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Abstract. This paper presents a comparative evaluation of two learning
approaches. The first approach is a conventional reinforcement learning
algorithm for direct policy search which uses scalar rewards by definition.
The second approach is a custom linear regression based algorithm that
uses multidimensional feedback instead of a scalar reward. The two ap-
proaches are evaluated in simulation on a common benchmark problem:
an aiming task where the goal is to learn the optimal parameters for aim-
ing that result in hitting as close as possible to a given target. The com-
parative evaluation shows that the multidimensional feedback provides
a significant advantage over the scalar reward, resulting in an order-of-
magnitude speed-up of the convergence. A real-world experiment with a
humanoid robot confirms the results from the simulation and highlights
the importance of multidimensional feedback for fast learning.
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1 Introduction

A well-established tradition in Reinforcement Learning (RL) is to use a single
scalar reward as a feedback signal [1]. Almost all existing RL algorithms and
techniques rely on the assumption that trials are evaluated with a single numeric
value. This paper aims to challenge the established tradition by showing that
a state-of-the-art RL algorithm for direct policy search is easily outperformed
by a simple linear regression algorithm that relies on multidimensional feedback
instead of a simple scalar reward.

The paper presents a comparative evaluation of the following two learning ap-
proaches. The first approach is a conventional reinforcement learning algorithm
for direct policy search which uses scalar rewards by definition. As a representa-
tive of this approach we use a state-of-the-art Expectation-Maximization based
RL algorithm described in Section 2.

The second approach in this comparison is a custom linear regression based
algorithm that we have proposed which uses multidimensional feedback instead
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of a scalar reward. The algorithm is based on iterative vector regression with
shrinking support region as explained in Section 3.2.

The two approaches are evaluated in simulation on a common benchmark
problem that we have proposed. It is an aiming task where the goal is to learn the
optimal parameters for aiming that result in hitting as close as possible to a given
target. This problem was chosen because of its simplicity and ease of defining the
feedback signal. For example, the natural measure for the performance of a trial
in this task is the distance between the given target and the trial hit location.

The comparative evaluation between the two approaches shows that the mul-
tidimensional feedback provides a significant advantage over the scalar reward,
resulting in an order-of-magnitude speed-up of the convergence. This is demon-
strated in Section 4.1. We have also conducted a real-world experiment with a
humanoid robot that confirms the results from the simulation and highlights the
importance of multidimensional feedback for fast learning.

The following section gives a brief overview of RL algorithms for direct policy
search, in order to position the comparative evaluation in the context of the
existing RL literature.

2 Reinforcement Learning for Direct Policy Search

In conventional RL, the goal is to find a policy π that maximizes the expected
future return, calculated based on a scalar reward function R : I → R, where I
is an input space that depends on the problem. The input space can be defined
in different ways, e.g. it could be a state s, or a state transition, or a state-action
pair, or a whole trial as in the case of episodic RL, etc. The policy π determines
what actions will be performed by the RL agent.

Very often, the RL problem is formulated in terms of a Markov Decision
Process (MDP) or Partially Observable MDP (POMDP). In this formulation,
the policy π is viewed as a direct mapping function (π : s 7−→ a) from state s ∈ S
to action a ∈ A. Alternatively, instead of trying to learn the explicit mapping
from states to actions, it is possible to perform direct policy search, as shown
in [2]. In this case, the policy π is considered to depend on some parameters
θ ∈ RN , and is written as a parameterized function π(θ). The episodic reward
function becomes R(τ(π(θ))), where τ is a trial performed by following the policy.
The reward can be abbreviated as R(τ(θ)) or even as R(θ), which reflects the
idea that the behaviour of the RL agent can be influenced by only changing
the values of the policy parameters θ. Therefore, the outcome of the behaviour,
which is represented by the reward R(θ), can be optimized by only optimizing the
values θ. This way, the RL problem is transformed into a black-box optimization
problem with cost function R(θ), as shown in [3].

The following is a non-exhaustive list of state-of-the-art direct policy search
RL approaches:

– Policy Gradient based RL - in which the RL algorithm is trying to
estimate the gradient of the policy with respect to the policy parameters,
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and to perform gradient descent in policy space. The Episodic Natural Actor-
Critic (eNAC), in [4], and Episodic REINFORCE in [5] are two of the well-
established approaches of this type.

