* Independent learning
N N 3N time * Convergence to different NE and Pareto Optimal non-
' » - NE

Synchronization: Coordinate

Synchronizaton Phases

Verbeeck, 2004

ESRL in discrete games

The Penalty Game
Player B

1010 00 Kk
oe 22 0,0

Player A

k= 00 10,10

WEhk<0

Exploration Phases

N 2N AN time

v
Synchronization Phases

41
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Player A

The Penalty Game

Player B

10,10
oc
k=

v d
.
@ o.n

00 10,10

-

Withk<©

Exploration Phases

.

ESRL

* Exploration

* Use LRI —* the agents
converge to pure (Nash)
joint action

» Synchronization

* Update average payoff for
action a converged to,

optimistically
N N 3N time * Exclude action ¢ and
N explore again if empty
Syncl’n'cni.;:ion Phases action set = RESET
* If done, select BEST
* Exploration
The Penalty Gma * Use LRI — the agents
Player B converge to pure (Nash)
joint action
< 10.10 =
'5_‘3’ kk | 00 | 10,10 . SynChronlzatlon
P + Update average payoff for
Exploration Phases action a converged to,
3 & optimistically
time * Exclude action ¢ and

Synchronization Phases

explore again if empty
action set — RESET

* |f done, select BEST
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The Penalty Game

Player B
< 10,90 vd
: [t
= + A
o ki | 00 )
With k < ©

Exploration Phases

.

N 2N 13

N

Synchronization Phases

ESRL

* Exploration

* Use LRI —* the agents
converge to pure (Nash)
joint action

» Synchronization

* Update average payoff for
action a converged to,
optimistically

* Exclude action o and
explore again if empty
action set — RESET

* |f done, select BEST

The Penalty Game
Player B

Player A

ki 00

Kk
-

10,10
0o @ 60—
(oa0])

Withk<©

Exploration Phases

Synchronization Phases

—

ESRL

* Exploration

* Use LRI = the agents
converge to pure (Nash)
joint action

* Synchronization

* Update average payoff for
action a converged to,
optimistically

* Exclude action @ and
explore again if empty
action set — RESET

* |f done, select BEST

45
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The Penalty Game

Player B-
10,10 Kk
-
e 0.0

Player A

—

—

Withk<©

Exploration Phases

ke + 00 (1000f)

ESRL

* Exploration

* Use LRI —* the agents
converge to pure (Nash)
joint action

» Synchronization

* Update average payoff for
action a converged to,

3 & optimistically
N 2N 3N time * Exclude action o and
N explore again if empty
Syncl’n'oni&ion Phases action set = RESET
* If done, select BEST
* Exploration
T Reaaty oane * Use LRI = the agents
Player B converge to pure (Nash)
> el joint action
< 1010 ke
5 I 00 Ris
2 [ Foe are) « Synchronization
Wink<0
* Update average payoff for
Exploration Phases action a converged to,
3 & optimistically
time * Exclude action a and

Synchronization Phases

explore again if empty
action set — RESET

* |f done, select BEST
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ESRL

* Exploration

The Penalty Game * Use LRI —* the agents

Player B converge to pure (Nash)
joint action
< 1010 00 kk
s s s
> oe 22 0,0 " -
2 [ oo (o)~ * Synchronization
RS + Update average payoff for
Exploration Phases action a converged to,
7 & optimistically
N 2N 3N e * Exclude action o and
W e explore again if empty
v H —
Synchronization Phases action set RESET

* |f done, select BEST

49

ESRL in conflicting interest games

Battle of the sexes
* Exploration

Player 2
B S * Use LRI —* the agents converge to
v < pure (Nash) joint action
g B (21 00
= )
o

i el wr » Synchronization

+ Update average payoff for action a
APt T converged to, optimistically

* Exclude action o and explore again if
empty action set =+ RESET

N 2N 3N time

v
Synchronization Phases

* Keep alternating to ensure fair payoffs

50



ESRL in conflicting interest games

Battle of the sexes

ure
Player 2 P .
equilibrium
B s
g B (.2,1' ‘o,o 1
a s |00 (1,2
| ESRL
rifixed
equilibrium

ESRL in Continuous Settings

® Apply the same exploration /
. synchronization idea

|
e 1

T

-,

® |n continuous action spaces
it makes no sense to exclude
a single action

4 ® We identify basin of
attraction for learning
A outcomes, and eliminate
‘ entire region from the action
space
Rodriguez et al,, 2013a
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Aged T i

Example Game

® 2 player continuous
action game

® 3 |ocal optima

® global optimum has
smallest basin of
attraction

Identifying the Basin of Attraction

T *
& 2 r'I’* ’J;":. vg:; o :A E
222 o '
< < e ‘.
_'-:',..g,:‘:-.; v :.
Lo 2
o Learners
Initially learners A Learners
explore T converge to
randomly attractor

attraction




Rewards During Learning

Action - Reward Covariance

Action i -
Reward .o R 4

° . . : .: 5". -'_' ._: e . - : 'ta‘:
Covariance | R o kR R

LW
el T %
TEE U R B8

SR B i W

maximum when
entering basin of
attraction

starts low

goes to 0 on
convergence
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Eliminate Action Range

mapping ® Use Covariance

initial exclusion
f,m {Jm Fm to ldentlfy
action range
0.7 0.7
b 0.57 ® Delete range
0.4 N
: ) from CARLA
PDF
0 0 0
® Renormalize
PDF
Results
1 RO
0.9 //w‘
PN : ‘
i i [ Rewards
<& 0.7 —
/T
, 0.6 ‘
05 ' -
: 0 GO0
A '3
< 0.5 __3, .
2 Actions
0}-3 £
0 G000
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Conclusions