– Expectation-Maximization based RL - in which the EM algorithm is
used to derive an update rule for the policy parameters at each step, trying
to maximize a lower bound on the expected return of the policy. A state-of-
the-art RL algorithm of this type is PoWER (Policy learning by Weighting
Exploration with the Returns), in [6], as well as its generalization MCEM,
in [7].

– Path Integral based RL - in which the learning of the policy parameters
is based on the framework of stochastic optimal control with path integrals.
A state-of-the-art RL algorithm of this type is PIˆ2 (Policy Improvement
with Path Integrals), in [8].

– Regression based RL - in which regression is used to calculate updates
to the RL policy parameters using the rewards as weights. One of the ap-
proaches that are used extensively is LWPR (Locally Weighted Projection
Regression), in [9].

– Model-based policy search RL - in which a model of the transition
dynamics is learned and used for long-term planning. Policy gradients are
computed analytically for policy improvement using approximate inference.
A state-of-the-art RL algorithm of this type is PILCO (Probabilistic Infer-
ence for Learning COntrol), in [10].

Direct policy search is one of the preferred methods when applying reinforcement
learning in robotics [11]. This is due to the robots’ inherently high-dimensional
continuous action spaces for which direct policy search tends to scale up better
than MDP-based methods.

3 Two Learning Approaches for Comparative Evaluation

In this section we present the two different learning algorithms that are evaluated
on the common aiming task.

3.1 Learning algorithm 1: PoWER

As a first approach for learning the aiming task, we use the state-of-the-art EM-
based RL algorithm PoWER by Kober et al [6]. We selected PoWER algorithm
because it does not need a learning rate (unlike policy-gradient methods) and
also because it can be combined with importance sampling to make better use
of the previous experience of the agent in the estimation of new exploratory
parameters. Moreover, PoWER has demonstrated superior performance in tasks
learned directly on real robots, such as the ball-in-a-cup task [12] and the pancake
flipping task [13].

PoWER uses a parameterized policy and tries to find values for the param-
eters which maximize the expected return of trials (also called trials) under the
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corresponding policy. For the aiming task the policy parameters are represented
by the elements of a 3D vector corresponding to the aiming direction and initial
velocity of the projectile.

We define the return of a shooting trial τ to be:

R(τ) = e−||r̂T−r̂A||, (1)

where r̂T is the estimated 2D position of the center of the target on the target’s
plane, r̂A is the estimated 2D position of the projectile, and || · || is Euclidean
distance.

As an instance of EM algorithm, PoWER estimates the policy parameters
θ to maximize a lower bound on the expected return from following the policy.
The policy parameters θn at the current iteration n are updated to produce the
new parameters θn+1 using the following rule (as described in [12]):

θn+1 = θn +

〈
(θk − θn)R(τk)

〉
w(τk)〈

R(τk)
〉
w(τk)

. (2)

In Eq. (2), (θk − θn) = ∆θk,n is a vector difference which gives the relative
exploration between the policy parameters used on the k-th trial and the current
ones. Each relative exploration ∆θk,n is weighted by the corresponding return
R(τk) of trial τk and the result is normalized using the sum of the same returns.
Intuitively, this update rule can be thought of as a weighted sum of parameter
vectors where higher weight is given to these vectors which result in better
returns.

In order to minimize the number of trials which are needed to estimate new
policy parameters, we use a form of importance sampling technique adapted
for RL [1][6] and denoted by 〈·〉w(τk) in Eq. (2). It allows the RL algorithm to
re-use previous trials τk and their corresponding policy parameters θk during
the estimation of the new policy parameters θn+1. The importance sampler is
defined as: 〈

f(θk, τk)
〉
w(τk)

=

σ∑
k=1

f(θind(k), τind(k)), (3)

where σ is a fixed parameter denoting how many trials the importance sampler
is to use, and ind(k) is an index function which returns the index of the k-th
best trial in the list of all past trials sorted by their corresponding returns, i.e.
for k = 1 we have:

ind(1) = argmax
i

R(τi), (4)

and the following holds: R(τind(1)) ≥ R(τind(2)) ≥ ... ≥ R(τind(σ)). The impor-
tance sampler allows the RL algorithm to calculate new policy parameters using
the top-σ best trials so far. This reduces the number of required trials to converge
and makes this RL algorithm applicable to online learning.
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3.2 Learning algorithm 2: ARCHER
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Fig. 1. The conceptual idea underlying the linear regression based algorithm
(ARCHER). The goal is to find the optimal parameters from the 3D parameter space
that result in hitting the given target.

For a second learning approach we propose to use a custom algorithm devel-
oped and optimized specifically for problems like the aiming task, which have
a smooth solution space and prior knowledge about the goal to be achieved.
We will refer to it as the ARCHER algorithm (Augmented Reward CHainEd
Regression). The motivation for ARCHER is to make use of richer feedback in-
formation about the result of a trial. Such information is ignored by the PoWER
RL algorithm because it uses scalar feedback which only depends on the distance
to the target’s center. ARCHER, on the other hand, is designed to use the prior
knowledge we have on the optimum reward possible. In this case, we know that
hitting the center corresponds to the maximum reward we can get. Using this
prior information about the task, we can view the position of the projectile as
an augmented reward. In this case, it consists of a 2-dimensional vector giving
the horizontal and vertical displacement of the projectile with respect to the
target’s center. This information is obtained either directly from the simulated
experiment in Section 4.1 or calculated by an image processing algorithm for the
real-world experiment. Then, ARCHER uses a chained local regression process
that iteratively estimates new policy parameters which have a greater probabil-
ity of leading to the achievement of the goal of the task, based on the experience
so far.

Each trial τi, where i ∈ {1, . . . , N}, is initiated by input parameters θi ∈
R3, which is the vector describing the relative position of the hands and is
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produced by the learning algorithms. Each trial has an associated observed result
(considered as a 2-dimensional reward) ri = f(θi) ∈ R2, which is the relative
position of the projectile with respect to the target’s center rT = (0, 0)T . The
unknown function f is considered to be non-linear due to air friction, wind flow,
and etc. A schematic figure illustrating the idea of the ARCHER algorithm is
shown in Fig. 1.

Without loss of generality, we assume that the trials are sorted in descending
order by their scalar return calculated by Eq. 1, i.e. R(τi) ≥ R(τi+1), i.e. that
r1 is the closest to rT . For convenience, we define vectors ri,j = rj − ri and
θi,j = θj − θi. Then, we represent the vector r1,T as a linear combination of
vectors using the N best results:

r1,T =

N−1∑
i=1

wir1,i+1. (5)

Under the assumption that the original parameter space can be linearly ap-
proximated in a small neighborhood, the calculated weights wi are transferred
back to the original parameter space. Then, the unknown vector to the goal
parameter value θ1,T is approximated with θ̂1,T as a linear combination of the
corresponding parameter vectors using the same weights:

θ̂1,T =

N−1∑
i=1

wiθ1,i+1. (6)

In a matrix form, we have r1,T = WU , whereW contains the weights {wi}Ni=2,
and U contains the collected vectors {r1,i}Ni=2 from the observed rewards of N

trials. The least-norm approximation of the weights is given by Ŵ = r1,TU
†,

where U† is the pseudoinverse of U .1 By repeating this regression process when
adding a new couple {θi, ri} to the dataset at each iteration, the algorithm refines
the solution by selecting at each iteration the N closest points to rT . ARCHER
can thus be viewed as a linear vector regression with a shrinking support region.

In order to find the optimal value for N (the number of samples to use for
the regression), we have to consider both the observation errors and the function
approximation error. The observation errors are defined by εθ = ||θ̃ − θ|| and
εr = ||r̃ − r||, where θ̃ and r̃ are the real values, and θ and r are the observed
values. The function approximation error caused by non-linearities is defined by
εf = ||f −Aθ||, where A is the linear approximation.

On the one hand, if the observations are very noisy (εr � εf and εθ � εf ), it
is better to use bigger values for N , in order to reduce the error when estimating
the parameters wi. On the other hand, for highly non-linear functions f (εf � εr
and εf � εθ), it is better to use smaller values for N , i.e. to use a small subset of
points which are closest to rT in order to minimize the function approximation
error εf . For the experiments presented in this paper we used N = 3 in both

1 In this case, we used a least-squares estimate. For more complex solution spaces,
ridge regression or other regularization scheme can be considered.
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the simulation and the real-world, because the observation errors were kept very
small in both cases.