® |earning automata formalisms can also be
used in continuous action games

® Discrete coordination mechanisms can be
extended to continuous case

Multi-agent Reinforcement Learning in Continuous
State Spaces

. CoMo - x o
Br P
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Interconnected Learning Automata (ILA)

® Actor-Critic

T~ S architecture
I‘/ \“ /I 8/ \:f R , :
\: ol |, ® LA is assigned to
"’,/" N ,l_ ,./" '\‘_ - _/h‘\ll e ac smte
' s T ) l\,__ ® LA is updated using
| | estimate of

accumulated reward
(state value) under

current policy

Witten, 1977
Wheeler & Narendra, 1986

ILA Analysis

® Behavior of
automata can be
LA 2 approximated by a
Wait Search Recharge game

Wan: ® Equilibria of game
represent optimal
Search policies

® Game does not need

to be explicitly
calculated
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Markov Games

MG-ILA Algorithm

(tas]) ~ - Agents keep

track of
. rewards and
Agents associate (== state and
an automaton (=) update
with each state automata
%
- |
When the
system is
in a state,
agents use
corresponding
Vrancx et al,, 2008 ekl oo
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MG-ILA Analysis

Approximate learning
behaviour by 2 games

High level and low level
view

High level: agent
interactions (Markov
game)

Low level: automata
interactions

Link both views

poli
;—li; pol2
- pol
M

&
Fa

OBk

0EC:

o) 2

N
(=)
-

i & ® Agents are players
l )
pol1 pc‘ilgl pol M ® | ook at agent Policies

Agent Game

® Payoff are expected
rewards in Markov

game

® High level view of
outcome
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R

'@ b

=
8\
e Automata are players Y N
® Each player selects action ai 2 _aR
for | agent, |state m
e Payoff are expected
rewards in Markov game -
® Low level view of @
interactions
Automata Game
Agents using e 4o Learning
automata Equilibria automata
find equilibrium N both games find equilibrium
between correspond in automata
policies game
pol1 pol2 ... pol M al a2 . aR
pol1
pol2 at
a2
pol
aR

Agent Game

Automata Game
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Coordinated Exploration

Coordination mechanisms
like ESRL can be used to find
global optimum / achieve
fair payoffs

0.85 0.76 0.61
0.48

i 0 0.30
0.82 6.084 ﬂ
0.31 033 036
032 033 0.51

Sub-optimal Equilibria
can occur

Vrancx et al., 2007

-

Lo, toelD 1 SV 20000 250400

algorithm may converge

to sub-optimal points

Learning in Continuous MDPs

State and Action space are
continuous

Exact tabular representations
are no longer possible

Approximation is needed to
represent policies and value
functions

Approximate TD-algorithms
(Q-learning/ SARSA) typically
discretize action set to find
greedy policy
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Linear Approximation

Value function
approximation:

V(x) = (x)™0v

Policy
approximation:

TI(X) = p(x) ™0,

& (x) are basis functions /
features of state x

O are learnt parameters

approximation is linear in
state features

¢ (x) can be non-linear
functions of state variables

dimession 2

tiling 1 :
guery point

........

Gimensson |

Tile-Coding

active tiles

e State space is covered
with overlapping grids

e ¢(x) is binary vector
with | value for each tile

® |n each grid only the tile
in which state x falls is
active

® ¢P(x)is | for active tiles,
0 else
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Kernel Based Approximation

smoothing parameter guery point

dimension |

density parameter
t

K(d) = eld"/7)

active cases

® Select sample states
CLE2...En

® For state x: select
nearest neighbors based
on distance d(x,Ci)

* d()[i] is K(d(q,Ci)) if
d(q,Ci) < Ty, 0 else.

® K is kernel function
(typically Gaussian)

e Can also be used
instance based (add
centers as needed)

CARLA learning in Continuous MDPs

Tst
Process

Controller

Rodriguez et al., 2013b

approximator } ,
J

Uy

Same idea as ILA algorithm

Set of CARLA learn policy
(actor)

Critic learns value of
current policy

Approximator is necessary
to represent policy &
values

Continuous Action Game
between CARLA with
values as rewards
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Double Integrator

acceleration

-2 i

velocity

uvp € [-1,1]

r 0 0 v, ]
} + [ ] [ JA’ : § [“ ] |4'5|Al = X 4 .‘XIA’ 1 lflhA'

P
75
Results: CARLA + tile coding
U PTG =
054/
\
g . . .
0 | 2 3 Bl 5 7
nme(s)
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Continuous Markov Games

““j’tcfss/‘:
® |dea can also be
— extended to

o) | 3D . (an) | e Continuous Markov

r —— | Games

: \ ® Each agent now uses
it | Agentm

of @O . :;_g%@,:n U0 set of CARLA +

[ : approximator I appl”OXimatOl'

Rodriguez et al,, 2013b

Example: Autonomous tractor

e Trint i 0"y

Implement’s




Results

Conclusions

Learning automata can be used as basic
building blocks for more complex multi-

state, multi-agent algorithms

Game theoretic methods can still be used
to analyze algorithms

Methods can also be extended to
continuous state-action spaces
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