The ARCHER algorithm can also be used for other tasks, provided that:
(1) a-priori knowledge about the desired target reward is known; (2) the reward
can be decomposed into separate dimensions; (3) the task has a smooth solution
space.

4 Comparative Evaluation

4.1 Simulation Experiment

The two proposed learning algorithms (PoWER and ARCHER) are evaluated
and compared in a simulation experiment. The aiming task in this case is an
archery-based task, where the goal is specified as the center of the archery tar-
get. Even though the archery task is hard to model explicitly (e.g., due to the
unknown parameters of the bow and arrow used), the trajectory of the arrow
can be modeled as a simple ballistic trajectory, ignoring air friction, wind ve-
locity and etc. A typical experimental result for each algorithm is shown in Fig.
2. In both simulations, the same initial parameters are used. The simulation is
terminated when the arrow hits inside the innermost ring of the target, i.e. the
distance to the center becomes less than 5 cm.

For a statistically significant observation, the same experiment was repeated
40 times with a fixed number of trials (60) in each session. The averaged exper-
imental result is shown in Fig. 3. The ARCHER algorithm clearly outperforms
the PoWER algorithm for the archery task. This is due to the use of 2D feedback
information which allows ARCHER to make better estimations/predictions of
good parameter values, and to the prior knowledge concerning the maximum
reward that can be achieved. PoWER, on the other hand, achieves reasonable
performance despite using only 1D feedback information.

Based on the results from the simulated experiment, the ARCHER algorithm
was chosen to conduct the following real-world experiment.

4.2 Robot Experiment

The real-world robot experimental setup is shown in Fig.4. The experiment was
conducted using the iCub humanoid robot[14].

In the experiment, we used the torso, arms, and hands of the robot. The
torso has 3 DOF (yaw, pitch, and roll). Each arm has 7 DOF, three in shoulder,
one in the elbow and three in the wrist. Each hand of the iCub has 5 fingers and
19 joints although with only 9 drive motors several of these joints are coupled.
We manually set the orientation of the neck, eyes and torso of the robot to
turn it towards the target. The finger positions of both hands were also set
manually to allow the robot to grip the bow and release the string suitably. We
used one joint in the index finger to release the string. It was not possible to
use two fingers simultaneously to release the string because of difficulties with
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Fig. 2. Simulation of the archery task. Learning is performed under the same start-
ing conditions with two different algorithms. The red trajectory is the final trial. (a)
PoWER algorithm needs 19 trials to reach the center. (b) ARCHER algorithm needs
5 trials to do the same.
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Fig. 3. Comparison of the speed of convergence for the PoWER and ARCHER algo-
rithms. Statistics are collected from 40 learning sessions with 60 trials in each session.
The first 3 trials of ARCHER are done with large random exploratory noise, which
explains the big variance at the beginning.

synchronizing their motion. The posture of the left arm (bow side) was controlled
by the proposed system, as well as the orientation of the right arm (string side).
The position of the right hand was kept within a small area, because the limited
range of motion of the elbow joint did not permit pulling the string close to the
torso.

The real-world experiment was conducted using the proposed ARCHER al-
gorithm. The 2-dimensional reward needed by ARCHER after each trial was
estimated by tracking the target and the arrow in the camera image.

For the learning part, the number of trials until convergence in the real
world is higher than the numbers in the simulated experiment. This is caused by
the high level of noise (e.g. physical bow variability, measurement uncertainties,
robot control errors, etc.). Fig. 5 visualizes the results of a learning session
performed with the real robot. In this session, the ARCHER algorithm needed
10 trials to converge to the center.

Another point for comparison is that with a RL algorithm it is possible to
incorporate a bias/preference in the reward. For ARCHER, a similar effect could
be achieved using a regularizer in the regression.

5 Conclusion

We have presented a comparative evaluation of two learning approaches: a state-
of-the-art RL algorithm for direct policy search (PoWER) which uses scalar re-
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Fig. 4. Real-world experiment using the iCub humanoid robot. The distance between
the target and the robot is 2.2 meters. The diameter of the target is 50 cm.

wards, and a custom linear regression based algorithm (ARCHER) that uses
multidimensional feedback instead of a scalar reward. The comparative evalua-
tion indicates that the multidimensional feedback provides a significant advan-
tage over the scalar reward, resulting in an order-of-magnitude speed-up of the
convergence. The real-world experiment with the iCub humanoid robot confirms
these results.
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